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OPTIMIZED SCHWARZ WAVEFORM RELAXATION FOR

PRIMITIVE EQUATIONS OF THE OCEAN

E. AUDUSSE, P. DREYFUSS, B. MERLET. ∗

Abstract. In this article we are interested in the derivation of efficient domain decomposition
methods for the viscous primitive equations of the ocean. We consider the rotating 3d incompressible
hydrostatic Navier-Stokes equations with free surface. Performing an asymptotic analysis of the
system with respect to the Rossby number, we compute an approximated Dirichlet to Neumann
operator and build an optimized Schwarz waveform relaxation algorithm. We establish the well-
posedness of this algorithm and present some numerical results to illustrate the method.

Key words. Domain Decomposition, Schwarz Waveform Relaxation Algorithm, Fluid Mechan-
ics, Primitive Equations, Finite Volume Methods
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1. Introduction. A precise knowledge of ocean parameters (velocity, tempera-
ture...) is an essential tool to obtain climate and meteorological previsions. This task
is nowadays of major importance and the need of global or regional simulations of the
evolution of the ocean is strong. Moreover the large size of global simulations and the
interaction between global and regional models require the introduction of efficient
domain decomposition methods.

The evolution of the ocean is commonly modelized by the use of the viscous primitive
equations. This system is deduced from the full three dimensional incompressible
Navier-Stokes equations with free surface with the use of the hydrostatic approxima-
tion and of the Boussinesq hypothesis. It is implemented in all the major softwares
that are concerned with global or/and regional simulations of ocean and/or atmo-
sphere (we refer for example to NEMO [23], MOM [26] or HYCOM for global models
and ROMS [2] or MARS for regional models). The primitive equations have been stud-
ied for twenty years and important theoretical results are now available [21, 32, 4].
The numerical treatment of this system has been also strongly investigated [31]. But
the key point here is to simulate global circulation on the earth for long time and/or
with small space discretization. This type of computations can not be performed on
a single computer in realistic CPU time and need to be parallelized. The problem is
then to allow the different subdomains to interact in an efficient way. Another type
of applications that are commonly investigated in the oceaonographic and/or meteo-
rological community is to couple global and regional models in order to obtain precise
regional previsions. The problem is also to construct an efficient interaction between
the two models. In [3] the authors exhibit that most of the existing algorithms are not
able to compute this kind of problem in an efficient way. We propose in this article
to investigate these still open questions in the context of a quite recent performing
domain decomposition method : the Schwarz waveform relaxation type algorithms.

The development of domain decomposition techniques have known a great develop-
ment for the last decades and our purpose is not to make an exhaustive presentation
of these methods. We refer the reader to [27, 33] for a general presentation and we
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restrict ourselves to the description of Schwarz waveform relaxation method. It is a
relatively new domain decomposition technique. It has been developed for the last
decade and has been successfully applied to different types of equations. This type
of algorithms is the result of the interaction between classical Schwarz domain de-
composition techniques and waveform relaxation algorithms. Its great interest is to
be explicitly designed for evolution equations and to allow different strategies for the
space time discretization in each subdomain. Moreover we can even consider different
models in each subdomain without modifying the architecture of the interaction.
The heart of the classical Schwarz method is to solve the problem on the whole domain
thanks to an iterative procedure where a problem is solved on each subdomain by the
use of boundary conditions that contain the information coming from the neighboring
subdomains. It comes from the early work of Schwarz [29] where this idea was intro-
duced to prove the well-posedness of a Poisson problem in some nontrivial domains.
This method is designed for stationary problems and presents two main drawbacks :
it needs an overlapping between subdomains and it converges slowly [19]. In the last
decade, some works have been devoted to cure these disagreements [20]. We refer to
[10] for a complete presentation.
The extension to time evolution problems was performed at the end of the nineties by
Gander [8, 9] and Giladi & Keller [14] and was denoted Schwarz waveform relaxation
algorithms. The authors mixed the classical Schwarz approach with waveform relax-
ation techniques developed in the context of the solutions of large system of ordinary
differential equations [18, 17]. The exchanged quantities were of Dirichlet type. Op-
timized Schwarz waveform relaxation methods were developed with the introduction
of more sophisticated information to compute the interaction between the subdo-
mains. These optimized algorithms were based on previous works [7, 15, 16] about
the derivation of absorbing boundary conditions respectively for hyperbolic, elliptic
and incompletely parabolic equations. The same ideas were used to derive efficient
transmission conditions between the subdomains : since the exact transparent condi-
tions can not be implemented in general (it may lead to non-local pseudo-differential
operators), the derivation of some approximate conditions is performed. These condi-
tions can be optimized with respect to some free parameters which justifies the name
of the method. The optimized Schwarz waveform relaxation method was first applied
to the wave equation [12] and then to the advection-diffusion equation with constant
or variable coefficients [24]. A recent paper [11] gives the complete solution of the one
dimensional optimization problem for constant coefficients equations. More recently
the method has been extended to the linearized viscous shallow water equations with-
out advection term by V. Martin [25]. Here we are interested in the application of the
method to the system of Primitive Equations of the ocean. It leads to non-trivial new
problems (new transmission conditions, well-posedness of the problem, convergence
of the algorithm...) that we address in this article.

The outline of the paper is the following : in Section 2 we write the equations and we
precise the asymptotic regime that we consider. In Section 3 we derive an approxi-
mated Dirichlet to Neumann operator, and define the associated Schwarz waveform
relaxation algorithm. In Section 4 we define a weak formulation of the problem on
the whole domain and prove that it is well-posed in the natural functional spaces. In
Section 5 we introduce a weak formulation for the Schwarz waveform relaxation algo-
rithm and prove that each sub-problem solved in the algorithm is well-posed. Finally
we present some numerical results in Sections 6.
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2. The set of equations. We first write the primitive equations of the ocean.
Then we present the simplified system from which we are able to derive efficient
transmission conditions.

2.1. The primitive equations of the ocean. We consider the primitive equa-
tions of the ocean on the domain (x, y, z, t) ∈ R×R×[−H(x, y), ζ(x, y, t)]×R+ where
−H(x, y) denotes the topography of the ocean and ζ(x, y, t) denotes the altitude of
the free surface of the ocean. The primitive equations are commonly written [5]

∂tUh + Uh · ∇hUh − ν∆Uh +
2

ρ0

~Ω ∧ Uh +
1

ρ0
∇hp = 0, (2.1)

∇h · Uh + ∂zw = 0, (2.2)

∂zp = −ρg, (2.3)

ρ = ρ(z, T, S), (2.4)

∂tT + U0 · ∇T − νT ∆T = QT , (2.5)

∂tS + U0 · ∇S − νS∆S = QS , (2.6)

where the unknowns are the 3d-velocity (Uh, w) = (u, v, w), the pressure p, the density
ρ, the temperature T and the salinity S. The parameters are the gravity g, the eddy
viscosity ν, the eddy diffusion coefficients for the tracers νT and νS and the earth
rotation vector ~Ω. The source terms QT and QS for the temperature and salinity
model the influence of the sun, rivers and atmosphere for these tracers.
Note that we consider here the classical but non-symmetric viscosity tensor

σ =




σxx σxy σxz

σyx σyy σyz

σzx σzy σzz


 = ν




∂xu ∂yu ∂zu
∂xv ∂yv ∂zv
∂xw ∂yw ∂zw


 .

Other form of the viscosity tensor can be found in [13]. Note also that it is possible to
consider different viscosity coefficients in the horizontal and vertical directions [22].
These equations are supplemented by initial and boundary conditions. At initial time,
we impose

Uh(·, 0) = Uh,i in Ω, ζ(·, 0) = ζi in ω,

where the subscript letters i means “initial”. At the bottom of the ocean we impose
a non-penetration condition and a friction law of Robin type (αb > 0)

Uh(−H) · ∇h(H) − w(−H) = 0, ∂nUt(−H) + αbUt(−H) = 0, (2.7)

where Ut stands for the tangential velocity and n denotes the outward normal vector
to the bottom of the ocean.
The free surface is transported by a kinematic boundary condition

∂tζ + Uh(ζ) · ∇hζ − w(ζ) = 0. (2.8)

The equilibrium of the stresses at the free surface implies

[σ − (p− pa)Id] · 1√
1 + (∂xζ)2 + (∂yζ)2




∂xζ
∂yζ
1


 = 0, (2.9)

where pa(x, y, t) denotes the atmospheric pressure.
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Fig. 2.1. Schematic representation of the ocean

2.2. A linearized hydrostatic model. In order to derive simple and efficient
transmission conditions for the Schwarz waveform relaxation method we make some
assumptions on this set of equations.

First we neglect the influence of the tracers (temperature and salinity) on the density.
Thus we suppose that the density is constant (we assume ρ0 = 1) and we do not
solve the equations on the tracers (2.5)-(2.6). Note that these equations are classical
advection-diffusion equations for which the optimized transmission conditions are well
known [11, 24].
Then we use the divergence-free condition (2.2) and the non-penetration condition (2.7)
to write the vertical velocity w as a function of the horizontal velocity Uh and we use
the hydrostatic assumption (2.3) to write the pressure p as a function of the water
height ζ. The remaining unknowns in the system are the horizontal velocity Uh and
the water height ζ. The set of equations (2.1)-(2.3) stands

∂tUh + Uh · ∇hUh − ν∆Uh + fCUh + g∇hζ = 0,

∂tζ + ∇h ·
∫ ζ

−H

Uh dz = 0,

with

C =

(
0 −1
1 0

)
, and f := 2~Ω · ez.

The first equation is written on the initial domain Rx×Ry×[−H(x, y), ζ(x, y, t)]z×R+
t

while the second one is written on Rx × Ry × R+
t . We consider for simplicity a

flat bottom and a constant atmospheric pressure. Then we linearize the problem
around a constant state which corresponds to a horizontal velocity U0 = (u0, v0) and
a horizontal free surface located at z = 0. It follows that the water height ζ is a small
perturbation. In the sequel Uh denotes the perturbation on the horizontal velocity.
The linearized problem stands

∂tUh + U0 · ∇hUh − ν∆Uh + fCUh + g∇hζ = 0, (2.10)

∂tζ +H∇h · Uh + U0 · ∇hζ = 0, (2.11)
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where

Uh =

(
u
v

)
:=

1

H

∫ 0

−H

Uh dz,

denotes the mean horizontal velocity of the flow. This mean velocity is called barotropic
velocity by the oceanographic community while the deviation Uh −Uh is called baro-
clinic velocity [5].
Note that the first equation (2.10) is now written in the fixed domain Rx × Ry ×
[−H, 0]z × R+

t .
The associated boundary conditions are

∂zUh(z = 0) = 0, {∂zUh + αbUh} (z = −H) = 0, (2.12)

where the boundary condition at z = 0 is deduced from the equilibrium of the stresses
at the free surface (2.9). Indeed, with the help of the linearization procedure, we first
deduce that at first order ∂zUh(z = ζ) ≃ 0 and then ∂zUh(z = 0) ≃ 0 since we assume
that ζ is small.
In order to derive the transmission conditions we assume αb = 0 in the sequel. How-
ever in the definition of the Schwarz waveform relaxation algorithm and in the nu-
merical simulations, the condition αb > 0 will be supported.

2.3. Dimensionless system. We choose characteristic horizontal and vertical
lengths (denoted L and H respectively) and velocity U of the problem. We introduce
the dimensionless quantities

(x, y) = L(x̃, ỹ), t = (L/U)t̃,

ζ = Hζ̃, z = Hz̃,

Uh = UŨh, U0 = UŨ0.

The spatial domains of computation are Ω = Rx × Ry × (−1, 0)z for the momentum
equation and ω = Rx × Ry for the continuity equation. We study both equations in
the time interval [0, T ], where T > 0 is fixed.
Dropping the “∼” for a better readability, the system in dimensionless variables stands

∂tUh + U0 · ∇hUh − 1

Re
∆hUh − 1

Re′
∂ 2

z Uh +
1

ε
CUh +

1

Fr2
∇hζ = 0, (2.13)

∂zUh(x, y, 0, t) = ∂zUh(x, y,−1, t) = 0, (2.14)

Uh(·, 0) = Uh,i, (2.15)

∂tζ + U0 · ∇hζ + ∇h · Uh = 0, (2.16)

ζ(·, 0) = ζi. (2.17)

We have introduced the characteristic quantities,
- ε = U/(fL) the Rossby number,
- Re = UL/ν the horizontal Reynolds number,
- Re′ = H2/L2Re the vertical Reynolds number,
- Fr = U/

√
gH the Froude number.

We choose to exhibit the Rossby number as a small parameter since we are interested
in long-time oceanographic circulation for which the Rossby number is typically of
magnitude 10−2. The values of Reynolds and Froude numbers vary with respect to
the turbulent processes and to the depth of the area that is considered respectively.
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3. The optimized Schwarz waveform relaxation algorithm. We are now
interested in finding efficient transmission conditions for equations (2.13)–(2.17). We
first present the Schwarz waveform relaxation method. Then we derive the relations
satisfied by the optimal transmission conditions. Since we are not able to solve analyt-
ically these equations, we perform an asymptotic analysis with respect to the Rossby
number ε in order to derive some approximated transmission conditions. Finally we
present the related optimized Schwarz waveform relaxation algorithm.

3.1. The Schwarz waveform relaxation method. The heart of the method
is the following. We first divide the computational domain into an arbitrary number
of subdomains. Then we solve each sub-problem independently for the whole time
interval. The interactions between neighboring subdomains are entirely contained in
the boundary conditions. An iterative procedure is considered until a prescribed preci-
sion is reached. The advantages of the method are clear : the parallelization is almost
optimal: at each step the sub-problems are solved independently, so the space-time
discretization strategies (or even the models...) can be chosen independently on each
subdomain. Moreover at the end of each step only a small amount of informations are
exchanged. The main drawback is related to the needed number of iterations : the
method is efficient if it converges quickly (in two or three iterations typically). This
requirement needs the derivation of efficient transmission conditions.
In the sequel we consider for simplicity two subdomains but the method extends to
an arbitrary number of subdomains.

We begin with some notations. First we introduce the left and right spatial sub-
domains Ω− and Ω+ defined by:

Ω− := (−∞, 0)x × Ry × (−1, 0)z, Ω+ := (0,+∞)x × Ry × (−1, 0)z,

and their interface

Γ = {0}x × Ry × (−1, 0)z ≃ Ry × (−1, 0)z.

We also introduce the domains ω± := ±(0,+∞)x ×Ry for the unknowns that do not
depend on the z variable, and their interface γ := {0}x × Ry ≃ Ry.
Let D be some spatial open domain and T > 0 be a given real number. Then we will
write DT to denote the cylindrical domain DT := D × (0, T ).
We denote by PE the set of equations (2.13), (2.14) and (2.16) and X := (Uh, ζ)
stands for the solution of this system with associated initial data Xi := (Uh,i, ζi).
Then the Schwarz waveform relaxation algorithm is defined as follows:





PE(Xn+1
− ) = 0 on Ω−

T ,

Xn+1
− (·, 0) = Xi on Ω−,

B−X
n+1
− = B−X

n
+ on ΓT ,





PE(Xn+1
+ ) = 0 on Ω+

T

Xn+1
+ (·, 0) = Xi on Ω+,

B+X
n+1
+ = B+X

n
− on ΓT ,

(3.1)
where the operators B± contain the transmission conditions.
In the classical Schwarz waveform relaxation algorithm [8, 6], the transmitted quan-
tities are of Dirichlet type and the operators B± are thus chosen to be the identity
operator. Note that in this case an overlap is needed in the definition of the subdo-
mains.
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In the sequel we are interested in deriving more efficient transmission conditions. In
order to reach such a goal we will first describe the general method to obtain optimal
transmission conditions. The transmission conditions are said to be optimal if the
algorithm converges in two iterations to the solution of the initial problem. These op-
timal transmission conditions involve the Dirichlet to Neumann operator associated
to PE on the subdomains Ω±

T . Here we will see that we are not able to obtain an
explicit formulation for these optimal conditions. Anyway these optimal boundary
conditions are not local and consequently too expensive to be useful from a numerical
point of view.
Recent methods have been developed recently in order to approximate these optimal
conditions by analytical or numerical means — see the review paper [10] for elliptic
problems and [11] for parabolic evolution equations.
Here we will perform an asymptotic analysis of the system with respect to the Rossby
number ε in order to deduce a set of approximated and efficient transmission condi-
tions. This strategy has been initiated in [25] for the shallow water equation without
advection term. In our case, it turns out that these approximate transmission condi-
tions lie in a two parameter family of boundary conditions. In Section 6 we optimize
numerically the transmission conditions in this two parameter family.

Let us first describe in a formal setting the ideal case of optimal transmission condi-
tions for the Schwarz waveform relaxation algorithm (3.1).
We consider the case u0 > 0. The case u0 < 0 is deduced by applying the symmetry
“x′ = −x”. Integrating the linearized Primitive equations PE on a subdomain, we
see that the flux of the unknown (Uh, ζ) through the interface Γ is given by

(
1

Re
∂xUh − u0Uh − 1

Fr2

(
ζ
0

)
, u0ζ + u

)

Using this flux as a Neumann operator, we define the Dirichlet to Neumann operators
as follows. Consider a Dirichlet data Xb = (Uh,b, ζb), we set

DN
Uh

− Xb :=

(
1

Re
∂xUh − u0Uh − 1

Fr2

(
ζ
0
c

))

|ΓT

,

where X = (Uh, ζ) solves





PE(X) = 0 on Ω+
T

X(·, 0) = 0 on Ω+,
X = Xb on ΓT .

Symmetrically, consider a Dirichlet data Uh,b, we set

(
DN

Uh

+ Xb

DN ζ
+Xb

)
:=




1

Re
∂xUh − u0Uh − 1

Fr2

(
ζ
0

)

u0ζ + u




|ΓT

,

where X = (Uh, ζ) solves





PE(X) = 0 on Ω−
T ,

X(·, 0) = 0 on Ω−,

Uh = Uh on ΓT .
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Notice that since we consider the case u0 > 0, the continuity equation (2.16) the
boundary condition is relevant only in the subdomain Ω+

T . This is why in the later
case we do not have to prescribe a boundary condition for ζ.

Once these Dirichlet to Neumann operators are defined we can introduce the optimal
transmission conditions

B−X =

(
1

Re
∂xUh − u0Uh − 1

Fr2

(
ζ
0

)
−DN

Uh

− X

)
, (3.2)

B+X =




− 1

Re
∂xUh + u0Uh +

1

Fr2

(
ζ
0

)
−DN

Uh

+ X

u0ζ + u−DN ζ
+X


 , (3.3)

Proposition 3.1. With this particular choice of transmission operators B±, the
algorithm (3.1) converges in two iterations.

Proof. By linearity, we may assume that the exact solution is 0 (Xi ≡ 0). At the
initial step the solutions on each subdomain do not satisfy any particular property.
But the first iterate solves the primitive equations with vanishing initial data. It
follows from the very definition of the operators DN± that in the definition of the
second iterate, the right hand sides of the transmission conditions vanish for both
sub-problems. We deduce that this second iterate vanish: the algorithm converges in
two steps.

The operators (3.2)(3.3) being non-local pseudo-differential operator, they are not well
suited for numerical implementation. Our strategy is to approximate these operators
by numerically cheap operators. Of course the two-step convergence property will be
lost. The quality of the approxiamation will be measured through the convergence
rate of the algorithm. From the structure of (3.2)(3.3), we choose to write B± as
perturbations of the natural operators transmitted through the interface:

B−X =

(
1

Re
∂xUh − u0Uh − 1

Fr2

(
ζ
0

)
− SUh

− X

)
, (3.4)

B+X =




− 1

Re
∂xUh + u0Uh +

1

Fr2

(
ζ
0

)
− SUh

+ X

u0ζ + u− Sζ
+X


 , (3.5)

where SUh

± and Sζ
+ are pseudo-differential operators that will approximate the Dirich-

let to Neumann operators.
Let us finally remark that the differences in the expression of the two transmission
operators B± are due to the sign u0 > 0. Since B− contains the information that
is transmitted from Ω+

T to Ω−
T it is constructed on three boundary values (velocities

and water height) but it has to transmit only two boundary conditions for momen-
tum equations (2.13). On the contrary B+ is constructed on two boundary values
(velocities) but has to send three boundary conditions (for momentum and continuity
equations).
In the next subsections we will identify optimal and approximated transmission op-
erators. To carry out the computation of the Dirichlet to Neumann operators we
perform Fourier-Laplace transforms.
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3.2. Laplace-Fourier transform of the primitive equations. We perform
on the set of primitive equations (2.13)-(2.16) a Fourier transform in the y variable
and a Laplace transform in time. The dual variables are respectively denoted η ∈ R

and s = σ + iτ ∈ C. The real part σ is assumed to be strictly positive. We obtain in
each subdomain the same set of differential equations

{
s+ u0∂x + iηv0 −

1

Re
∂ 2

x +
1

Re
η2 − 1

Re′
∂ 2

z +
1

ε
B

}
Ûh +

1

Fr2

(
∂x

iη

)
ζ̂ = 0,

{s+ u0∂x + iηv0} ζ̂ + ∂xû+ iηv̂ = 0.

In the z direction we introduce the eigenmodes of the operator −∂ 2
z on (−1, 0) with

homogeneous Neumann boundary conditions (2.14)

en(z) := αn cos(µnz) with µn := nπ; α0 := 1 and αn :=
√

2 if n > 0.

Then we search for the solution on the form

Ûh(x, z) =

∞∑

n=0

Ûn
h (x)en(z).

Note that we obviously obtain Ûh = Û0
h . It means that the first vertical mode Û0

h rep-
resents the barotropic velocity while the sum of the other ones denotes the baroclinic
deviation.
The barotropic mode is coupled with the water height and it is the solution of the
following system of three ordinary differential equations,

− 1

Re
∂ 2

x Û
0
h + u0∂xÛ

0
h +

{
s+ iηv0 +

1

Re
η2 +

1

ε
B

}
Û0

h +
1

Fr2

(
∂xζ̂

iηζ̂

)
= 0, (3.6)

u0∂xζ̂ + (s+ iηv0) ζ̂ + ∂xû
0 + iηv̂0 = 0.(3.7)

This last system is exactly the Laplace-Fourier transform of the so-called linearized
viscous shallow water equations [28].

For the other vertical modes we have a set of two coupled reaction advection dif-
fusion equations,

− 1

Re
∂ 2

x Û
n
h + u0∂xÛ

n
h +

{
s+ iηv0 +

1

Re
η2 +

1

Re′
µ2

n +
1

ε
B

}
Ûn

h = 0. (3.8)

3.3. Optimal transmission conditions for the baroclinic modes. The
derivation of optimal transmission conditions for an advection diffusion equation was
performed in [24]. Here we are interested in the set of coupled reaction advection dif-
fusion equations (3.8). The baroclinic modes are not coupled with the evolution of the
water height. Hence for these modes the transmission operators have two components
and will be searched on the form

Bn
± =

(
∓ 1

Re
∂xUh ± u0Uh − Su,n

±

)
. (3.9)
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We search for the solution of system (3.8) as a sum of exponentials x 7→ eλx. Plugging
this ansatz in the system, we obtain that eλx solves (3.8) if and only if λ is a root of
the determinant of the matrix Mn(λ) :=




−
λ2

Re
+ u0λ+ s+

η2

Re
+
µ2

n

Re′
+ iηv0 −

1

ε

1

ε
− λ2

Re
+ u0λ+ s+

η2

Re
+
µ2

n

Re′
+ iηv0


 .

This determinant is a polynomial of degree four in λ and we can compute its four
roots

λn,+
± :=

Re

2

(
u0 +

√
∆n

±

)
, λn,−

± :=
Re

2

(
u0 −

√
∆n

±

)
, (3.10)

where

∆n
± := u2

0 +
4

Re

(
η2

Re
+

µ2
n

Re′
+ s+ iηv0 ±

i

ε

)
. (3.11)

Every solution λn,±
± is associated with a one dimensional kernel generated by the

vector φn,±
± defined by

φn,±
+ =

(
1
−i

)
, φn,±

− =

(
1
i

)
.

Since the solutions must vanish at infinity we search for solutions in Ω− on the form

Ûn
h,−(x) = αn,+

+ eλn,+

+
xφn,+

+ + αn,+
− eλn,+

−
xφn,+

− = Φn,+ · exp
(
xΛn,+

)
· αn,+, (3.12)

where

Φn,± :=

(
1 1
−i i

)
, Λn,± :=

(
λn,±

+ 0

0 λn,±
−

)
, αn,± :=

(
αn,±

+

αn,±
−

)
. (3.13)

In Ω+ we search for the solution on the form

Ûn
h,+(x) = αn,−

+ eλn,−

+
xφn,−

+ + αn,−
− eλn,−

−
xφn,−

− = Φn,− · exp
(
xΛn,−

)
· αn,−. (3.14)

It follows from relations (3.12) and (3.14) that

∂xÛ
n
h,∓(x) = Φn,± ·Λn,± · exp

(
xΛn,±

)
· αn,± = Φn,± ·Λn,± ·

[
Φn,±

]−1 · Ûn
h,∓. (3.15)

We can now define the operator Su,n
± in (3.9) in order to derive an optimal algorithm.

This is done through its Laplace-Fourier symbol:

Ŝu,n
± := ∓ 1

Re
Φn,±Λn,±

[
Φn,±

]−1 ± u0 Id. (3.16)

3.4. Approximate transmission conditions for baroclinic modes. Since
we want to construct an efficient but simple Schwarz waveform relaxation algorithm
we will derive approximated transmission conditions by considering an asymptotic
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analysis of the results of the previous subsection.
The definition (3.11) of ∆n

± leads to the expansion Ŝn
± = Ŝu,n

±, app +O(
√
ε) with

Ŝu,n
±, app :=

1

2




±u0 −
√

2

Re

1√
ε

√
2

Re

1√
ε

−
√

2

Re

1√
ε

±u0 −
√

2

Re

1√
ε



. (3.17)

Note that the approximated operator (3.17) does not depend on n. Consequently
the related approximated transmission operators (3.9) can be applied to the whole
baroclinic velocity, i.e. to the sum of the baroclinic modes.

3.5. Approximate transmission conditions for the barotropic mode.

The derivation of optimal transmission conditions for the linearized viscous shallow
water equations without advection term was performed in [25]. Here we are inter-
ested in the linearized viscous shallow water equations (3.6)-(3.7). The transmission
operators will be searched on the form (3.4)-(3.5).

As for the baroclinic modes we search for the solution of system (3.6)-(3.7) as a
sum of exponentials eλx. Here λ has to be a root of the determinant of the matrix
M0(λ) defined by




−
λ2

Re
+ u0λ+ s+

η2

Re
+ iηv0 −

1

ε
λ/Fr2

1

ε
− λ2

Re
+ u0λ+ s+

η2

Re
+ iηv0

iη

Fr2

λ iη s+ u0λ+ iηv0




.

This determinant is a polynomial of degree five which does not admit a trivial de-
composition. Hence it is not possible to derive an explicit formula for the solutions
of (3.6)-(3.7). Consequently, we are not able to obtain an explicit form for the optimal
transmission conditions for the barotropic mode, even in Fourier-Laplace variables.
In order to derive approximated transmission conditions we use the fact that the
Rossby number is a small parameter to compute approximated values of the roots of
the determinant of M0(λ). The related approximated transmission conditions will be
coherent with the results of the previous subsection for the baroclinic modes.
Since u0 is positive we first notice that three roots (3.18)-(3.19) have a negative real
part and two roots (3.20) have a positive real part. The negative roots will be denoted
λ0,−
± and λ0

0. The positive ones will be denoted λ0,+
± . The notations for the related

quantities that we introduce later are coherent with the previous ones (3.13). As
above, we search for the solution in Ω− on the form

X̂−(x) = α0,+
+ eλ0,+

+
xφ0,+

+ + α0,+
− eλ0,+

−
xφ0,+

− =: Φ0,+ · exp
(
xΛ0,+

)
· α0,+.

In Ω+ we search for the solution on the form

X̂+(x) = α0,−
+ eλ0,−

+
xφ0,−

+ + α0,−
− eλ0,−

−
xφ0,−

− + α0
0e

λ0
0xφ0

0

=: Φ0,− · exp
(
xΛ0,−

)
· α0,−.
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We compute the following approximations for the roots of the determinant of M0(λ):

λ0
0 = −

s+ iηv0

u0
+O(ε2), (3.18)

λ0,−
± = −

√
±iRe√
ε

+

(
Reu0

2
−

Re

4Fr2u0

)
+O(

√
ε), (3.19)

λ0,+
± =

√
±iRe√
ε

+

(
Reu0

2
− Re

4Fr2u0

)
+O(

√
ε). (3.20)

The associated kernel is always one dimensional and spanned by:

Φ0
0 =




0
0
1


+O(ε2),

Φ0,−
± =




u0 ±
i
√

2Re

4Fr2
√
ε

±iu0 ∓
i
√

2Re

4Fr2
√
ε

−1 −
{

±
√

2

4

i
√
Re

u0Fr2
+

√
2

2

1 ± i√
Re

((±u0 + iv0)η + s)

}
√
ε




+O(ε),

Φ0,−
± =




u0 −
i
√

2Re

4Fr2
√
ε

−iu0 +
i
√

2Re

4Fr2
√
ε

−1 −
{

−
√

2

4

i
√
Re

u0Fr2
+

√
2

2

1 − i√
Re

((−u0 + iv0)η + s)

}
√
ε




+O(ε).

As in the baroclinic modes case, we compute the approximated transmission operators
in Laplace-Fourier variables by

Ŝu,0
−, app =

1

Re

[
Φ0,−Λ0,−

[
Φ0,−

]−1
]
2,3

−
(
u0 0 − 1

Re
0 u0 0

)
,

Ŝu,0
+, app = − 1

Re
Φ0,+Λ0,+

[
Φ0,+

]−1
+ u0Id,

where M2,3 denotes the first 2×3 matrix extracted from the 3×3 matrix M . It leads
to the following Laplace-Fourier symbols

Ŝu,0
−, app =

1

2




−
√

2√
Reε

− u0 −
1

Fr2u0

√
2√
Reε

+
1

2Fr2u0

− 2

Fr2

−
√

2√
Reε

+
1

2Fr2u0
−

√
2√
Reε

− u0 0




+O(
√
ε),(3.21)
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and

Ŝ0
+, app =

1

2




−
√

2√
Reε

+ u0 −
1

Fr2u0

√
2√
Reε

− 1

2Fr2u0

−
√

2√
Reε

− 1

2Fr2u0
−

√
2√
Reε

+ u0

0 0




+O(
√
ε).(3.22)

By using relations (3.17), (3.21) and (3.22), we notice that

[
Ŝu,0
±, app

]
2,2

= Ŝu,n
±, app +




−
1

2Fr2u0
∓

1

4Fr2u0

∓ 1

4Fr2u0
0


 .

It follows that a part of the transmission conditions will be applied to the whole
velocity (sum of baroclinic and barotropic modes) while a second part will be applied
only to the barotropic mode. The first part corresponds to the operator Ŝu,n

±, app. The

second one corresponds to the remaining terms in the operator Ŝu,0
±, app.

3.6. The optimized Schwarz waveform relaxation algorithm. Thanks to
the computed approximated operators (3.17), (3.21) and (3.22) we can now derive
an approximated Schwarz waveform relaxation algorithm for the linearized primitive
equations (2.13)–(2.17).

Since the computed operators (3.17), (3.21) and (3.22) do not depend neither on
the Fourier variable η nor on the Laplace variable s the related operators in the real
space are identical to their Laplace-Fourier symbols. It follows that the approximated
transmission operators B± (3.4)-(3.5) have the following form

B−X =




1

Re
∂xu+

( √
2

2
√
Re ε

− u0

2

)
u−

√
2v

2
√
Re ε

+
u− v/2

2Fr2u0

1

Re
∂xv +

( √
2

2
√
Re ε

− u0

2

)
v +

√
2u

2
√
Re ε

− u

4Fr2u0



, (3.23)

B+X =




− 1

Re
∂xu+

ζ

Fr2
+

( √
2

2
√
Re ε

+
u0

2

)
u−

√
2v

2
√
Re ε

+
u+ v/2

2Fr2u0

− 1

Re
∂xv +

( √
2

2
√
Re ε

+
u0

2

)
v +

√
2u

2
√
Re ε

+
u

4Fr2u0

u0ζ + u




,(3.24)

for which we recall that u and v represent the mean-values with respect to the z
variable of the velocities u and v.
Note that by replacing the first component (B+X)1 by the linear combination

(B+X)1 − 1/(Fr2u0)(B+X)3,
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we replace (3.24) by the equivalent transmission conditions

B∼
+X =




− 1

Re
∂xu+

( √
2

2
√
Re ε

+
u0

2

)
u−

√
2v

2
√
Re ε

− u− v/2

2Fr2u0

−
1

Re
∂xv +

( √
2

2
√
Re ε

+
u0

2

)
v +

√
2u

2
√
Re ε

+
u

4Fr2u0

u0ζ + u




. (3.25)

In the sequel we use (3.25) rather than (3.24) and we drop the superscripts “∼”.
Next, we remark that the transmission conditions (3.23)(3.25) are a particular case
of the generalized transmission conditions

B−X =
1

Re
∂xUh − u0

2
Uh +

α√
ε
AUh + βBUh, (3.26)

B+X =


−

1

Re
∂xUh +

u0

2
Uh +

α√
ε
AUh − βBUh

u0ζ + u


 (3.27)

where

A :=

(
1 −1
1 1

)
, B :=

(
1 −1/2

−1/2 0

)
. (3.28)

The original transmission operators (3.23)-(3.25) correspond to the choice

α =
1√
2Re

, β =
1

2Fr2u0
. (3.29)

Notice that B−X and (B+X)(1,2) do not depend on the water height ζ, so we may

rewrite B−X = BUh

− Uh and B+X = t(BUh

+ Uh,B
ζ
+X) as

BUh

± Uh := ∓ 1

Re
∂xUh ± u0

2
Uh +

α√
ε
AUh ∓ βBUh Bζ

+X := u0ζ + u. (3.30)

Let us emphasize the identity:

BUh

+ Uh + BUh

− Uh = 2
α√
ε
AUh. (3.31)

This relation will be useful both for defining a weak formulation of the algorithm in
Section 5 and for the numerical implementation of this algorithm in Section 6.
Finally the Schwarz waveform relaxation algorithm (3.1) writes





PE(Xn+1
− ) = 0 on Ω−

T ,

Xn+1
− (·, 0) = Xi on Ω−,

BUh

− Un+1
h,− = BUh

− Un
h,+ on ΓT ,





PE(Xn+1
+ ) = 0 on Ω+

T ,

Xn+1
+ (·, 0) = Xi on Ω+,

BUh

+ Un+1
h,+ = BUh

+ Un
h,− on ΓT ,

Bζ
+X

n+1
+ = Bζ

+X
n
− on γT .

(3.32)
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where the operators BUh

± , Bζ
+ are defined by equalities (3.28)(3.30) and where α and

β are free parameters.
These generalized transmission conditions can now be optimized with respect to the
two parameters α and β. In the case of a one dimensional reaction advection diffusion
equation this optimization problem has been solved analytically (see [11]). Here, we
will present a numerical procedure in Section 6.

4. Well-posedness of the linearized Primitive Equations. In the previous
sections we have performed formal computations on the linearized Primitive Equa-
tions leading to the construction of the Schwarz waveform relaxation algorithm (3.32).
The aim of this section is to be more precise: we will define a weak formulation of
the system (2.13)–(2.17) and then prove that this system is well-posed in the natural
spaces associated to this weak formulation.

From now on we relax the boundary condition on the bottom, i.e. we assume αb ≥ 0
instead of αb = 0. Moreover, in order to prepare the study of the well posedness
of the algorithm (3.1) in the next section, we consider non-homogeneous right-hand
sides Y = (F1, F2, f) = Y (x, y, z, t). The system of linearized primitive equations
PE(X) = Y writes

{
∂t + U0 · ∇h − 1

Re
∆h − 1

Re′
∂ 2

z +
1

ε
C

}
Uh +

1

Fr2
∇hζ = F in ΩT , (4.1)

∂zUh(x, y, 0, t) = 0 on ωT , (4.2)

−∂zUh(x, y,−1, t) + αbUh(x, y,−1, t) = 0 on ωT , (4.3)

{∂t + U0 · ∇h} ζ + ∇h · Uh = f in ωT . (4.4)

We supplement this system with the initial conditions

Uh(·, 0) = Uh,i, in Ω, (4.5)

ζ(·, 0) = ζi in ω. (4.6)

Note that if we consider that the water height ζ+ is given, the system (4.1)–(4.3), (4.5)
with unknown Uh is a classical linear parabolic problem. On the other hand if we
consider that the mean horizontal velocities Uh are given then ζ solves the linear
transport problem with source term (4.4), (4.6).
We will proceed as follows: first we recall the classical weak formulations both for
the parabolic problem (with prescribed water height) and for the transport equations
(with prescribed velocity). These two problems define two maps S1 : ζ 7→ Uh and
S2 : Uh 7→ ζ. Finally we define the weak solutions of the Primitive Equations to be
the fixed points of the map τ : (Uh, ζ) 7→ (S1(ζ),S2(Uh)) and conclude by proving
the existence of a unique fixed point.

Let us first introduce some functional spaces and some notations. We will work
with initial data and right hand sides satisfying

Uh,i ∈ H := L2(Ω,R2), ζi ∈ L2(ω),

F ∈ L2(0, T ;V ′), f ∈ L2(0, T ;L2(ω)),

where V ′ is the topological dual of V := H1(Ω,R2).
The weak solutions will satisfy

Uh ∈ C ([0, T ], H) ∩ L2(0, T ;V), ζ ∈ C
(
[0, T ], L2(ω)

)
∩ C(Rx, L

2 (Ry × (0, T ))) .
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We will need the following bilinear forms:

a(U, V ) :=
1

Re
(∇hU,∇hV )ΩT

+
1

Re′
(∂zU, ∂zV )ΩT

+
αb

Re′
(U, V )ω−1,T

+
1

ε
(CU, V )ΩT

+ (U0 · ∇U, V )ΩT
, (4.7)

c(ζ, V ) :=
1

Fr2
(ζex, ∂xV )ΩT

. (4.8)

where ω−1 := Rx × Ry × {−1}z and (U, V )Σ denotes the L2 scalar product on Σ.

Assuming that we have a strong solution, and taking the scalar product of equa-
tion (4.1) with V ∈ D(Ω × (0, T ),R2), we obtain (after integrating by parts) the
following weak formulation for the equations governing the horizontal velocities:

∀V ∈ D(Ω × (0, T ),R2), (∂tUh, V )ΩT
+ a(Uh, V ) = c(ζ, V ) + 〈F, V 〉. (4.9)

We now state

Definition 4.1. Let F ∈ L2(0, T ;V ′) and ζ ∈ L2(ωT ), we say that Uh ∈
L2(0, T ;V) is a weak solution of the system (4.1) if (4.9) holds.

Proposition 4.2. Let Uh,i ∈ L2(Ω), F ∈ L2(0, T ;V ′) and ζ ∈ L2(ωT ), there

exists a unique weak solution Uh ∈ C([0, T ];H) ∩ L2(0, T ;V) of (4.1) satisfying the
initial condition (4.5). Moreover, we have the energy inequality

1

2
‖Uh‖2

Ω(t) +

∫ t

0

{
1

Re
‖∇hUh‖2

Ω(s) +
1

Re′
‖∂zUh‖2

Ω(s) +
αb

Re′
‖Uh‖2

ω−1
(s)

}
ds

≤ 1

2
‖Uh,i‖2

Ω +

∫ t

0

{〈F , Uh〉(s) + (∂xu, ζ)ω(s)} ds. (4.10)

Proof. The method is classical and we only sketch the proof. We obtain the
existence of a solution satisfying (4.10) by the Galerkin method. Let (Em) be an
increasing sequence of finite dimensional sub-spaces of V such that ∪Em is dense in
V . For every m, there exists Um ∈ C∞([0, T ], Em) such that (4.9) holds for every
V ∈ D(0, T ;En) – we only have to solve a finite system of linear ordinary differential
equations.
Using Um × 1[0,t] as a test function in (4.9), we conclude that Um satisfies (4.10).
So using the Cauchy Schwarz inequality and the Grönwall Lemma, we see that the
sequence (Um) is uniformly bounded in L2(0, T ;V).
Now from the weak formulation, we deduce that (∂tUm) is bounded in L2(0, T ;V ′),
thus by Aubin-Lions Lemma, (Um) is compact in C([0, T ], H). Extracting a subse-
quence we obtain a solution satisfying (4.10).
Regularizing in time and using the weak formulation, we see that any solution satis-
fies (4.10) and uniqueness follows by the energy method.

Let us turn our attention to the equations (4.4), (4.6) governing the evolution of the
water height ζ. This is a linear transport equation with constant coefficients and a
source term. Assuming that ζ is a strong solution, multiplying (4.4) by a test function
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χ ∈ D(ω× [0, T )), integrating on ωT , integrating by parts in space and time and then
using the initial condition (4.6), we obtain

∀χ ∈ D(ω × [0, T )),

− (ζ, {∂t + U0 · ∇h}χ)ωT
= (ζi, χ(·, 0))ω + (f −∇h · Uh, χ)ωT

. (4.11)

Definition 4.3. Let f ∈ L2(ωt), Uh ∈ L2(0, T ;V) and ζi ∈ L2(ω), we say that
ζ ∈ L2(ωT ) is a weak solution of the system (4.4), (4.6) if (4.11) holds.

Remark that the test function does not necessarily vanish at time 0 and that the
initial data is prescribed by the weak formulation.

Proposition 4.4. Let f ∈ L2(ωt), Uh ∈ L2(0, T ;V) and ζi ∈ L2(Ω). There
exists a unique weak solution ζ ∈ L2(ωT ) of (4.4), (4.6). Moreover this solution is
given by the characteristic formula:

ζ(x, y, t) = ζi(x− u0t, y − v0t) +

∫ t

0

(f −∇h · Uh)(x − u0s, y − v0s, t− s)ds. (4.12)

This solution lies in C
(
[0, T ];L2(ω)

)
∩ C

(
Rx;L2(Ry × (0, T ))

)
and satisfies the fol-

lowing estimates for every t ∈ [0, T ] and every x ∈ R,

‖ζ(·, ·, t)‖ω ≤ ‖ζi‖ω +

∫ t

0

‖f −∇h · Uh‖ω(s)ds, (4.13)

‖ζ(x, ·, ·)‖γt
≤ 1

u0

(
‖ζi‖ω +

∫ t

0

‖f −∇h · Uh‖ω(s)ds

)
. (4.14)

Proof. First, notice that the estimates (4.13) (4.14) are direct consequences of the
characteristic formula (4.12).
Next, remark that if the data ∇hUh, f and ζi are sufficiently smooth then the function
ζ given by the formula (4.12) solves (4.11). Hence we obtain the existence of a solution
of (4.11) by density.
For the uniqueness, by linearity we may assume that the data ∇hUh, f and ζi vanish.
Then let ψ ∈ D(ω) and ρ ∈ D([0, T )) and define the test function χ by χ(x, y, t) :=

−ψ(x− u0t, y − v0t)
∫ T

t
ρ(s)ds, so that:

∂tχ+ U0 · ∇χ = ψ(x− u0t, y − v0t)ρ(t),

and (4.11) yields

0 =

∫

ωT

ζ(x, t)ρ(t)ψ(x − u0t, y − v0t) =

∫

ωT

ζ(x+ u0t, y + v0t, t)ρ(t)ψ(x, y).

Since this is true for every (ψ, ρ) ∈ D(ω) ×D([0, T )), we have ζ ≡ 0 on ωT .

Finally, we define the notion of weak solution for the linearized primitive equations.

Definition 4.5. Let Y = (F, f) ∈ L2(ΩT ,V ′) × L2(ωT ) and Xi = (Uh,i, ζi) ∈
L2(Ω) × L2(ω). We say that X = (Uh, ζ) ∈ C(0, T ;H) × L2(ωT ) is a weak solution
of (4.1)–(4.6) if the weak formulations (4.9) and (4.11) hold and if Uh(·, 0) = Uh,i.
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Theorem 4.1. Let Y = (F, f) ∈ L2(ΩT ,V ′) × L2(ωT ) and Xi = (Uh,i, ζi) ∈
L2(Ω) × L2(ω). There exists a unique weak solution X = (Uh, ζ) ∈ (C(0, T ;H) ∩
L2(0, T ;V))× L2(ωT ) of (4.1)–(4.6).

Proof. The right hand side Y and the initial data Xi being fixed, Proposition 4.2
and Proposition 4.4 define two maps

S1 : L2(ωT ) → C(0, T ;H) ∩ L2(0, T ;V), ζ 7→ Uh,

and

S2 : L2(0, T,V) → C
(
[0, T ];L2(ω)

)
∩ C

(
Rx;L2(R × (0, T ))

)
, Uh 7→ ζ.

Denoting by T the affine mapping (Uh, ζ) 7→ (S1(ζ), S2(Uh)), the application X is a
weak solution of (4.1)–(4.6) if and only if it is a fixed point of T in

ET := L2(0, T ;V)× C([0, T ], L2(ω)).

Let X1, X2 ∈ ET and let (Uh, ζ) := X1 − X2 and (Ũh, ζ̃) := T (X1) − T (X2), by
linearity, using (4.10), we get for 0 ≤ t ≤ T ,

1

2
‖Ũh‖2

Ω(t) +

∫ t

0

{
1

Re
‖∇hŨh‖2

Ω(s) +
1

Re′
‖∂zŨh‖2

Ω(s)

}
ds ≤

∫ t

0

(∂xũ, ζ)ω(s)ds

≤
(∫ t

0

‖∇Ũh‖2
Ω(s) ds

)1/2(∫ t

0

‖ζ‖2
ω(s) ds

)1/2

.

By Young inequality, we may absorb the term in ∇Ũh in the left hand side and get:

‖Ũh‖2
Ω(t) +

∫ t

0

‖∇Ũh‖2
Ω(s) ds ≤ κt sup

s∈[0,t]

{‖ζ‖2
ω(s)} for 0 ≤ t ≤ T, (4.15)

for some κ > 0. Now (4.13) and the Cauchy Schwarz inequality yield

‖ζ̃‖2
ω(t) ≤ t

∫ t

0

‖∇Uh‖2
Ω(s)ds, for 0 ≤ t ≤ T. (4.16)

Finally, inequalities (4.15) (4.16) imply that, for T ′ ∈ (0, T ] small enough, the mapping
T is strictly contracting in ET ′ yielding the existence of a unique fixed point of T in
ET ′ . Repeating the argument on the intervals [T ′, 2T ′], [2T ′, 3T ′], ... we obtain the
result on [0, T ].

5. Weak formulation and well-posedness of the Schwarz waveform re-

laxation algorithm. We study in this section the well-posedness of the algorithm (3.32).
First, we will define weak formulations for the two sub-problems and prove that they
are well-posed. We will pay a particular attention to the weak form of the transmis-
sion conditions. In particular we will establish that the solutions Xn+1

± of the nth

step of the algorithm (3.32) are in the right spaces, allowing the construction of the
transmission conditions for the next step.

As in the previous section, we also consider non-homogeneous right-hand sides Y =
(F, f). Every step of the algorithm may be split in the two following sub-problems.
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First in the domain {x < 0}, we search for a solution Xn+1
− := X− = (Uh,−, ζ−)

solving the initial and boundary value parabolic problem,




.

{
∂t + U0·∇h − 1

Re
∆h − 1

Re′
∂ 2

z +
1

ε
C

}
Uh,− +

1

Fr2
∇hζ− = F in Ω−

T ,

−∂zUh,−(x, y,−1, t) + αbUh,−(x, y,−1, t) = 0 ,

∂zUh,−(x, y, 0, t) = 0 on ω−
T ,

BUh

− Uh,− = BUh

− Un
h,+ on ΓT ,

Un+1
h,− (·, 0) = Uh,i in Ω−,

(5.1)
and the transport problem,

{
{∂t + U0 · ∇h} ζ− + ∇h · Uh,− = f in ω−

T ,

ζn+1
− (·, 0) = ζi in ω−.

(5.2)

In the right subdomain {x > 0} we search for a solution Xn+1
+ := X+ = (Uh,+, ζ+)

solving the initial and boundary value parabolic problem,




.

{
∂t + U0·∇h −

1

Re
∆h −

1

Re′
∂ 2

z +
1

ε
C

}
Uh,+ +

1

Fr2
∇hζ+ = F in Ω+

T ,

−∂zUh,+(x, y,−1, t) + αbUh,+(x, y,−1, t) = 0 ,

∂zUh,+(x, y, 0, t) = 0 on ω+
T ,

BUh

+ Uh,+ = BUh

+ Un
h,− on ΓT ,

Uh,+(·, 0) = Uh,i in Ω+,

(5.3)
and the transport problem with entering characteristics on the boundary γT ,





{∂t + U0 · ∇h} ζ− + ∇h · Uh,+ = f in ω+
T ,

Bζ
+X+ = Bζ

+X
n
− on γT ,

ζ+(·, 0) = ζi in ω+.

(5.4)

To prove that these two sub-problems are well-posed, we proceed as in Section 4.
First we study the parabolic problems with prescribed water heights: we introduce
a weak formulation for these problems and prove that they are well-posed. Then we
study the transport equations, introduce their weak formulations and establish their
well-posedness. Finally, the solutions of the coupled parabolic-transport problems are
obtained via a fixed point method.

As in Section 4, the initial data Xi(Uh,i, ζi) satisfy Uh,i ∈ H , ζi ∈ L2(ω). We choose

right hand sides Y = (F, f) in L2(0, T ;H) × L2(ωt). (In section 4, we only assumed
F ∈ L2(0, T ;V ′), but here this choice would cause difficulties at the interface). We
will search for weak solutions X± = (Uh,±, ζ±) in the spaces,

Uh,± ∈ C
(
[0, T ], H±

)
∩ L2(0, T ;V±), (5.5)

ζ± ∈ C
(
[0, T ], L2(ω±)

)
∩ C(R±,x, L

2 (Ry × (0, T )t)) , (5.6)
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with H± := L2(Ω±,R2) and V± := H1(Ω±,R2).

5.1. The parabolic problems. Let us define the weak-formulation for the
parabolic problems (5.1) and (5.3). First we introduce the bilinear forms a± and
c±:

a±(U, V ) :=
1

Re
(∇hU,∇hV )Ω±

T
+

1

Re′
(∂zU, ∂zV )Ω±

T
+

αb

Re′
(U, V )ω±

−1,T

+
1

ε
(CU, V )Ω±

T
+ (U0 · ∇U, V )Ω±

T
, (5.7)

c±(ζ, V ) =
1

Fr2
(
ζex, ∂xV

)
ω±

T

± 1

Fr2
(
ζex, V

)
γT
, (5.8)

where ω±
−1 := R±

x × Ry × {−1}z.
Next, taking the scalar product of the first equation of (5.1) or (5.3) with some test
map V ∈ D(Ω± × (0, T ),R2), we obtain:

(∂tUh,±, V )Ω±×(0,T ) + a±(Uh,±, V ) = c±(ζ±, V ) ∓ 1

Re
(∂xUh,±, V )Γ + (F, V )Ω±

T
.

Then, using the transmission conditions to express ∂xUh,± on Γ, we get

(∂tUh,±, V )Ω±×(0,T ) + a±(Uh,±, V ) + b±(Uh,±, V )

= c±(ζ±, V ) +
(
BUh

± Un
h,∓, V

)
Γ

+ (F, V )Ω±

T
.

with

b±(U, V ) := ±u0

2
(U, V )Γ +

α√
ε
(AU, V )Γ ∓ β(BU, V )Γ. (5.9)

We are still not satisfied with this weak formulation. Indeed, the knowledge of ∂xU
n
h,∓

on the boundary Γ× (0, T ) is needed for defining the term (BUh

± Un
h,∓, V )Γ in the right

hand side. Unfortunately, (5.5) only gives: ∂xU
n
h,∓ ∈ L2(Ω± × (0, T )) which is not

sufficient to define a trace. To overcome this difficulty, we use relation (3.31) to define

recursively the terms (BUh

± Un
h,∓, V )Γ. Indeed, for strong solutions, we have on ΓT

BUh

∓ Uh,±

(3.31)
= −BUh

± Uh,± + 2
α√
ε
AUh,±

(3.32)
= −BUh

± Un
h,∓ + 2

α√
ε
AUh,±.

Thus, identifying BUh

± Un
h,∓ with a distribution Bn

± ∈ L2(0, T ;W ′), where W denotes

the space H1/2(Γ,R2) ; we obtain a weak formulation of the algorithm for the hori-
zontal velocities:

Definition 5.1. Assuming that the functions ζ± = ζn+1
± are known, the weak

formulation of the parabolic part (5.1) and (5.3) of the algorithm (3.32) are defined
as follows:
For the first step, we choose

B0
± ∈ L2(0, T ;W ′) (5.10)



21

Then for n ≥ 0, the horizontal velocity is defined by Un+1
h,± = Uh,± where Uh,± solves

∀V ∈ D(Ω± × (0, T ),R2), (∂tUh,±, V )Ω±×(0,T ) + a±(Uh,±, V ) + b±(Uh,±, V )

= c±(ζ±, V ) +
〈
Bn
± , V

〉
ΓT

+ (F, V )Ω±

T
, (5.11)

where a±, c±, and b± are defined in (5.7)—(5.9). Once Un+1
h,± is known, we can define

the boundary conditions for the next step in the opposite domain by

Bn+1
∓ := −Bn

± + 2
α√
ε
AUn+1

h,± |ΓT

. (5.12)

Notice that assuming that the maps Un+1
h,± satisfy (5.5) then their traces on ΓT are

well defined in L2(0, T ;W) ⊂ L2(0, T ;W ′). Consequently, the transmission conditions
Bn+1
∓ defined recursively by (5.12) stay in the space L2(0, T ;W ′).

Proposition 5.2. Let Uh,i ∈ H, F ∈ L2(0, T ;H), Bn
± ∈ L2(0, T ;W ′

±) and ζ± (=

ζn+1
± ) satisfying (5.6). Then there exists a unique Un+1

h,± = Uh,± with regularity (5.5)

satisfying (5.11) and the initial condition Un+1
h,± (0) ≡ Uh,i on Ω±. Moreover, we have

the energy inequality

1

2
‖Uh,±‖2

Ω±(t) +

(
α√
ε
± u0/2

)
‖Uh,±‖2

Γt
∓ β

(
‖u±‖2

γt
− (u±, v±)γt

)

+

∫ t

0

{
1

Re
‖∇hUh,±‖2

Ω±(s) +
1

Re′
‖∂zUh,±‖2

Ω±(s) +
αb

Re′
‖Uh,±‖2

ω±

−1

(s)

}
ds

≤ 1

2
‖Uh,i‖2

Ω± + (F , Uh,±)Ω±

t
+ 〈Bn

±, Uh,±〉Γt

+

∫ t

0

{
(∂xu±, ζ±)ω±(s) ± (u±, ζ±)γ±(s)

}
ds. (5.13)

Proof. We proceed as in the proof of Proposition 4.2: we apply the Galerkin
method. Here we only check that the a priori inequality (5.13) is sufficient for applying
this method. In order to bound the quadratic terms in the left hand side of (5.13)
and the last term in the right hand side, we will use the inequality

‖U‖2
Γ ≤ 2‖U‖Ω±‖∂xU‖Ω±

,

valid for U ∈ V±. (To prove it, write |U(0, y, z)|2 = 2
∫ 0

−∞(∂xU · U)(x′, y, z) dx′ inte-
grate on Ry × (−1, 0)z and use the Cauchy-Schwarz inequality). From this inequality,
the Cauchy-Schwarz inequality, the Young inequality and the fact that the trace on
Γ defines a continuous embedding Π : V± → W , we see that (5.13) implies

‖Uh,±‖2
Ω±(t) +

∫ t

0

‖∇Uh,±‖2
Ω±(s) ds− κ

∫ t

0

‖Uh,±‖2
Ω±(s) ds

≤ κ

{
‖Uh,i‖2

Ω± + ‖F‖2
Ω±

t

+

∫ t

0

‖Bn
±‖2

W′(s) ds+ ‖ζ±‖2
Ωt

+ ‖ζ±‖2
γt

}
(5.14)

for some κ > 0. Taking a Galerkin sequence (Um) associated to (5.11), the elements
of this sequence satisfy (5.13) and then inequality (5.14) and the Grönwall Lemma
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imply that this sequence is bounded in L2(0, T ;V). Extracting a subsequence (as in
Proposition 4.2) we obtain a solution of (5.11).
Then using the weak formulation satisfied by Um we see that (∂tUm) is bounded
in L2(0, T ;V ′) and from Aubin-Lions Lemma (see e.g. [30]), the sequence (Um) is
compact L2(0, T ;Hs(Ω±,R2)) for s < 1. Thus we may let m tend to ∞ in the
quadratic boundary terms in the left hand side of (5.13).
The uniqueness follows from (5.14) and Grönwall Lemma.

5.2. The transport equations. We now consider that the velocities Uh,± =

Un+1
h,± are known and study the transport problems (5.2) and (5.4). We begin with the

domain {x < 0}. Proceeding exactly as in Section 4, we obtain that a strong solution
of Problem (5.2) satisfies

∀χ ∈ D(ω− × [0, T )),

− (ζ−, {∂t + U0 · ∇h}χ)ω−

T
= (ζi, χ(·, 0))ω− + (f −∇h · Uh,−, χ)ω−

T
. (5.15)

Definition 5.3. Let f ∈ L2(ωt), Uh,−(= Un+1
h,− ) ∈ L2(0, T ;V−) and ζi ∈ L2(ω).

We say that ζ− ∈ L2(ω−
T ) is a weak solution of Problem (5.2) if (5.15) holds.

The following result is proved exactly as Proposition 4.4

Proposition 5.4. Let f ∈ L2(ωt), U
n+1
h,− ∈ L2(0, T ;V−) and ζi ∈ L2(ω). There

exists a unique weak solution ζn+1
− = ζ− ∈ L2(ω−

T ) of (5.2). Moreover this solution
is explicitly given by the formula:

ζ−(x, y, t) = ζi(x−u0t, y− v0t)+

∫ t

0

(f −∇h ·Uh,−)(x−u0s, y− v0s, t− s)ds. (5.16)

It lies in C
(
[0, T ];L2(ω−)

)
∩C

(
(−∞, 0]x;L2(Ry × (0, T ))

)
and satisfies the following

estimates for every t ∈ [0, T ] and every x ≤ 0,

‖ζ−(·, t)‖ω− ≤ ‖ζi‖ω− +

∫ t

0

‖f −∇h · Uh,−‖ω−(s)ds, (5.17)

‖ζ−(x, ·)‖γt
≤ 1

u0

(
‖ζi‖ω− +

∫ t

0

‖f −∇h · Uh,−‖ω−(s)ds

)
. (5.18)

Once the solutions of (5.1)-(5.2) are known it is possible to define the transmission
conditions on the water-height for the next step (see (3.30))

Bζ
+X

n+1
− := u0ζ

n+1
− (0, ·)) + un+1

− (0, ·). (5.19)

In the domain x > 0, the situation is slightly different since there are ingoing char-
acteristics on γT . So we choose test functions that do not necessarily vanish on the
boundary and use the transmission condition to prescribe the value of the solution on
γT . Finally, a solution of (5.4) satisfies

∀χ ∈ D(ω+ × [0, T )), − (ζ+, {∂t + U0 · ∇h}χ)ω+

T

= (ζi, χ(·, 0))ω+ + (ζb, χ(0, ·))
Rt

+ (f −∇h · Uh,+, χ)ω+

T
, (5.20)
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where the boundary value ζb is defined on γT by

ζb :=
1

u0

{
Bζ

+X
n
− − u+

}
. (5.21)

Definition 5.5. Let f ∈ L2(ωt), Uh,+ (= Un+1
h,+ ) ∈ L2(0, T ;V+), ζi ∈ L2(ω).

Assuming that ζb defined by (5.21) belongs to L2(γT ) , we say that ζn+1
+ = ζ+ ∈

L2(ω+
T ) is a weak solution of Problem (5.4) if (5.20) holds.

Using the characteristic method, we have

Proposition 5.6. Let f , Uh,+ (= Un+1
h,+ ), ζi and ζb be as in Definition 5.5.

There exists a unique weak solution ζn+1
+ ∈ L2(ω+

T ) of (5.4). Moreover it is given by
the characteristic formula:

ζ+(x, y, t) = ζi(x− u0t, y − v0t) +

∫ t

0

(f −∇h · Uh,+)(x − u0s, y − v0s, t− s)ds

if x > u0t, and

ζ+(x, y, t) = ζb

(
y − v0

u0
x, t− x

u0

)
+

∫ x
u0

0

(f −∇h ·Uh,+)(x− u0s, y − v0s, t− s)ds,

with ζb given by (5.21), if x ≤ u0t.

The solution belongs to C
(
[0, T ];L2(ω+)

)
∩ C

(
[0,+∞)x;L2(Ry × (0, T ))

)
and sat-

isfies the following estimates for every t ∈ [0, T ] and every x ≥ 0,

‖ζ+(·, t)‖ω+ ≤ ‖ζi‖ω+ + u0‖ζb‖γt
+

∫ t

0

‖f −∇h · Uh,+‖ω+(s)ds, (5.22)

‖ζ+(x, ·)‖γt
≤ 1

u0

(
‖ζi‖ω+ + u0‖ζb‖γt

+

∫ t

0

‖f −∇h · Uh,+‖ω+(s)ds

)
. (5.23)

5.3. Well-posedness of the algorithm. First we define a weak formulation
for the left and right sub-problems at step n of the algorithm.

Definition 5.7. Let Y = (F, f) ∈ L2(ΩT ) × L2(ωT ), let Xi = (Uh,i, ζi) ∈
L2(Ω) × L2(ω). For n ≥ 0.

• Let Bn
− ∈ L2(0, T ;W ′). Then Xn+1

− = (Uh,−, ζ−) is a weak solution of Prob-
lem (5.1), (5.2) if it has regularity (5.5)-(5.6) and if Uh,− (respectively ζ−) is
a weak solution of (5.1)(respectively (5.2)).

• Let Bn
+ ∈ L2(0, T ;W ′) and Bζ

+X
n
− ∈ L2(γT ). Then Xn+1

+ = (Uh,+, ζ+) is
a weak solution of Problem (5.3), (5.4) if it has regularity (5.5)-(5.6) and if
Uh,+, (respectively ζ+) is a weak solution of (5.3)(respectively (5.4)).

Then we give a weak formulation for the complete algorithm.

Definition 5.8. The weak formulation of Algorithm (3.32) is defined by

• Choose Bζ
+X

0
− ∈ L2(γT ) and B0

± ∈ L2(0, T ;W ′).
Then, for n ≥ 0,
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• Find Xn+1
− weak solution of (5.1)-(5.2) and Xn+1

+ weak solution of (5.3)-
(5.4).

• Define the transmission conditions for step n+ 1 by (5.12) and (5.19).

Theorem 5.1. With the hypotheses of Definition 5.7, there exists a unique weak
solution Xn+1

− (respectively Xn+1
+ ) of Problem (5.1),(5.2) (respectively (5.3),(5.4)).

Proof. We only prove the result for the left sub-problem, the other one being
similar. As in the proof of Theorem 4.1, we use a fixed point method. Let us introduce
the spaces

E1
T := C

(
[0, T ], H−

)
∩ L2(0, T ;V−),

E2
T := C

(
[0, T ], L2(ω−)

)
∩ C((−∞, 0]x, L

2 (Ry × (0, T )t)) .

Proposition 5.2 (respectively Proposition 5.4) defines an affine mapping S1 : E2
T → E1

T ,
ζ− 7→ Uh,− (respectively S2 : E1

T → E2
T , Uh,− 7→ ζ−).

Setting E−
T := E1

T ×E2
T−, an applicationXn+1

− is a weak solution of Problem (5.1),(5.2)
if and only if it is a fixed point in E−

T of the mapping

T − : (Uh,−, ζ−) 7→ (S−
1 (ζ−),S−

2 (Uh,−)).

We now show that T − has a unique fixed point. LetX1, X2 ∈ E−
T and let (Uh,−, ζ−) :=

X1 −X2 and (Ũh, ζ̃) := T −(X1)−T −(X2). By linearity (5.14) yields: for 0 ≤ t ≤ T ,

‖Ũh,−‖2
Ω−(t)+

∫ t

0

‖∇Ũh,−‖2
Ω−(s) ds−κ

∫ t

0

‖Ũh,−‖2
Ω−(s) ds ≤ κ

{
‖ζ−‖2

Ωt
+ ‖ζ−‖2

γt

}
.

And from Grönwall lemma, we obtain for 0 ≤ t ≤ T ,

‖Ũh,−‖2
Ω(t) +

∫ t

0

‖∇Ũh,−‖2
Ω(s) ds

≤ κeκT

{
t sup

[0,t]

‖ζ−(·, s)‖2
ω + sup

R−

‖ζ−(w, ·)‖2
γt

}
. (5.24)

Now from (5.17) and (5.18), we get

‖ζ̃−‖2
ω−(t) + u0‖ζ̃−(x, ·)‖γt

≤ t‖∇Uh,−‖2
Ω−

t

for 0 ≤ t ≤ T. (5.25)

Finally, we endow E−
t with the norm ‖(Uh,−, ζ−)‖E−

t
:=

(
sup
[0,t]

‖Uh,−(·, s)‖2
Ω− + ‖∇Uh,−‖2

Ω−
t

+ sup
[0,t]

‖ζ−(·, s)‖2
ω + 2κeκT sup

R−

‖ζ−(x, ·)‖2
Rt

)1/2

.

With this norm (5.24) (5.25) imply that for T ′ ∈ (0, T ] small enough, T − is contracting
in ET ′ . This yields the existence of a unique fixed point of T − in E−

T ′ . We obtain the
result on [0, T ] by continuation.

Finally, we can state

Theorem 5.2. The algorithm (5.8) is well-defined.
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Proof. We only have to check that for each step the hypotheses of Theorem 5.1 are
satisfied. The solutions Xn+1

± , build at step n have regularity (5.5), (5.6). We easily

deduce that Bn+1
± defined by (5.12) belongs to L2(0, T ;W ′) and Bζ

+X
n+1
− defined

by (5.19) belongs to L2(γT ). Thus the hypotheses of Theorem 5.1 hold for step n+1.

Remark 5.9. Although we do not exhibit a proof here, we are able to establish
the convergence of the algorithm in some cases. More precisely, if the matrices A
and B defined by (3.28) are replaced by diagonal matrices Ã and B̃, Ã being positive
definite and B̃ being non negative, then the algorithm converges. The proof relies on
the energy method developed for the Shallow water equations without advection term
in [25]. Modifying slightly the proof, we can allow Ã and B̃ to have non vanishing
skew-symmetric off-diagonal parts. This generalization still does not cover the situa-
tion (3.28) because B has a symmetric non vanishing off-diagonal part. Nevertheless,
numerical evidences of the convergence of the algorithm are given in the next section.

6. Numerical results.

6.1. Numerical scheme in the subdomains. For the numerical applications
we consider for simplicity a 2 dimensional domain and the related two dimensional
(x, z) version of the primitive equations (2.13)-(2.17). Note that the transmission con-
ditions (3.26)-(3.27) are independent of the transverse y-variable and are not affected
by this simplification.

In this subsection we do not deal with the boundary conditions. Hence the processes
are the same in both subdomains Ω± and we restrict ourselves to the subdomain Ω+.
We first describe the space discretization of the subdomains. We consider a regular
cartesian grid of nx× nz points and we apply a finite volume method. We introduce
the horizontal space step ∆x and the vertical space step ∆z. For Euler or Navier-
Stokes type problems it is well known that a good way to recover some numerical
stability is to compute velocities and pressure on different cells (see for instance [1]
and the publications devoted to the so-called C-grids). Here we only deal with the
horizontal velocity and the water height (depending only depending on x and t) plays
the role of the pressure. We thus have to introduce two types of finite volume meshes
- see Figure 6.1. The first one is a 2d finite volume mesh and is related to the compu-
tation of the velocities. For i = 0...nx − 1 and j = 0...nz we denote I = i+ jnx. The
cells of this first mesh will be denoted C+

I = X+
I + (−∆x/2,∆x/2)× (−∆z/2,∆z/2).

where the points X+
I stand for X+

I = (0,−H) + (i∆x, j∆z) (they are represented
by a black circle in Figure 6.1). The second grid is a 1d finite volume mesh de-
voted to the computation of the water height. The cells of this second mesh will
be denoted ci+1/2 = xi+1/2 + (−∆x/2,∆x/2). where the points xi+1/2 stand for
xi+1/2 = (i+1/2)∆x (they are represented by a circle with a number inside in Figure
6.1).

Let us now consider the discretization of the equations. Let us start with momentum
equation (2.13). We integrate it on the time-space cell [tk, tk+1] × CI . We compute
the interface fluxes at time tk+1/2 by classical centered formulas. We recover the
well-known Crank-Nicolson scheme. It is known to be second order accurate and
conditionally stable in the L∞ norm under a CFL type condition on the time step
∆tk = tk+1 − tk. This strategy is applied for all the velocity nodes such that the
neighboring nodes are included inside the considered subdomain. The related discrete
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Fig. 6.1. Space discretization of Ω+

relations stand

uI,k+1+
∆t

2

{
u0DxuI,k+1−

1

Re
D2

xuI,k+1−
1

Re′
D2

zuI,k+1−
1

ε
vI,k+1+

1

Fr2∆x
Dx1 ζj,k+1

}

= uI,k − ∆t

2

{
u0DxuI,k −

1

Re
D2

xuI,k −
1

Re′
D2

zuI,k −
1

ε
vI,k +

1

Fr2
Dx1 ζj,k

}
. (6.1)

vI,k+1 +
∆t

2

{
u0DxvI,k+1 −

1

Re
D2

xvI,k+1 −
1

Re′
D2

zvI,k+1 +
1

ε
uI,k+1

}

= vI,k − ∆t

2

{
u0DxvI,k − 1

Re
D2

xvI,k − 1

Re′
D2

zvI,k +
1

ε
uI,k

}
. (6.2)

where DxuI,k = (uI+1,k − uI−1,k)/∆x denotes a classical approximation of the first
derivative in space in horizontal direction, D2

xuI,k = (uI+1,k − 2uI,k + uI−1,k)/(2∆x)
and D2

zuI,k = (uI+nx,k − 2uI,k + uI−nx,k)/(2∆x) denote classical approximations of
second derivatives in space in horizontal and vertical directions, respectively.

Let us now consider the mass equation (2.16). We integrate it on time space cells
[tk, tk+1]× ci+1/2 - except for i = 0 where we need to use the transmission conditions.
We compute the interface fluxes by using explicit upwind formulas. The resulting
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scheme is known to be first order and also conditionally stable under a CFL type
condition. The related formula stands

ζi+1/2,k+1 =

(
1 −

∆t

∆x
u0

)
ζi+1/2,k +

∆t

∆x
u0 ζi−1/2,k

−
∆t∆z

∆x

(
u+,n+1

i,k − u+,n+1
i−1,k

)

where

u+,n+1
i,k =

uj,k

2
+

nz−1∑

j=1

ujnx+j,k +
unznx+j,k

2

denotes the discrete mean velocity of the flow along the vertical direction.

6.2. Numerical discretization near the boundaries. We now have to ex-
plain how we compute the numerical solution when one of the interfaces of the cell
belongs to the physical boundaries of the domain or to the fictitious one that is related
to the domain decomposition method. For all cases we choose to work in the same
finite volume framework that we use in the interior of the subdomains.

For the physical boundary conditions (2.14) we use the ghost cells method. This
method consists in introducing a fictitious cell along the boundary and then using the
same finite volume strategy as in the interior domain. For no slip conditions (2.14)
we choose the values of the unknowns in the fictitious cell to be equal to their values
in the neighboring interior cell.

Let us now focus on the numerical treatment on the cells that are connected with
the interface Γ = ∂Ω+ ∩ ∂Ω− - see Fig. 6.1. Here we will use a discrete version of the
transmission conditions (3.26)-(3.27). This discrete information will be the only data
that will be transmitted from a subdomain to the other one. Let us first consider the
mass equation (2.16). We integrate it on the cell c3/2 to obtain

∆x
[
ζ+,n+1
1/2,k+1 − ζ+,n+1

−1/2,k

]
+ ∆t

(
u0

[
ζ+,n+1
1/2,k − ζ+,n+1

−1/2,k

]
+ u+,n+1

1,k − u+,n+1
0,k

)
= 0.

where ζ+,n+1
1/2,k+1 denotes the water height computed in cell c+1/2 at time tk+1 and for

iteration n+1 of the algorithm. The quantities ζ+,n+1
−1/2,k and u+,n+1

0,k have to be consid-

ered as unknown quantities since the corresponding cells are not included in Ω+. We
will use the transmission conditions (3.32) to evaluate them. Hence we obtain thanks
to (3.30)

ζ+,n+1
1/2,k+1 =

(
1 − u0∆t

∆x

)
ζ+,n+1
1/2,k − ∆t

∆x
u+,n+1

1,k +
∆t

∆x
Bζ,n

+,k

where Bζ,n
+,k has been computed in Ω− during the previous Schwarz iteration and is

given by

Bζ,n
+,k = u0ζ

−,n
nx,k + u−,n

nx,k
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The basic idea is the same for the momentum equation (2.13). Here we integrate the
equation on the semi-cell C̃+

I = X+
I + (0,∆x/2) × (−∆z/2,∆z/2). for I = jnx with

j = 0, ..., nz. We obtain

∆x∆z

2
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I,k+1 − u+,n+1
I,k )
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2
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2
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2
−
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2

1

ε

v+,n+1
I,k + v+,n+1

I,k+1

2
= 0

where l (respectively r) denotes quantities that are evaluated on the left (respec-
tively right) boundary of the cell C̃+

I . Hence quantities u+,n+1
I,k+1/2(l), ∂xu

+,n+1
I,k+1/2(l) and

ζ+,n+1
−1/2,k+1/2 are unknown quantities since they involve quantities that are computed

outside the domain Ω+. Here also we use transmission conditions (3.32) and we obtain
thanks to (3.30)
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(6.3)

where Bu,n
+,j,k has been computed in Ω− during the previous Schwarz iteration and is

deduced from relation (3.31)

Bu,n
+,j,k = Bu,n−1

−,j,k + 2
α√
ε

u−,n
jnx,k + u−,n

jnx,k+1

2
− 2

α√
ε

v−,n
jnx,k + v−,n

jnx,k+1

2

Note that Bu,n−1
−,j,k is known since it has been computed in Ω+ at iteration n−1 and has

been transmitted to the domain Ω− before iteration n. Same type of computations
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for the transverse component of the velocity lead to the following scheme
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where Bv,n
+,j,k has been computed in Ω− during the previous Schwarz iteration and is

deduced from relation (3.31)

Bv,n
+,j,k = Bv,n−1

−,j,k + 2
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ε

u−,n
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2

The derivation of the discrete boundary condition in Ω− is based on the same type
of computations. Note that only the components of the velocity are concerned by the
transmission problem in Ω−.

6.3. Numerical optimization of the transmission conditions. In this sec-
tion we are interested in the optimization the transmission conditions (3.30) with
respect to the free parameters α and β. To optimize the conditions means that we
choose parameters α and β such that the Schwarz waveform relaxation algorithm
(3.32) reaches a given error for as small as possible number of iterations. The analyti-
cal solution of this problem is quite complex in the considered framework and we only
present here a numerical strategy to reach the optimum. In the simpler case of a 1D
advection diffusion equation a complete solution of the related optimization problem
is given in [11].

We consider a test case for which all the initial data (velocities and perturbation
of the water height) are taken equal to zero. We initialize the algorithm (3.1) with
random boundary conditions on the interface and we study the convergence of the so-
lution towards the analytical ones. This test is quite classical to study the convergence
of a domain decomposition algorithm. It is interesting since the initial quantities do
contain all frequencies. In all the computations the physical parameters Re and Fr
are taken equal to one but the Rossby number ε remains free. For a given value of ε
we apply the transmission conditions (3.30) for several values of the parameters α and
β and we compare the L2 error between the computed and the analytical solutions
after a given number of iterations. It allows us to find an optimal pair (αopt, βopt)
that minimizes this error. This first study exhibit that the influence of the parameter
β is quite small. In the following this parameter will be kept equal to its theoretical
value (3.29). In a second step we study the dependency of the optimal parameter
αopt with respect to the Rossby number ε. The results are presented in Fig. 6.2 for
different values of ε. We found that this optimized parameter does depend on ε in a
nontrivial way.
We now present the evolution of the error on the computed solution as a function of
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Fig. 6.2. Quotient αopt/αTay between the numerically optimized parameter and the Taylor
approximation parameter as a function of the Rossby number ε (in Log scale)

the number of iterations of the Schwarz waveform relaxation algorithm (3.1) in both
cases α = αopt and α = αTay. in Fig. 6.3 we present the results for two different
values of the Rossby number ε : ε = 10−3 and ε = 10−2. The curves (Log of the
error) all look like straight lines, at least after a sufficiently large number of iterations.
The method appears to be more efficient when the Rossby number is smaller since the
error decreases much faster in the case ε = 10−3 - Fig. 6.3 on the left. This result is
consistent with the previous theoretical study that is based on an asymptotic analysis
in ε. We also observe that for a given value of ε the curves look similar for both
optimized and Taylor approximation parameters even if the error decreases faster for
the optimal value αopt. Moreover let us observe that to reach an error of 10−4 (that
is enough for the applicability of the Schwarz waveform relaxation algorithm) both
algorithms (with optimized or Taylor approximation parameter) need a very close
number of iterations.
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Fig. 6.3. Log of the error on the computed solution as a function of the number of Schwarz
iterations for Rossby number ε = 10−3 (left) and ε = 10−2 (right) and for a random initial guess
using the Taylor approximation parameter αTay (up) and the optimized one αopt (down)
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We compute the same test with Rossby number ε = 10−2 but with a sinusoidal ini-
tial guess (instead of the random ones) for the transmission conditions. We consider
two different sinusoids with one or ten periods in the space-time considered interval
and we use Taylor approximation parameters αTay and βTay. In Fig. 6.4 the results
appears to be much better for the low frequency sinusoid as for high frequency one.
The results for the high frequency sinusoid look similar to the results that were ob-
tained with the random initial guess. It follows that the method is particularly well
adapted to low frequency signals : the relative error is smaller than 10−4 after only
two iterations.
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Fig. 6.4. Log of the error on the computed solution as a function of the number of Schwarz
iterations for Rossby number ε = 10−2 and with optimal parameter for a low frequency signal (down)
and for a high frequency signal (middle) and for a random signal (up)

6.4. Numerical application. In this section we consider the case of a flow with
a constant positive background velocity u0 = 1.m/s and an initial local decreasing
step on the water height. We choose the Rossby number ε equal to 10−3. We choose
nx = 40, nz = 10 and nt = 40 in order to ensure the CFL condition. We present the
initial solution and the solution computed at final time T = 1.3s after 20 iterations by
the proposed Schwarz waveform relaxation algorithm in Fig. 6.6. The 2d horizontal
velocity vector field (u, v) is presented in the 2d vertical domain (in the (x, z) plane)
which is occupied by the flow. A horizontal vector denotes a velocity which is collinear
to the x-direction and a vertical one denotes a velocity which is collinear to the y-
direction. Since we consider the linearized version of the equations the step just moves
without deformation from the left to the right of the domain. Since the Coriolis effect
is dominant we observe the formation of a transverse jet which moves with the step.
Another consequence of the Coriolis effect is the formation of a stationary eddy at the
initial location of the step. We now compare the solution that is computed on the
whole domain with the solution that is obtained by considering the presented domain
decomposition strategy. In Fig. 6.7 we present the evolution of the relative error
between the two solutions versus the number of considered iterations. It exhibits the
fast convergence of the algorithm for such a case. After two iterations the relative
error is around 10−6 and it reaches the factor 10−10 after eight iterations.

7. Conclusion. We presented in this article a new domain decomposition method
for the viscous primitive equations. It involves a Schwarz waveform relaxation type al-
gorithm with approximated transmission conditions for which we proved well-posedness.
We presented a numerical optimization of the transmission conditions and we study
the speed of convergence of the algorithm for several test cases. Academic numerical
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Fig. 6.5. Water height and velocity field at initial time
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Fig. 6.6. Water height and velocity field at final time

applications were presented. In forthcoming papers we plan to prove the convergence
of the algorithm and we want to present oceanographic configurations and to increase
the efficiency of the algorithm by deriving more complex transmission conditions based
on another asymptotic regime that corresponds to quasi-geostrophic flows.
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Fig. 6.7. Log of the relative error on the solution computed by using the Schwarz waveform
relaxation algorithm versus number of iterations
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