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Summary.

We extend the study of weak local conditional independence (WCLI)

based on a measurability condition made by Commenges and Gégout-Petit

(2009) to a larger class of processes that we call D
′. We also give a defini-

tion related to the same concept based on certain likelihood processes, using

the Girsanov theorem. Under certain conditions, the two definitions coin-

cide on D
′. These results may be used in causal models in that we define

what may be the largest class of processes in which influences of one compo-

nent of a stochastic process on another can be described without ambiguity.

From WCLI we can contruct a concept of strong local conditional indepen-

dence (SCLI). When WCLI does not hold, there is a direct influence while
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when SCLI does not hold there is direct or indirect influence. We investi-

gate whether WCLI and SCLI can be defined via conventional independence

conditions and find that this is the case for the latter but not for the former.

Finally we recall that causal interpretation does not follow from mere math-

ematical definitions, but requires working with a good system and with the

true probability.

Keywords: Causality; causal influence; directed graphs; dynamical mod-

els; likelihood process; stochastic processes.

1 Introduction

The issue of causality has attracted more and more interest from statisticians

in recent years. An approach using the modelling of “potential outcome”,

often called the counterfactual approach, has been proposed in the context of

clinical trials by Rubin (1974) and further studied by Holland (1986) among

others. The counterfactual approach has been extended to the study of longi-

tudinal incomplete data in several papers and books (Gill and Robins, 2001;

Robins et al., 2004; van der Laan and Robins, 2002). The counterfactual ap-

proach however has been criticised (Dawid, 2000; Geneletti, 2007). Another

approach directly based on dynamical models has been developed, starting

with Granger (1969) and Schweder (1970), and more recently developed using

the formalism of stochastic processes, by Aalen (1987), Florens and Fougère

(1996), Fosen et al. (2006) and Didelez (2007, 2008).

Recently we have given more development to the dynamical models ap-

proach (Commenges and Gégout-Petit, 2009) using the basic idea of the
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Doob-Meyer decomposition proposed in Aalen (1987). We have proposed a

definition of weak local independence between processes (WCLI) for a cer-

tain class of special semi-martingales (called class D) which involves the com-

pensator of the Doob-Meyer decomposition of the studied semi-martingale.

Although it can be used in discrete time, this definition is especially adapted

to continuous-time processes for which as we will see in section 4, defini-

tions based on conventional conditional independence may fail. The aim

of this paper is to give an even more general definition of WCLI, and con-

versely of direct influence. What we call direct influence of one component

Xj on another component Xk of a multivariate stochastic process X (noted

Xj −→X Xk) is that Xk is not WCLI of Xj (we use WCLI both as the

name of the condition and as an adjective, that is the ”I” may mean “in-

dependence” or “independent” according to the context). This concept of

influence is a good starting point for defining causal influence (see section 5).

In the perspective of extending WCLI to a larger class of processes, we

see two ways. The first one is to stay in the class of semi-martingales and

try to be more general about the conditions. In particular we could use the

triplet of the characteristics of a semi-martingales. For an exact definition

of the characteristics of a semi-martingale, see Jacod and Shiryaev (2003).

Roughly speaking, the characteristics of a semi-martingale are represented

by the triplet (B, C, ν) where ν is the compensator of the jump part of the

semi-martingale, B the finite variation part not included in ν, and C is

the angle bracket process of the continuous martingale. The second way is

to work with the likelihood of the process which is also tightly linked with

the characteristics of the semi-martingale. In this paper we explore these two
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ways, extending the WCLI definition to a very large class of processes that we

call D
′, and showing that another definition of WCLI is possible by the use of

likelihood processes. Another issue that we explore is the link between WCLI

and analogous definitions based on conventional conditional independence;

this angle of attack is closer to Granger (1969) proposal for time series. The

scope of the paper is restricted to these mathematical definitions which may

be useful for discussing causality issues. In the core of the paper, we address

neither the philosophical nor the inferential issues; we discuss some of the

philosophical issues in the last section.

In section 2, we recall the definition of WCLI, showing that it can be

expressed in terms of the characteristics of the semi-martingales; this leads

us to give a generalized definition of WCLI. We also recall the definition

of strong local conditional independence (SCLI). In section 3, we propose

another point of view based on the likelihood and we show the equivalence

of definitions based on the Doob-Meyer decomposition and the property of

certain likelihood processes under certain conditions. In section 4, we show

that it is possible to define SCLI by conventional conditional independence,

but that this approach falls short for WCLI. We conclude in section 5, where

we recall the distinction between the mathematical definition of influences

and the construction of a causal interpretation.
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2 A generalization of WCLI

2.1 Notations and examples

Consider a filtered space (Ω,F , (Ft), P ) and a multivariate stochastic process

X = (Xt)t≥0; X t takes values in ℜm, and the whole process X takes values

in D(ℜm), the Skorohod space of all cadlag functions: ℜ+ → ℜm. We suppose

that all the filtrations satisfy “the usual conditions”. We have X = (Xj, j =

1, . . . , m) where Xj = (Xjt)t≥0. We denote by Xt the history of X up to

time t, that is Xt is the σ-field σ(Xu, 0 ≤ u ≤ t), and by (Xt) = (Xt)t≥0 the

families of these histories, that is the filtration generated by X. Similarly we

shall denote by Xjt and (Xjt) the histories and the filtration associated to Xj .

Let Ft = H∨Xt; H may contain information known at t = 0, in addition to

the initial value of X. We shall consider the class of special semi-martingales

in the filtration (Ft). We denote by (B, C, ν) the characteristics of the semi-

martingale X under probability P , by Mj the martingale part of Xj, and by

M c
j the continuous part of this martingale. We denote by (Bk, Ck, νk) the

characteristics of the semi-martingale Xk under probability P .

Let us recall the definition of WCLI and see on examples how it involves

the characteristics of the semi-martingale at hand. In our previous work

(Commenges and Gégout-Petit, 2009) we have imposed the two following

conditions bearing on the bracket process of the martingale M :

A1 Mj and Mk are orthogonal martingales, for all j 6= k;

A2 Xj is either a counting process or is continuous with a deterministic

bracket process, for all j.

We call D the class of all special semi-martingales satisfying A1 and
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A2. The class of special semi-martingales is stable by change of absolutely

continuous probability (Jacod and Shiryaev, 2003, page 43) and this is also

true for the the class D.

Definition 1 [Weak conditional local independence (WCLI)] Let X be in

the class D. Xk is WCLI of Xj in X on [r, s] if and only if Λkt − Λks is

(F−jt)-predictable on [r, s], where F−jt = H ∨ X−jt and X−jt = ∨l 6=jX−lt.

Generally, we assess WCLI on [0, τ ], where τ is the horizon of interest, and

if Xk is WCLI of Xj on [0, τ ], we note Xj−→/ X Xk; in the opposite case

we say that Xj directly influences Xk and we note Xj −→
X

Xk. A graph

representation can be given, putting a directed edge when there is a direct

influence from one node on another. If there is a directed path from Xj to Xk

we say that Xj influences Xk and we note Xj →→X Xk. If Xj influences Xk

but not directly influences it, then the influence is indirect. Inversely, if there

is not directed path from Xj to Xk, we say that Xj does not influence Xk.

We call this property strong local condtional independence (SCLI), saying

that Xj is SCLI of Xk and we note Xj→→/ XXk.

Let us see, using three examples, how the conditions A1, A2 and the

definition of WCLI can be expressed in terms of the characteristics of the

semi-martingale Xk in the filtration (Ft).

Example 1: Let us consider a three-dimensional process X
3 ∈ D, X

3
t =

(X1t, X2t, X3t) defined by :



























X1t =
∫ t
0 f1(X1s, X2s, X3s)ds + M1t

X2t =
∫ t
0 f2(X1s, X2s, X3s)ds + M2t

X3t =
∫ t
0 f3(X2s, X3s)ds + W3t

(1)
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where (M1, M2, W3) are independent martingales and W3 is a Brownian mo-

tion. For Mjt (j = 1, 2), we only assume that Xj is in the class D. Since

M3 = W3 is a Brownian motion, X3 is a diffusion, so there is no jump. In

this case the characteristics of X3 are B3
t =

∫ t
0 f3(X1s, X2s, X3s)ds (the fi-

nite variation process), C3
t = t (the bracket process of W3) and ν3

t = 0 (the

compensator of the jump part), for all t. From the fact that f3 does not

involve X1, we directly see that X3 is WCLI of X1 in X
3. Mathematically,

the “compensator” of the semi-martingale X3 ( called drift for a diffusion

process) is equal to
∫ t
0 f3(X2s, X3s)ds for all t, and is thus (F−1t)-predictable;

this indeed corresponds to Definition 1 of WCLI. So, when Xk is a continuous

semi-martingale, the WCLI condition involves the characteristic Bk of the

semi-martingale Xk.

Example 2: Let us consider the following three-dimensional process

X
3 ∈ D, X

3
t = (X1t, X2t, X3t) defined by :



























X1t =
∫ t
0 f1(X1s, X2s, X3s)ds + M1t

X2t =
∫ t
0 f2(X1s, X2s, X3s)ds + M2t

X3t =
∫ t
0 β3(X2s−, X3s−)ds + M3t

(2)

where (M1, M2, M3) are independent martingales and X3 is a counting pro-

cess. We do not assume the form of Mjt (j = 1, 2). The WCLI relationships

between the Xi’s are the same as in (1). X3 is a counting process and in

this case B3
t = C3

t = 0 and ν3
t =

∫ t
0 f3(X2s, X3s)ds. The compensator of the

counting process X3 is X−1t-measurable which means that X3 is WCLI of X1

in X
3. So, when Xk is a counting process the WCLI condition involves the

characteristic νk of the semi-martingale Xk.

Thus, the WCLI condition of Commenges and Gégout-Petit (2009) in-
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volves the characteristic B when Xk is continuous and the characteristic ν

when Xk is a counting process. In the framework of class D, condition A2

implies that these two characteristics are never simultaneously different from

zero. In the following, we will consider processes for which B and ν may be

both different from zero. We consider a process each component of which

may have both a continuous and a jump part; such a process does not belong

to D.

Example 3:


























X1t =
∫ t
0 f1(X1s, X2s, X3s)ds +

∫ t
0 σ1tdW1t +

∫ t
0 β1(X3s−)dN1s

X2t =
∫ t
0 f2(X1s, X2s)ds +

∫ t
0 σ2tdW2t +

∫ t
0 β2(X2s−, X3s−)dN2s

X3t =
∫ t
0 f3(X2s, X3s)ds +

∫ t
0 σ3tdW3t +

∫ t
0 β3(X2s−, X3s−)dN3s

(3)

where the Wi’s are independent Brownian motions, the Nj ’s are independent

Poisson Processes with intensity 1 independent of the Wi’s. We suppose

that the σjt’s are deterministic function of t, with σjt > 0 ∀t. It is clear

that X does not belong to class D. However, the three characteristics of

the semi-martingale X3 are B3
t =

∫ t
0 f3(X2s, X3s)ds, C3

t =
∫ t
0 σ3sds and ν3

t =
∫ t
0 β3(X2s−, X3s−)ds. So, B3

t and ν3
t are(F−1t)-predictable: this will be the

conditions of our new WCLI available for a larger class of semi-martingales.

2.2 Generalized definition of WCLI

We use the notations of the beginning of the section. We shall assume two

conditions on X:

A1 Mj and Mk are square integrable orthogonal martingales, for all j 6= k.

Under assumption A1, the jumping parts of the martingales Mj and

Mk are orthogonal. Moreover, the characteristic C of X (the angle bracket
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of the continuous part of the martingale) is a diagonal matrix. Indeed by

definition of orthogonality of semi-martingales, Cij =< M c
i , M

c
j >= 0 for all

1 ≤ i, j ≤ m; we note Ck = Ckk.

A2’ Cj is deterministic for all j.

We call D
′ the class of all special semi-martingales satisfying A1 and

A2’. In fact, A1 and A2’ coud be merged into a single compact assuption:

the characteristic C of X is a deterministic diagonal matrix. D
′ is stable

by change of absolutely continuous probability (C does not change with the

probability). D
′ is a very large class of processes: it includes random mea-

sures, marked point processes, diffusions and diffusions with jumps. .

Definition 2 (Weak conditional local independence (WCLI)) Let X

be in the class D
′. Xk is WCLI of Xj in X on [r, s] if and only if the charac-

teristics Bk and νk are such that Bkt−Bkr and νkt−νkr are (F−jt)-predictable

on [r, s]. Equivalently we can say that Xk has the same characteristic triplet

(Bk, Ck, νk) in (Ft) and in (F−jt) on the interval [r, s].

This new definition coincides with that of Commenges and Gǵout-Petit

(2009) for the class D ⊂ D
′.

3 Link with the likelihood

We consider again the three examples above with a particular attention to

the likelihood of the process X3. In Example 1, we apply Girsanov theorem

to change the current probability using the density process (Z
P/P0

1t ):

Z
P/P0

1t = exp
(
∫ t

0
f3(X2s, X3s)dX3s −

1

2

∫ t

0
(f3(X2s, X3s))

2ds
)

. (4)
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Under the assumption EP [exp(1
2

∫+∞
0 (f3(X2s, X3s))

2ds)] < +∞, the pro-

cess Z
P/P0

1t = 1

Z
P0/P
1t

is a P -martingale and the probability P0 defined by

dP0

dP |Ft
= Z

P0/P
1t for all t ≥ 0 is equivalent to P on each Ft; moreover, under

P0, X3 is a Brownian motion independent of (M1, M2).

In Example 2 we consider the density process (Z
P/P0

2t ):

Z
P/P0

2t =
∏

s≤t

(β3(X2s−, X3s−))∆X3s exp
(
∫ t

0
β3(X2s−, X3s−)ds

)

. (5)

Under technical conditions given in Lépingle et Mémin (1978), it defines a

new probability P0 such that under P0, X3 is a homogeneous Poisson process.

In Example 3, we consider the density process (Z
P/P0

3t ):

Z
P/P0

3t =
∏

s≤t

(β3(...))
∆X3s exp

(

∫ t

0

f3(...)

σ3t

dX3s +
∫ t

0
(β3(...) −

1

2
f 2

3 (...))ds

)

,

(6)

where β3(...) stands for β3(X2s−, X3s−) and f3(...) for f3(X2s, X3s). Under

technical conditions given in Lépingle et Mémin (1978), P0 is well defined,

and X3 is the sum of a Brownian motion with variance σ2
3t and a homogeneous

Poisson process under P0.

In the three cases, we see that the likelihood processes Z
P/P0

jt are X−1t-

measurable. That is, the X−1t-measurability of the characteristics of Xk

implies the X−1t-measurability of the likelihood process. We want to use

a measurability condition on the likelihood process for a new definition of

WCLI. We could say that ”Xk is weakly locally independent of Xj in X if

the likelihood of Xk is F−jt = H ∨ X−jt-measurable”. However, we must be

cautious because the likelihood is a likelihood ratio between two probabilities,

and these probabilities give not only the distribution of Xk but that of the

whole process X. So, the reference measure P0 must meet some assumptions
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given in the definition of this new condition.

Definition 3 [Likelihood-based weak conditional local independence (LWCLI)]

Let X = (Xj , j = 1, . . . , m) be in the class D
′.

1. Suppose the existence of a probability P0 such that (i) P ≪ P0, (ii) the

characteristics of the semi-martingales Xi’s with i 6= k are the same

under P and P0 and (iii) the P0-characteristics (Bk
0 , Ck

0 , νk
0 ) of the semi-

martingale Xk are deterministic. We say that Xk is LWCLI of Xj in

X on [0, t] if and only if the likelihood ratio process Z
P/P0

t = L
P/P0

Ft

is (F−jt)-measurable on [0, t]. We have denoted F−jt = H ∨ X−jt and

X−jt = ∨l 6=jX−lt.

2. Xk is LWCLI of Xj in X on [r, s] if and only if the process
Z

P/P0

t

Z
P/P0
r

is

(F−jt)-predictable for all t ∈ [r, s] for all the probabilities P0 as above.

Let us comment the definition and the conditions imposed to the reference

probability P0 in this definition in the following remarks.

Remark 1. In the examples of this section, we have constructed P0 by a

change of probability. In the definition we are in a context of likelihood

writing and we suppose the existence of a ”good” reference probability.

Remark 2. We want that the likelihood concerns Xk only in a certain sense

given by (ii). It was the case in the three examples considered above. (ii)

is true for instance if < ZP/P0, M i >= 0 for all i 6= k. Suppose for instance

that Mk is not orthogonal to M j for a j 6= k ( assumption A1 not true) then

it is certainly not possible to find a probability which verifies (ii).

Remark 3. We do not want that the ”relation” between Xk and Xj un-

der P is hidden by the same relation under P0. To make such a condition
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explicit, the framework of semi-martingales is again very useful. This con-

dition involves the characteristics (Bk
0 , Ck

0 , νk
0 ) of Xk under P0. They must

be deterministic. So (iii) is linked to assumption A2’ because Ck does not

change with the probability and remains deterministic whatever the absolute

continuous change of probability. We emphasize that if A2’ fails, that is the

bracket Ck is not deterministic under P , we will never find a probability P0

which verifies (iii). Moreover, in the examples given above, the process X3

satisfies the property of independent increments under P0. In the case of

semi-martingales, this property is verified if and only if the triplet (B, C, ν)

is deterministic under P0. This is exactly the condition (iii) of definition 3.

Remark 4. If A1 is not satisfied, this means that at least two components of

X have a common part of martingale: they are driven by the same noise but

we can not speak of influence of one on the other. Condition A2’ is different:

even if Ck is driven by another component of X we will never detect it

by a measurability condition because the characteristics Ck is always Xk-

measurable.

LWCLI seems to be more general than WCLI. When Xk is a diffusion

with jumps (see Jacod and Shiryaev, 2003, Definition III. 2.18), we can take

for P0 the probability under which Xk is the sum of a Brownian motion and

a standard Poisson process with parameter λ = 1. However, except this

standard case, the conditions required on P0 are not easy to characterize.

In the good cases, we have an explicit computation of the likelihood ratio

process Z
P/P0

t as function of the characteristics of Xk in the probabilities P

and P0. This result allows us to lay down the following result:

Proposition 1 Suppose that X is a m-dimensional diffusion with bounded
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jumps process satisfying the uniqueness in law conditions and which belongs

to the class D
′ and suppose the existence of a probability P0 satisfying the

assumptions of the definition (3) then WCLI and LWCLI are equivalent.

Proof: the assumptions of Proposition 1 guarantee the explicit computa-

tion of Z
P/P0

t as a function of the characteristics of Xk under P and P0 (Jacod

and Shiryaev 2003: Theorem III. 5.19) and the uniqueness of probability P

(Jacod and Shiryaev, 2003: Theorems III. 2.32 and III. 2.33) under which X

has the given characteristics. Under these assumptions, the component Xk

is of the form:

dXkt = fk(t,Xt)dt + σk(t)dWkt + βk(s,Xs−, z)(p(dt, dz) − q(dt, dz)),

where p(dt, dz) is a Poisson random measure with intensity and q(dt, dz) =

dt ⊗ F (dx) (F is a positive σ-additive measure on (R, B(R)). So, Bk =
∫ t
0 fk(s,Xs)ds, νk =

∫ t
0 βk(s,Xs−, z)q(dt, dz) and Ck =

∫ t
0 σ2

3sds are the char-

acteristics of Xk under P . The likelihood ratio being a function of (Bk, Ck, νk, Bk
0 , C

k
0 , νk

0 ),

it is obvious that WCLI implies LWCLI. Let us prove the reverse: let Xk

be LWCLI of Xj in X. If Bk
t or νk

t were not (F−jt)-measurable, then Z
P/P0

t

would no longer be (F−jt)-measurable: this contradicts LWCLI !

4 WCLI and SCLI via conditional indepen-

dence of filtrations

Heuristically, we can state the non-influence of Xj on Xk by saying that, on

the basis of the information at time t, we do not need to know Xju, u < t to

predict Xk at t, or after t. In the previous sections, we have expressed this
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intuition in terms of measurability of certain processes (compensator and

likelihood process). Granger (1969), working with stationary time series (in

discrete time) proposed a criterion based on the variance of the prediction.

Eichler and Didelez (2009) gave a clear definition of Granger non-causality

in a more general setting, although still for stationary time series, and they

expressed it in terms of conditional independence. They distinguish between

“strong Granger-non causality” and “contemporaneous independence”. With

our notations, strong Granger-non causality can be expressed as:

Xks ⊥⊥F
−jt

Xjt, t = 0, 1, . . . ; s = t + 1, t + 2, . . . , t + h, (7)

where h is called “horizon”.

In continuous time it is also tempting to define WCLI and SCLI in terms

of conditional independence. Didelez (2008) heuristically proposed the fol-

lowing definition for WCLI when X is a counting process:

Xkt ⊥⊥F
−jt−

Xjt−, 0 ≤ t ≤ τ. (8)

This formula attempts to express non-influence by requiring that Xkt is in-

dependent of the past of Xj given the past of the other components of X .

However as remarked in Commenges and Gégout-Petit (2009), this condition

is void in general when we consider processes in continuous time. Because

conditional independence is defined via conditional probability, and in gen-

eral, events of Xkt have conditional probabilities equal to one or zero given

Xkt−, the condition always holds.

We now propose a rigorous definition of non-influence in continuous time

based on conventional conditional independence. Moreover, since indepen-

dence is defined in probability theory in terms of sigma-fields, we can state

14



this property directly in terms of the sigma-fields Xjt, j = 1, . . . , m, without

specifying stochastic processes (as argued in Commenges, 2009, a representa-

tion of statistical models in terms of sigma-fields or filtrations is more intrinsic

than in terms of random variables or stochastic processes). For simplicity we

define it on (0, τ).

Definition 4 Filtration-based strong conditional local independence (FSCLI)]

Let (Xjt), j = 1, . . . , m be filtrations, Xt = ∨jXjt; Ft = H ∨ Xt and X−jt =

∨l 6=jX−lt., F−jt = H ∨ X−jt. We say that filtration (Xkt) is FSCLI of (Xjt)

in Ft if and only if:

Xkτ ⊥⊥F
−jt

Xjt, 0 ≤ t ≤ τ. (9)

Proposition 2 Suppose that X is the unique m-dimensional solution of a

given stochastic differential equation with bounded jumps process and which

belongs to the class D
′, then FSCLI defined on the filtrations generated by

the components of X and SCLI are equivalent.

Proof. For a given Xk ∈ X, denote by An(k) = {l1k, . . . , lnk} the set of

all the indices l such that Xl is an ancestor of Xk. The assumptions im-

ply that XAn(k) is also the unique solution a stochastic differential equation

with bounded jumps process generated by the Brownian process WAn(k) =

(Wl1 , . . . , Wlnk
) and the set of orthogonal Poisson measures PAn(k) = (pl1 , . . . , plnk

).

Moreover for each t, XAn(k)t is a functional of (WAn(k)s,PAn(k)s, s ≤ t). If

t ≤ τ , XAn(k)τ is a functional of XAn(k)t and of the processes W
(t,.)
An(k) P

(t,.)
An(k)

defined by W
(t,s)
An(k) = (WAn(k)s − WAn(k)t),P

(s,t)
An(k) = (PAn(k)s − PAn(k)t), t ≤

s ≤ τ). By the independent increments property of the Brownian motion

and of the Poisson process, if we denote σ
(t,τ)
k = σ((W

(t,s)
An(k),P

(t,s)
An(k), t ≤
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s ≤ τ), we have σ
(t,τ)
k ⊥⊥ Ft. Suppose that Xj→→/ XXk, it implies that

Xj−→/ X XAn(k) and that XAn(k)t is F−jt-measurable. Using the previous re-

mark and the standard properties of conditional expectation (Jacod, Protter

exercice 23.7), for t ≤ s ≤ τ , we have that E[f(Xks)|Ft] = E[f(Xks)|F−jt] =

G(Xkt) with

G(x) = E[f(F (x,W
(t,.)
An(k),P

(t,.)
An(k))|Xkt = x].

We have proved SCLI ⇒ FSCLI.

As for the converse, (9) implies that Xk is perfectly defined by a differ-

ential equations with jumps which does not involve the component Xj and

thus Xj→→/ XXk.

Remark 5. We could also define an “horizon” h > 0 for FSCLI in a way

analogous to formula (7).

Xk,t+h ⊥⊥F
−jt

Xjt, 0 ≤ t ≤ τ − h. (10)

If we make this horizon tend toward zero the FSCLI requirement tends

(heuristically) to the WCLI requirement. In continuous time however, con-

sidering an infinitely small h would lead to definition (8), which as already

mentioned is void. We conclude that WCLI cannot be rigorously defined by

conditional independence; we need the measurability-based definition.

Remark 6. Didelez and Eichler (2009) also defined a concept of contempo-

raneous independence as:

Xks ⊥⊥Ft Xjs, t = 0, 1, . . . ; s = t + 1. (11)

For the same reason as for WCLI, contemporaneous independence cannot

be defined in continuous time via conventional conditional independence,
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because Xkt ⊥⊥Ft− Xjt in void in general. However contemporaneous in-

dependence in continuous time might be identified with the assumption of

orthogonal martingales.

Remark 7. If the time parameter is discrete, then FSLI defined by (9)

is identical to strong Granger-non causality for all horizon. Moreover FSLI

defined by (10) for horizon h = 1 , Granger-non causality for horizon h = 1

and WCLI are identical.

5 Discussion and conclusion

We have generalized the definition of WCLI to a larger class of processes and

we have proposed another definition through likelihood ratio processes. Un-

der certain conditions the two definitions are equivalent. We have also made

the link with definitions based on conventional conditional independence:

SCLI can be defined this way but in continuous time WCLI cannot. These

results may be used for developing causal models. By definition, there are

direct influences where WCLI does not hold: if Xk is not WCLI of Xj, then

Xj directly influences Xk in X . It is to be noted that influence is not a simple

lack of (even conditional) independence. WCLI is a dynamical concept which

differs markedly form conventional independence concepts. Essentially be-

cause it is dynamic, it is not symmetric, while conventional independence is.

We can have Xk WCLI of Xj and Xj not WCLI of Xk. This provides a rich

set of relationships between two components of a stochastic process X. We

have three possibilities for the influence of Xj on Xk: Xj −→X Xk (direct

influence) , Xj→→/ XXk (no influence), Xj →→X Xk and Xj−→/ X Xk
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(indirect influence). There are also three possibilities of influence of Xk on

Xj. Thus, there are nine possibilities for describing the relationship between

two components of a stochastic process. Of course it would be of great in-

terest to quantify these influences. Interesting work has been done in this

direction, in the time-series framework, by Eichler and Didelez (2009).

The multivariate stochastic process framework is a general framework

which incorporates a major feature of causal relationship: time. Thus it is

a natural framework to formalize causality in statistics. It is important to

know which is the most general class of stochastic processes in which we can

work for developing such a formalisation. The class D
′ seems to be this class.

However this only describes a mathematical framework which is well

suited for formalizing causality. This is why in this paper we speak of in-

fluence rather than causal influence. A causal interpretation needs an epis-

temological act to link the mathematical model to a physical reality. In

particular, WCLI is dependent on a filtration and a probability. Commenges

and Gégout-Petit (2009) emphasized that the choice of the filtration is re-

lated to the choice of the physical system and assumed that there is a true

probability, P ∗, according to which the events of the universe are generated.

Causal influences were defined as influences in a good (or perfect) system

and under the true probability.
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