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1 Introduction

The occupancy scheme is a simple urn model which often occurs in probability, statistics,
combinatorics and computer science. We can cite for example species sampling [9, 19],
analysis of algorithms [16], learning theory [8], etc. The books by Johnson and Kotz [22]
and by Kolchin et al. [23] are standard references. The present work is partly motivated by
the study of fragmentation trees.

Let us recall the occupancy scheme. Let I be a countable set and p = (pi : i ∈ I)
be a probability measure on I. The occupancy scheme on (I,p) is described as follows.
For all i ∈ I such that pi 6= 0, one places a box at i. One then throws successively and
independently n balls in the boxes by assuming that each ball has probability pi of falling
into the box located at i. We may be interested in the number of boxes containing exactly
j balls, or in the number of occupied boxes, etc.

We consider here a variant of the occupancy scheme which corresponds to a nested family
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of boxes. We introduce the infinite genealogical tree U :

U :=
∞
⋃

k=0

N
k,

with N = {1, 2, . . .} and the convention N
0 = {∅}. The elements of U are called individuals,

and for every integer k ∈ Z+, the k-th generation of U is formed by the individuals i ∈ N
k

(we write |i| = k). For every individual i = (i1, . . . , ik) of U and j ∈ N, the individual
ij = (i1, . . . , ik, j) is called the j-th child of i and i is the parent of ij. We suppose a real
number pi ∈ [0, 1] is assigned to each individual i, such that p∅ = 1 and

∑

j∈N
pij = pi for

all i ∈ U . Note that for all k, p(k) := (pi : |i| = k) is a probability measure on N
k. We can

couple the occupancy schemes on (Nk,p(k)) as follows. Each individual i should be viewed
as a box, such that the box ij is contained into the box i for every i ∈ U and j ∈ N such
that pij 6= 0. Initially the n balls are thrown in the box located at ∅. Then one places
successively and independently the n balls in the boxes of the first generation by assuming
that each ball has probability pi of falling into the box situated at i ∈ N. Likewise, by
iteration, a ball located in the box i is placed independently of the others into the sub-box
ij with probability pij/pi.

We denote by Hn,j the first generation at which all the boxes have less than j ≥ 2 balls
when n have been thrown (Hn,j is called a height) and by Gn,j the first level at which there
exists a box containing less than j ≥ 1 balls (Gn,j is called a saturation level). Our aim is
to study the asymptotic behaviours of Hn,j and Gn,j as n tends to infinity when we consider
a certain randomized version of (pi, i ∈ U).

More precisely, in the present work, we shall assume that we are given a random prob-
ability measure ρ = (ρ1, ρ2, . . . ) on N. We assign to each individual i an independent copy
ρ(i) of ρ. The real numbers pi, i ∈ U , are defined by induction : p∅ := 1 and pij := piρj(i),
for all i ∈ U and j ∈ N. It means that ρ(i) describes how the mass of the individual i is
splitted to its chidren. This model is called the occupancy scheme of multiplicative cascades.
We put emphasis on the fact that there are two levels of randomness in our model, namely
the arrangement of boxes and the way one throws balls.

In the particular case when ρ is supported by a finite number of integers, in the sense that
#{j : ρj > 0} ≤ b a.s. for some integer b ≥ 2, the height Hn,j has a natural interpretation
in terms of a special class of random split trees which have been considered e.g. by Devoye
[14]. Specifically, imagine that each box has a rupture threshold of j, in the sense that when
a ball falls into some box i already containing j − 1 balls, then this box is removed and the
j balls are shared out amongst the children of i according to the random probability ρ(i)
(i.e. conditionally on ρ(i), each ball is put in the box ij with probability ρj(i), independently
of the other balls). This procedure yields a random tree where all balls are stored at leaves,
and Hn,j is the height of this tree when n balls have been thrown.

We further point out that the height Hn,j also arises as a natural shattering time in ho-
mogeneous fragmentation chains, a class of partition-valued Markov chains. More precisely,
the shattering time is defined as the first instant when all the blocks of the partition process
have cardinality less than j. See [4] for background and Section 3.2 in [5] for a description
which is closely related to the present work. In a different direction, we mention the work of
Haas et al. [18] who associate another random tree to homogeneous fragmentation processes.

We shall show the following result : there exist an integer j∗ ∈ {2, 3, . . .} ∪ {∞} and a
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sequence of positive real numbers C2 > · · · > Cj∗ = Cj∗+1 = · · · =: C∗ such that for every
integer j ≥ 2,

Hn,j ∼
n→∞

Cj lnn a.s.

It should not be surprising that the heights Hn,j have logarithmic asymptotics, as a large
class of trees have such a behaviour, like random split trees. On the other hand, it is
remarkable that there exists a critical parameter j∗ ∈ {2, 3, . . .} ∪ {∞} at which a phase
transition occurs (provided that 2 < j∗ < ∞). It is a peculiar behaviour for a random split
tree. Devroye indeed proved in [14] that for a large class of random split trees such that
their internal nodes contain at least one ball 1, then all the heights, regardless of the value of
the rupture threshold j, have the same asymptotic behaviour (in probability). In particular,
no phase transition occurs.

It may also be interesting to consider the situation where the parameter j depends on the
number of balls n. In the case of power functions, we shall prove that under some technical
conditions that will be detailed below,

Hn,nα ∼
n→∞

(1 − α)C∗ lnn a.s.,

for all α ∈ (0, 1), so that there is no phase transition in the asymptotics of Hn,nα.
Concerning the asymptotics of the saturation level Gn,j, we shall prove the following

result : under some technical conditions that will be detailed below, there exists a constant
C∗ < C∗ such that for every positive integer j,

Gn,j ∼
n→∞

C∗ lnn a.s.

In particular, there is no phase transition in the asymptotics of Gn,j. We shall also show
that under some further technical conditions, for all α ∈ (0, 1),

Gn,nα ∼
n→∞

(1 − α)C∗ lnn a.s.,

so that there is also no phase transition in the asymptotic behaviours of Gn,nα.
Our approach essentially relies on the theory of branching random walks, and more

precisely on their large deviations behaviours whose descriptions are due to Biggins [7]. The
construction of the boxes given by the multiplicative cascades indeed enables us to define
a branching random walk giving the sizes of the boxes at each generation. We shall see
that the critical parameter j∗ and the real numbers C2, . . . , Cj∗ and C∗ are described by
that branching random walk. Another key technique is Poissonization; instead of throwing
exactly n balls, one throws Pn balls, where Pn is a Poisson variable with parameter n which
is independent of (ρ(i), i ∈ U). For every integer k, conditionally on the sizes of the boxes of
the k-th generation, the numbers of balls per box of the k-th generation are thus independent
Poisson variables.

The results will be stated in Section 2. We shall see the main techniques in Section 3.
Section 4 will be devoted to the study of the heights. We shall first turn our attention to
the upper bound. Due to the phase transition, we shall give two different proofs to show the

1We stress that this assumption is crucial in the proof of Theorem 1 in [14] and seems to have been
overlooked in the statement.
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lower bound of Hn,j, depending on whether the integer j is less than the critical parameter j∗

or not. The results on the saturation levels will be proved in Section 5. Finally, in Section 6,
we shall explain heuristically why a phase transition may occur in the asymptotics of Hn,j,
but not in those of Hn,nα, Gn,j and Gn,nα.

2 Formulation of the main results

Recall that ρ is a random probability measure on N. We denote its law by ν. If we denote by
ProbN the space of probability measures on N, ν is a probability measure on ProbN, called
the splitting law. We assume that ν is not geometric 2, in the sense that there is no real
number r ∈ (0, 1) such that with probability one, all the masses of the atoms of ρ belong
to {rn, n ∈ Z+}. In particular, the degenerate case when ρ is a Dirac point mass a.s. is
therefore excluded.

As explained in the introduction, we consider a family (ρ(i), i ∈ U) of independent
copies of ρ labeled by the individuals of the genealogical tree U . The multiplicative cascade
construction defines for each generation k a probability measure (pi, |i| = k) on N

k. Taking
logarithm of masses, we may encode the latter by the following random point measure on
R+

Z(k)(dy) :=
∑

i:|i|=k

δ− ln pi
(dy),

where δz stands for the Dirac point mass at z. Note that if pi = 0, i.e. if there is no box at i,
the individual i is omitted in the sum defining Z(k). Likewise, in the sequel, we shall always
consider individuals which have a positive mass. It follows immediately from the structure
of the multiplicative cascades that (Z(k), k ∈ Z+) is a branching random walk, in the sense
that for every integers k, k′ ≥ 0, Z(k+k′) is obtained from Z(k) by replacing each atom z of
Z(k) by a family {z + y, y ∈ Yz}, where each Yz is an independent copy of the family of
atoms of Z(k′).

Let us introduce quantities defined via the splitting law ν. First, we define the Laplace
transform of the intensity measure Z(1) by

L(θ) := E
[〈

Z(1), e−θ·
〉]

for θ ∈ R. We can also write

L(θ) = E

[

∑

j∈N

ρθ
j

]

=

∫

ProbN

(

∑

j∈N

pθ
j

)

ν(dp)

with the convention that pθ = 0 when p = 0 even when θ ≤ 0. Because ρ is not a Dirac point
mass a.s., L(0) > 1. The function L : R → (0,∞] is decreasing with L(1) = 1. We define

θ := inf{θ ∈ R : L(θ) <∞},
2Working with a geometric splitting law would induce a phenomenon of periodicity which we shall not

discuss here for simplicity. However results similar to those proven in this work can be established by the
same techniques for geometric splitting laws.
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so that L(θ) < ∞ when θ > θ. Note that θ may be negative. We can show from Hölder’s
inequality that ln L is a convex function, which implies the convexity of L and that the
function

ϕ : θ 7→ ln L(θ) − θ
L′(θ)

L(θ)

is increasing on (θ, 0) and decreasing on (0,∞). As L(1) = 1 and L decreases, we have
ϕ(1) = −L′(1) > 0, and thus the set of θ ∈ (θ,∞) such that ϕ(θ) > 0 is a non-empty open
interval (θ∗, θ

∗) :

θ∗ := inf{θ > θ : ϕ(θ) > 0} and θ∗ := sup{θ > θ : ϕ(θ) > 0}.

Note that θ∗ > 1 and θ∗ < 0 if θ < 0. The convexity of ln L implies that −L/L′ is an
increasing function. We define

C∗ := lim
θ↓θ∗

↓ − L(θ)

L′(θ)
and C∗ := lim

θ↑θ∗
↑ − L(θ)

L′(θ)
.

Inspired by the article of Hu and Shi in [21] (see Lemma 4 below), we shall sometimes
need the following assumption : there exists δ > 0 such that

L(−δ) <∞ and

∫

ProbN

(

∑

i∈N

1pi>0

)1+δ

ν(dp) <∞. (1)

To study the asymptotics of the saturation levels, we shall sometimes need the following
hypothesis :

−∞ < θ∗ < 0 and ϕ(θ∗) = 0. (2)

We can now state the results that we shall prove. Concerning the asymptotic behaviours
of the heights Hn,j, we have the following results which complete and improve Proposition 2
in [5].

Theorem 1 Let j ≥ 2 be an integer, set

Cj :=

{

−j/ ln L(j) if j < θ∗,
C∗ if j ≥ θ∗.

Then
Hn,j ∼ Cj lnn a.s.

More precisely,
Hn,j ≤ Cj lnn+O(ln lnn) a.s., (3)

and (3) is an equality if j < θ∗ or if (1) holds.

We see that there is a phase transition in the asymptotic behaviour of Hn,j at the integer
⌈θ∗⌉ when 2 < θ∗ < ∞. We point out that it may happen that θ∗ ≤ 2 or θ∗ = ∞, in which
case there is no phase transition. For instance, one can show that if ρ = (ρ1, ρ2, . . . ) with
ρ1 = 1 − 0.75U , ρj = 0.05U for all j ∈ 2, . . . , 16 and ρj = 0 for all j ≥ 17, where U is
uniformly distributed on (0, 1), then θ∗ < 1.99. On the other hand, for every α ∈ [1/2, 1), if
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ρ is equal to (1/2, 1/2, 0, . . . ) with probability α and to (1/3, 1/3, 1/3, 0, . . . ) with probability
1 − α, then θ∗ = ∞.

In this direction, we also point out that the critical parameter θ∗ is finite whenever

‖max
j∈N

ρj‖∞ = 1,

where ρ = (ρj , j ∈ N) denotes a random probability measure on N with law ν. Indeed, it is
easily seen that

lim
θ→∞

L(θ)1/θ = ‖max
j∈N

ρj‖∞.

If the right-hand side equals 1, then g : θ 7→ − ln L(θ)/θ has limit 0 at infinity. Now g is
derivable and g(1) = 0, so there exists θ0 ∈ (1,∞) such that g′(θ0) = 0. As g′(θ) = θ−2ϕ(θ),
we conclude that θ0 = θ∗ <∞.

We may also be interested in the asymptotics of Hn,nα, where α ∈ (0, 1). We shall prove
the following result.

Proposition 1 Suppose θ∗ <∞. Let α ∈ (0, 1). Then

Hn,nα ∼ (1 − α)C∗ lnn a.s.

Furthermore,
Hn,nα ≤ (1 − α)C∗ lnn+O(ln lnn) a.s., (4)

and (4) is an equality whenever (1) holds.

Remark 1 The final assertions in Theorem 1 and Proposition 1 rely on the work of Hu
and Shi [21]. McDiarmid’s setting in [24] can however be considered; we can prove that the
results stated in Theorem 1 and in Proposition 1 still hold if the assumption (1) is replaced
by the following :

∫

ProbN

(

∑

i∈N

1pi>0

)2

ν(dp) <∞. (5)

For instance, suppose that ρ = (ρ1, 1 − ρ1, 0, 0, . . . ), where ρ1 is a random variable with
density 10<x<e−1x−1 ln−2 xdx. Then θ = 0, so (1) does not hold. Nonetheless, ρ is supported
by two integers a.s., so (5) holds. As a result, for all j ≥ 2, Hn,j = Cj lnn + O(ln lnn) a.s.
Furthermore, as ‖maxj∈N ρj‖∞ = 1, the discussion below Theorem 1 ensures that θ∗ is finite,
so for all α ∈ (0, 1), Hn,nα = (1 − α)C∗ lnn +O(ln lnn) a.s.

For the sake of simplicity, we shall show Theorem 1 and Proposition 1 only in the setting
of [21] (see Proposition 4 below). The general proof can however be easily carried out.

Concerning the asymptotic behaviours of the saturation levels Gn,j, we shall prove the
following theorem.

Theorem 2 Let j ≥ 1 be an integer.

• If θ∗ = −∞, then
Gn,j ∼ C∗ lnn a.s.
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• Suppose that (2) holds. Then

Gn,j ∼ C∗ lnn a.s.

More precisely,
Gn,j ≥ C∗ lnn +O(ln lnn) a.s., (6)

and (6) is an equality if (1) holds.

A sufficient condition to guarantee that −∞ < θ∗ < 0 and ϕ(θ∗) = 0 is :

θ > −∞ and lim
θ↓θ

↑ L(θ) = ∞.

Indeed, suppose this condition fulfilled. Imagine that for all θ < 0, ϕ(θ) > 0. Let θ0 ∈ (θ, 0).
As θ 7→ ln L(θ)/θ is decreasing (its derivative is −θ−2ϕ(θ) < 0), we have for all θ < θ0 :

ln L(θ) ≤ θ
ln L(θ0)

θ0
≤ θ

ln L(θ0)

θ0
,

which contradicts limθ→θ L(θ) = ∞.
We shall also show the following proposition.

Proposition 2 Suppose that (2) holds. Let α ∈ (0, 1). Then

Gn,nα ∼ (1 − α)C∗ lnn a.s.

Moreover,
Gn,nα ≥ (1 − α)C∗ lnn +O(ln lnn) a.s., (7)

and (7) is an equality if (1) holds.

We now conclude this section by discussing an illustrative example. Consider the case
ρ = (U, 1 − U, 0, 0, . . . ), where U is uniformly distributed on [0, 1]. Then L(θ) = 2/(θ + 1),
so θ = −1 and (1) holds. The discussions below the theorems yield : θ∗ < ∞ and (2) hold.
Hence, all our results may be applied. Easy calculations yield ϕ(θ) = ln 2−ln(θ+1)+θ/(θ+1)
and ⌈θ∗⌉ = 4, so that there is a phase transition. We can show that C2 = 2/ ln(3/2) ≈
4, 93260..., C3 = 3/ ln 2 ≈ 4, 32808... and that C∗ > C∗ are the solutions of the equation

ln

(

2

c

)

+
c− 1

c
= 0,

i.e. C∗ ≈ 4, 31107... and C∗ ≈ 0, 37336...
As ρ is supported by two integers, our model may be interpreted in terms of random

split trees; the procedure described in the introduction yields a random tree where all balls
are stored at leaves. We denote by Tn,j the tree obtained when n balls have been thrown
and when the boxes have a rupture threshold of j. We now define another random split
tree T̃n,j also related to our model. We imagine that each box has a rupture threshold of j,
but when a ball falls into some box i already containing j − 1 balls, it remains in that box
and the j − 1 other balls are shared out amongst the two children of i independently and
with probability (1/2, 1/2). No other ball is then allowed to be stored at the box i : when a
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ball falls into i, it is placed into one of the two children of i with probability (1/2, 1/2), and
one has to consider whether the ball stays at that box or not. We denote by T̃n,j the tree
obtained when n balls have been thrown. Note that each internal node of T̃n,j has exactly
one ball, whereas its leaves have less than j balls. We see that the height H̃n,j of the tree
T̃n,j is less than or equal to the height Hn,j of the tree Tn,j.

It is remarkable that T̃n,2 has the law of the random binary search tree. Robson [27] was
the first to be interested in the height of the random binary search tree. In [25], Pittel studied
its height and its saturation level. Devroye proved in [11, 12] that the saturation level is
asymptotically equivalent to C∗ lnn in probability as in our model, but that the height H̃n,2

is equivalent to C∗ lnn in probability, so that H̃n,2 is not equivalent to Hn,2. Regarding the
random binary search tree as a random split tree, he proved in [14] that all the heights H̃n,j

(regardless of the value of j) of the random binary search tree are asymptotically equivalent
to C∗ lnn in probability. In particular, there is no phase transition, contrary to our case.
There is of course no contradiction, as the random binary search tree does not correspond
to a model treated in this work. Indeed, in terms of random split trees, internal nodes of
the binary search tree retain exactly one ball whereas all the balls are stored at leaves in our
case.

3 Preliminaries

3.1 Some results on branching random walks

In this section, we recall some results on branching random walks that will be used in the
proofs.

We begin by stating a key result obtained by Biggins in [7]. For every θ > θ, we introduce

W (k)(θ) := L(θ)−k
〈

Z(k), e−θ·
〉

= L(θ)−k
∑

i:|i|=k

pθ
i .

For every k ∈ Z+ ∪ {∞}, we denote by Fk the σ-algebra generated by (pi, |i| ≤ k).

Lemma 1 For every θ > θ, (W (k)(θ), k ∈ Z+) is a martingale with respect to the filtration
(Fk)k∈Z+

. Moreover, if θ ∈ (θ∗, θ
∗), it is bounded in Lγ(P) for some γ > 1 and therefore

uniformly integrable, and its terminal value

W (θ) := lim
k→∞

W (k)(θ)

is positive a.s.

Applying Corollary 4 in [7], we can obtain a precise estimate of the number of boxes at
generation k with size of order exp(k L′(θ)/L(θ)). Specifically

Lemma 2 For all real numbers a and b such that a < b and for all θ ∈ (θ∗, θ
∗), we have

with probability one that

lim
k→∞

√
ke−kϕ(θ)#

{

i ∈ N
k : exp (−b+ kL′(θ)/L(θ)) ≤ pi ≤ exp (−a + kL′(θ)/L(θ))

}

=
1√
2π

eθb − eθa

θ

(

L′′(θ)

L(θ)
−
(

L′(θ)

L(θ)

)2
)−1/2

W (θ).
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We next turn our interest to the asymptotic behaviours of extreme sizes of boxes at
generation k :

p(k) := inf {pi : pi > 0, |i| = k} and p(k) := sup {pi : |i| = k} .

We have the general following results :

Lemma 3 If θ∗ <∞, then

lim
k→∞

(− ln p(k) − k/C∗) = ∞ and lim
k→∞

− ln p(k)

k
=

1

C∗
a.s.

Likewise, if (2) holds, then

lim
k→∞

(

ln p(k) + k/C∗

)

= ∞ and lim
k→∞

−
ln p(k)

k
=

1

C∗
a.s.

To have precise estimates of the behaviours of the heights and of the saturation levels, we
shall sometimes need sharper results of the asymptotics of p(k) and p(k). The following
result, proved by Hu and Shi in [21], will be very useful.

Lemma 4 We assume that (1) holds.

• If θ∗ <∞, then

lim sup
k→∞

− ln p(k) − k/C∗

ln k
=

3

2θ∗
a.s.

• If (2) holds, then

lim sup
k→∞

ln p(k) + k/C∗

ln k
= − 3

2θ∗
a.s.

Addario-Berry and Reed in [2] also studied the minima in branching random walks, but they
require a stronger condition than (1). Their assumption is however fulfilled for random split
trees.

3.2 Poissonization

Let us present the methods used in the proofs. We have to consider the number of balls
belonging to each box at each generation. Now, conditionally on Fk, when n balls have been
thrown, the number of balls in the box i, |i| = k, follows a binomial law of parameter npi.
Furthermore, these random variables are not independent. A classical idea to circumvent
those difficulties (see for instance Gnedin et al. in [17] or Holst in [20]) is to consider a
randomized version of the total number of balls : instead of throwing initially n balls, one
throws Pn balls, where Pn is a Poisson variable with parameter n which is independent of
(ρ(i), i ∈ U).

More precisely, we suppose we are given a standard Poisson process (Px)x≥0 independent
of F∞. For every individual i ∈ U and for every x ∈ (0,∞), we denote by C(i; x) the number
of balls at i when the first Px balls have been thrown. For all x, y ∈ (0,∞) and k ∈ Z+, we
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denote by Nx,y(k) the number of boxes at generation k containing at least y balls when the
first Px balls have been thrown :

Nx,y(k) := #{i ∈ N
k : C(i; x) ≥ y}.

Conditionally on Fk, the random variables (C(i;n))|i|=k are independent Poisson variables
with parameters npi. That is why in our proofs, we shall first focus on Nn,j(k). We shall
then show that Nn,j(k) is close to the number Nn,j(k) of boxes at generation k containing
at least j balls when exactly n balls have been thrown. Similarly, we denote by Mx,y(k) the
number of boxes at generation k containing less than y balls when the first Px balls have
been thrown :

Mx,y(k) := #{i ∈ N
k : C(i; x) < y}

and by Mn,j the number of boxes at generation k containing less than j balls when n balls
have been thrown.

We now prove two estimates using the technique of Poissonization that will then be used
in the sequel.

Lemma 5 Let p ∈ (0,∞). There exist two finite constants c(p) and d(p) such that

sup
j≥p
j∈N

sup
x>0

P (Px ≥ j) jpx−p ≤ c(p), (8)

and
sup
j∈N

sup
x>0

P (Px < j) j−pxp ≤ d(p). (9)

Proof : We begin by showing (8). Let j ≥ p be an integer. Let x > 0. By Markov’s
inequality,

P (Px ≥ j) = P (Pp
x ≥ jp) ≤ j−p

E [Pp
x1Px≥j ] .

Therefore we only have to bound from above

x−p
E [Pp

x1Px≥j] = x−p
∞
∑

k=j

kpe−xx
k

k!
.

As Γ(k − p + 1)kp/k! → 1 as k tends to infinity, there exists a finite constant c(p) ≥ 1 such
that for all k > p− 1,

kp

k!
≤ c(p)

Γ(k − p+ 1)
.

As j ≥ p > p− 1, we thus have

x−p

∞
∑

k=j

kpe−xx
k

k!
≤ c(p)e−x

∞
∑

k=j

xk−p

Γ(k − p+ 1)
= c(p)e−x

∞
∑

k=0

xk+u

Γ(k + u+ 1)
,

where u := j − p ≥ 0. Applying the formulae 6.5.1, 6.5.4 and 6.5.29 in [1], we get that

∞
∑

k=0

xk+u

Γ(k + u+ 1)
≤ ex,
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which proves (8).
To show (9), we write by Markov’s inequality :

P(Px < j) = P
(

(Px + 1)−p ≥ j−p
)

≤ jp
E
[

(Px + 1)−p] = jp
∞
∑

k=0

(k + 1)−pe−xx
k

k!
.

As Γ(k+ p+1)(k+1)−p/k! → 1 as k tends to infinity, there exists a finite constant d(p) ≥ 1
such that for all k ∈ Z+, Γ(k + p+ 1)(k + 1)−p/k! ≤ d(p). We thus have

P(Px < j) ≤ d(p)jpx−pe−x
∞
∑

k=0

xk+p

Γ(k + p+ 1)
.

We conclude as before. �

Remark 2 We stress that in (8), the integer j cannot be less than p. This restriction lies in
the heart of the existence of the phase transition in the asymptotics of Hn,j (see Proposition 3
below, and more precisely Lemma 6). On the other hand, there is no restriction in (9); no
phase transition appears in the asymptotics of Gn,j.

4 Study of the heights

In this section, we prove Theorem 1 and Proposition 1. We are first interested in the upper
bound. We shall then focus on the lower bound. We stress that the phase transition is
glimpsed at the beginning of the study of the upper bound (see Remark 3 below). It is
however proved in the paragraph dealing with the lower bound.

4.1 Upper bound

Equation (8) will enable us to have a uniform upper bound of Nn,j(k) independent of the
sizes of the boxes that will eventually lead to the inequalities (3) and (4).

Proposition 3 Let j ≥ 1 be an integer and α ∈ [0, 1) such that (j, α) 6= (1, 0). Then

lim sup
n→∞

Hn,jnα − (1 − α) θ
− lnL(θ)

lnn

ln lnn
≤ 1

− ln L(θ)
a.s.

for every θ > 1 if α > 0, and for every θ ∈ (1, j] if α = 0.

Remark 3 Suppose that α = 0. We deduce from Proposition 3 that :

Hn,j ≤ min
θ∈(1.j]

h(θ) lnn +O(ln lnn) a.s.,

where h is the function θ 7→ −θ/ ln L(θ). Now, h is derivable and h′(θ) = −ϕ(θ) ln−2 L(θ),
so h is decreasing on (1, θ∗] and increasing on [θ∗,∞). The minimum of h is therefore

• −j/ ln L(j) if j < θ∗,

11



• −θ∗/ ln L(θ∗) = C∗ if j ≥ θ∗.

The phase transition is shown. It will be proved in the study of the lower bound.

Recall that Hn,jnα ≤ k if and only if at genetation k, every box contains less than jnα

balls when n balls have been thrown. Because we want to show that Hn,jnα is bounded

from above by
(

(1 − α) θ
− lnL(θ)

+ ε
)

ln(n), we take k ≈
(

(1 − α) θ
− lnL(θ)

+ ε
)

ln(n). In other

words, one initially throws n ≈ exp
(

k
(

1
1−α

− lnL(θ)
θ

− ε
))

balls and we show that every box

of the k-th generation contains less than jnα balls.
Let u and u′ be two real numbers such that

u >
1

(1 − α)θ
and u < u′ <

1

α

(

u− 1

θ

)

,

where for α = 0, the second condition reduces to u′ > u. Define for every k ≥ 1

xk := k−u exp

(

k
1

1 − α

− ln L(θ)

θ

)

and φk := k−u′

exp

(

k
1

1 − α

− ln L(θ)

θ

)

.

Informally, xk corresponds to the number of balls thrown when we consider boxes at gener-

ation k. Note that xk ≈ exp
(

k
(

1
1−α

− ln L(θ)
θ

− ε
))

.

As mentionned in the preliminaries, the argument relies on Poissonization. We are first
interested in Nx,y(k) and we shall see how to depoissonize.

Lemma 6 For almost all ω, there exists k0(ω) such that

Nxk,jφα
k
(k) = 0, for all k ≥ k0(ω).

Proof : Let x > 0 and y ≥ θ. We calculate E [Nx,y(k)|Fk]. We write

Nx,y(k) =
∑

i:|i|=k

1C(i;x)≥y =
∑

i:|i|=k

1C(i;x)≥⌈y⌉.

Conditionally on Fk, (C(i; x))|i|=k are Poisson variables with parameters xpi, so

E [Nx,y(k)|Fk] =
∑

i:|i|=k

P(Pxpi
≥ ⌈y⌉).

As ⌈y⌉ ≥ θ, (8) ensures that

E [Nx,y(k)|Fk] ≤
∑

i:|i|=k

c(θ)⌈y⌉−θ(xpi)
θ

(see Remark 2). Now, as y ≥ θ,

⌈y⌉ ≥ y − 1

y
y ≥ θ − 1

θ
y.

12



In the notations of Lemma 1, we have :

E [Nx,y(k)|Fk] ≤ c′(θ)y−θxθ L(θ)kW (k)(θ),

where c′(θ) := c(θ)(1 − 1/θ)−θ. We finally get

E [Nx,y(k)] ≤ c′(θ)y−θxθ L(θ)k.

Taking x = xk and y = jφα
k , we get for all k sufficiently large so that jφα

k ≥ θ (note that if
α = 0, then for all k, jφα

k ≥ θ) :

E
[

Nxk,jφα
k
(k)
]

≤ c′(θ)j−θkθ(u′α−u).

Now θ(u′α− u) < −1. As a consequence

E

[

∑

k∈N

1Nxk,jφα
k

(k)≥1

]

≤ E

[

∑

k∈N

Nxk,jφα
k
(k)

]

<∞.

In particular, there is an a.s. finite number of integers k such that Nxk,jφα
k
(k) ≥ 1. �

We now show how to have information on Nn,jnα(k) itself.

Proof of Proposition 3 : Let Ek denote the event {Pxk
≤ φk+1}. Because u′ > u, φk+1/xk

tends to 0 as k tends to infinity, so there exists an integer k1 such that for all k ≥ k1,
φk+1 ≤ xk/2. Consequently,

P (Ek) ≤ P (Pxk
≤ xk/2) = P (Pxk

− xk ≤ −xk/2) ≤ P (|Pxk
− xk| ≥ xk/2) .

The variance of the Poisson variable Pxk
being xk, we get by Chebichev’s inequality: P (Ek) ≤

4x−1
k for all k ≥ k1. As

∑

k∈N
x−1

k <∞, the Borel-Cantelli lemma ensures that for almost all
ω, there exists k2(ω) such that Pxk

> ⌊φk+1⌋ for all k ≥ k2(ω).
Applying Lemma 6, we deduce that, if we define the event Ω0 by

Ω0 :=
{

ω : there exists k3(ω) such that N⌊φk+1⌋,jφ
α
k
(k) = 0 for all k ≥ k3(ω)

}

,

then P(Ω0) = 1. Notice that there exists an integer k4 such that for all k ≥ k4,

k−u′ ≥ exp

(

−k 1

2(1 − α)

− ln L(θ)

θ

)

.

There exists a rank k5 from which the sequence (φk)k≥k5
is increasing. Furthermore, that

sequence tends to infinity. Let ω ∈ Ω0. Let n be an integer greater than φk5
large enough

so that the unique k ≥ k5 satisfying φk ≤ n < φk+1 is greater than k3(ω) and k4. Because
N⌊φk+1⌋,jφα

k
(k) = 0 and n ≤ ⌊φk+1⌋, Nn,jφα

k
(k) = 0. Now, jnα ≥ jφα

k , so Nn,jnα(k) = 0 and
Hn,jnα ≤ k. Moreover, as n ≥ φk,

k ≤ (1 − α)
θ

− ln L(θ)
lnn + u′(1 − α)

θ

− ln L(θ)
ln k.
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Further, as k ≥ k4, we have :

exp

(

k
1

2(1 − α)

− ln L(θ)

θ

)

≤ k−u′

exp

(

k
1

1 − α

− ln L(θ)

θ

)

≤ n,

so k ≤ 2(1 − α) θ
− ln L(θ)

lnn. Therefore

Hn,jnα ≤ k ≤ (1 − α)
θ

− ln L(θ)
lnn+ u′(1 − α)

θ

− ln L(θ)
ln

(

2(1 − α)
θ

− ln L(θ)
lnn

)

.

We conclude that

lim sup
n→∞

Hn,jnα − (1 − α) θ
− ln L(θ)

lnn

ln lnn
≤ u′(1 − α)

θ

− ln L(θ)
a.s.

The fact that u′ can be chosen arbitrarily close to 1
(1−α)θ

completes the proof. �

4.2 Lower bound

We now study the lower bound. Combined with the upper bound supplied by Proposition 3,
Theorem 1 and Proposition 1 will be proved.

4.2.1 The case j ≥ θ∗ or α ∈ (0, 1) and θ∗ <∞
In this section, we prove that Hn,j ≥ C∗ lnn + O(ln lnn) a.s. if j ≥ θ∗ and (1) holds. We
also prove that Hn,nα ≥ (1 − α)C∗ lnn + O(ln lnn) a.s. if θ∗ < ∞ and (1) holds. We shall
see that the largest box plays a key role.

Proposition 4 We suppose that θ∗ < ∞. Let j ≥ 1 be an integer and α ∈ [0, 1) such that
(j, α) 6= (1, 0). Under the assumption (1), we have :

lim inf
n→∞

Hn,jnα − (1 − α)C∗ lnn

ln lnn
≥ 3

2 lnL(θ∗)
a.s.

By definition, Hn,jnα > k if and only if at generation k, there exists a box containing
at least jnα balls when n balls have been thrown. We shall see that in our setting, it
suffices to consider the largest box. As we intend to show that Hn,jnα is bounded from
below by ((1 − α)C∗ − ε) lnn, we take k ≈ ((1 − α)C∗ − ε) lnn, i.e. one initially throws

n ≈ exp
(

k
(

1
(1−α)C∗

+ ε
))

balls and we show that the largest box of the k-th generation

contains at least jnα balls.
Let γ, γ′ and γ′′ be three real numbers such that

γ >
3

2θ∗
, γ′ >

γ

1 − α
and γ′ < γ′′ <

γ′ − γ

α
.

Note that if α = 0, the third condition is simply γ′′ > γ′. Define for all k ∈ Z+

xk := kγ′

exp

(

k
1

(1 − α)C∗

)

and φk := kγ′′

exp

(

k
1

(1 − α)C∗

)

.

We first show that a.s, Nxk,jφα
k
(k) ≥ 1 for all integers k sufficiently large. To do so, we simply

consider the largest box.
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Lemma 7 For almost all ω, there exists k0(ω) such that

Nxk,jφα
k
(k) ≥ 1, for all k ≥ k0(ω).

Proof : For every generation k ∈ N, we consider an imaginary box b(k) contained in the
largest box b(k) of size p(k) such that a ball fallen in b(k) is thrown in b(k) with probability

p(k)

p(k)
∧ 1, where p(k) := k−γe−k/C∗

.

Informally, the box b(k) has size p(k)∧ p(k). We denote by Ak the event {p(k) < p(k)} and
by Bk the event defined by

Bk := {the box b(k) contains less than jφα
k balls when the first Pxk

have been thrown}.
Conditionally on Ak, the box b(k) has size p(k) so the number of balls contained in b(k)
when Pxk

balls have been thrown is a Poisson variable with parameter xkp(k). As a result

P(Ak ∩ Bk) ≤ P(Bk|Ak) = P(Pxkp(k) < jφα
k ).

Applying (9), we get :
P(Ak ∩ Bk) ≤ d(p)jpk−2,

where p := 2/(γ′ − γ − αγ′′) > 0, and hence
∑

P(Ak ∩ Bk) < ∞. By the Borel-Cantelli
lemma, we deduce that a.s., for all k sufficiently large, p(k) ≥ p(k) or the box b(k), which is
contained in the box b(k), has at least jφα

k balls when the first Pxk
balls have been thrown.

Now, by Lemma 4, we know that a.s., for all integers k sufficiently large, p(k) < p(k). Lemma
7 is therefore proved. �

We now deduce from Lemma 7 the lower bound of Hn,jnα.

Proof of Proposition 4 : The same calculations performed at the beginning of the proof
of Proposition 3 show that for almost all ω, there exists k1(ω) such that Pxk

< ⌈φk−1⌉ for
all k ≥ k1(ω). Applying Lemma 7, we deduce that, if we define the event Ω0 by

Ω0 :=
{

ω : there exists k2(ω) such that N⌈φk−1⌉,jφ
α
k
(k) ≥ 1 for all k ≥ k2(ω)

}

,

then P(Ω0) = 1. Let ω ∈ Ω0. The sequence (φk) is increasing and tends to infinity. Let n
be an integer large enough so that the unique integer k satisfying φk−1 < n ≤ φk is greater
than k2(ω). Because N⌈φk−1⌉,jφ

α
k
(k) ≥ 1 and ⌈φk−1⌉ ≤ n, Nn,jφα

k
(k) ≥ 1. Now, jnα ≤ jφα

k , so
Nn,jnα(k) ≥ 1 and Hn,jnα > k. Further, as n ≤ φk,

k ≥ (1 − α)C∗ lnn− γ′′(1 − α)C∗ ln k.

As exp
(

(k − 1) 1
(1−α)C∗

)

≤ φk−1 ≤ n, we have : k ≤ (1 − α)C∗ lnn+ 1. Thus

Hn,jnα > k ≥ (1 − α)C∗ lnn− γ′′(1 − α)C∗ ln ((1 − α)C∗ lnn+ 1)

and

lim inf
n→∞

Hn,jnα − (1 − α)C∗ lnn

ln lnn
≥ −γ′′(1 − α)C∗ a.s.

The fact that γ′′ can be chosen arbitrarily close to 3
2(1−α)θ∗

completes the proof. �
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4.2.2 The case 2 ≤ j < θ∗ and α = 0

We now prove that Hn,j ≥ Cj lnn + O(ln lnn) a.s. if j < θ∗. We shall notice that contrary
to the case j ≥ θ∗, the number of boxes matters more than their sizes.

Proposition 5 Let j < θ∗ be an integer greater than 1. Then

lim inf
n→∞

Hn,j − j
− ln L(j)

lnn

ln lnn
≥ 1

2 lnL(j)
a.s.

The main difference with the case j ≥ θ∗ is that we cannot consider the largest box any more.
If θ∗ < ∞, one can even show by performing the usual calculations that with probability
one, for all k ≥ C∗ lnn + o(lnn), the largest box of the k-th generation contains no ball
when n balls have been initially thrown. We shall rather focus on some other boxes which
are smaller but sufficiently numerous so that it is very unlikely that all of them contain less
than j balls when n balls have been thrown. As we want to prove that Hn,j is bounded

from below by
(

j
− ln L(j)

− ε
)

lnn, we consider the situation at the k-th generation when one

initially throws approximatively exp (k (− ln L(j)/j + ε)) balls.
The boxes that will play a key role are those appearing in Lemma 2 (recall that j < θ∗) :

with probability one,

lim
k→∞

√
ke−kϕ(j)#

{

i ∈ N
k : s(k) ≤ pi ≤ 2s(k)

}

= Q(j),

where

s(k) := exp

(

−k−L′(j)

L(j)

)

and

Q(j) :=
1√
2π

1 − 2−j

j

(

L′′(j)

L(j)
−
(

L′(j)

L(j)

)2
)−1/2

W (j).

Notice that, by Lemma 1, as j < θ∗, Q(j) > 0 a.s. Define

ν(k) :=
⌈

Q(j)k−1/2ekϕ(j)/2
⌉

.

Then (recall that ϕ(j) > 0), for almost all ω, there exists k0(ω) such that

#
{

i ∈ N
k : pi ≥ s(k)

}

≥ ν(k) ≥ 1, for all k ≥ k0(ω). (10)

We can now prove the following result.

Lemma 8 Define for all k ∈ Z+

xk := ku exp

(

k
− ln L(j)

j

)

, where u >
1

2j
.

Then for almost all ω, there exists k1(ω) such that

Nxk,j(k) ≥ 1, for all k ≥ k1(ω).
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Proof : As N
k is countable, we can order the boxes of the k-th generation in the decreasing

order. Denote by Gk the family of boxes having a size at least s(k). We create ν(k) new
boxes : if #Gk ≥ ν(k), consider the first ν(k) boxes belonging to the family Gk, denoted by
b1(k), . . . , bν(k)(k). For all l ≤ ν(k), we place an imaginary box bl(k) inside the box bl(k)
such that a ball fallen in bl(k) is thrown in bl(k) with probability s(k)/sl(k), where sl(k) is
the size of bl(k). In particular, every imaginary box has size s(k). If #Gk < ν(k), we denote
by b1(k), . . . , bν(k)(k) the first ν(k) boxes. Introduce the events Ak := {#Gk ≥ ν(k)} and

Bk := {∀l ≤ ν(k), bl(k) contains less than j balls when the first Pxk
have been thrown} .

Conditionally on F∞ and Ak, the boxes bl(k) have size s(k) so the numbers of balls contained
in bl(k), l ≤ ν(k), when Pxk

balls have been thrown are independent Poisson variables with
parameters xks(k). Therefore

P(Ak ∩ Bk|F∞) ≤ P(Pxks(k) < j)ν(k).

Thus

ln P(Ak ∩Bk|F∞) ≤ Q(j)

2
k−1/2ekϕ(j) ln P(Pxks(k) < j).

It can be easily seen that xks(k) tends to 0, and that, as a result,

ln P(Pxks(k) < j) ∼ −xj
ks(k)

j/j!.

Thus there exists a constant c > 0 such that for all k ∈ Z+,

ln P(Pxks(k) < j) ≤ −2cxj
ks(k)

j .

Finally, we get

P(Ak ∩ Bk|F∞) ≤ exp
(

−cQ(j)k−1/2ekϕ(k)xj
ks(k)

j
)

= exp
(

−cQ(j)kju−1/2
)

.

As u > 1
2j

and Q(j) > 0 a.s., we get E [
∑

1Ak∩Bk
|F∞] < ∞ a.s., so

∑

1Ak∩Bk
< ∞ a.s.

Combined with (10), this proves that a.s., for all integers k sufficiently large, there exists an
imaginary box containing at least j balls when Pxk

have been thrown. As every imaginary
box is contained in a real box, Lemma 8 is proved. �

We now deduce from Lemma 8 the lower bound of Hn,j.

Proof of Proposition 5 : Let u and u′ be two real numbers such that 1
2j
< u < u′. Define

xk := ku exp (−k ln L(j)/j) and φk := ku′

exp (−k ln L(j)/j). One can show that for almost
all ω, there exists k2(ω) such that Pxk

< ⌈φk−1⌉ for all k ≥ k2(ω). Applying Lemma 8, we
deduce that if we define the event Ω0 by

Ω0 :=
{

ω : there exists k3(ω) such that N⌈φk−1⌉,j(k) ≥ 1 for all k ≥ k3(ω)
}

,

then P(Ω0) = 1. The sequence (φk) is increasing and tends to infinity. Let ω ∈ Ω0. Let n
be an integer large enough so that the unique integer k satisfying φk−1 < n ≤ φk is greater
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than k3(ω). Because N⌈φk−1⌉,j(k) ≥ 1 and n ≥ ⌈φk−1⌉, Nn,j(k) ≥ 1, so Hn,j > k. Moreover,
as n ≤ φk,

k ≥ j

− ln L(j)
lnn− u′

j

− ln L(j)
ln k.

As n ≥ φk−1 ≥ exp (−(k − 1) lnL(j)/j), we have : k ≤ j
− ln L(j)

lnn+ 1. Therefore

Hn,j > k ≥ j

− ln L(j)
lnn− u′

j

− ln L(j)
ln

(

j

− ln L(j)
lnn+ 1

)

.

We conclude that

lim inf
n→∞

Hn,j − j
− lnL(j)

lnn

ln ln(n)
≥ −u′ j

− ln L(j)
a.s.

The fact that u′ can be chosen arbitrarily close to 1
2j

completes the proof. �

Remark 4 Theorem 1 states that Hn,j ∼ Cj lnn a.s. This asymptotic behaviour was proved
in the case θ∗ = ∞ (we even showed that Hn,j = Cj lnn + O(ln lnn) a.s.). If θ∗ < ∞, then
− ln p(k)/k tends to 1/C∗ a.s. (see Lemma 3). We deduce from an argument similar to that
in Proposition 4 that Hn,j ∼ Cj lnn a.s. Finally, Theorem 1 and Proposition 1 have been
proved.

5 Study of the saturation levels

In this section, we prove Theorem 2 and Proposition 2. We shall first assume that (2) holds.
We shall then study the case θ∗ = −∞ to complete the proof of Theorem 2.

5.1 The case −∞ < θ∗ < 0 and ϕ(θ∗) = 0

Throughout this section, we suppose that (2) holds. In particular, C∗ = −θ∗/ ln L(θ∗) =
−L(θ∗)/L′(θ∗). We are first interested in the lower bound. We shall then focus on the upper
bound. We are inspired by the techniques developed in the previous section.

5.1.1 Lower bound

We show the inequalities (6) and (7) when (2) holds. Equation (9) will be the key tool.

Proposition 6 Suppose that (2) holds. Let j ≥ 1 be an integer and α ∈ [0, 1). Then

lim inf
n→∞

Gn,jnα − (1 − α)C∗ ln(n)

ln ln(n)
≥ − 1

ln L(θ∗)
a.s.

Recall that Gn,jnα > k if and only if at generation k, every box contains at least jnα balls
when n balls have been thrown. Because we want to show that Gn,jnα is bounded from below

by ((1 − α)C∗ − ε) ln(n), we take k ≈ ((1 − α)C∗ − ε) ln(n), i.e. n ≈ exp
(

k
(

1
(1−α)C∗

+ ε
))

.
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Proof : Let u and u′ be two real numbers such that

u > − 1

(1 − α)θ∗
and u < u′ <

1

α

(

u+
1

θ∗

)

,

where the second condition reduces to u′ > u for α = 0. Define for all k ∈ N :

xk := ku exp

(

k
1

(1 − α)C∗

)

and φk := ku′

exp

(

k
1

(1 − α)C∗

)

.

Proceeding as usual, let us prove the following key result : for almost all ω, there exists
k0(ω) such that

Mxk,jφα
k
(k) = 0, for all k ≥ k0(ω). (11)

Let x and y be two real numbers such that y ≥ j and k ∈ N. We calculate E [Mx,y(k)|Fk].
We write

Mx,y(k) =
∑

i:|i|=k

1C(i;x)<y =
∑

i:|i|=k

1C(i;x)<⌈y⌉

Now, conditionally on Fk, (C(i; x))|i|=k are Poisson variables with parameters xpi, so

E [Mx,y(k)|Fk] =
∑

i:|i|=k

P(Pxpi
< ⌈y⌉).

Applying (9), we get

E [Mx,y(k)|Fk] ≤ d(−θ∗)⌈y⌉−θ∗
∑

i:|i|=k

(xpi)
θ∗ .

Now, as y ≥ j,

⌈y⌉ ≤ y + 1

y
y ≤ j + 1

j
y.

In the notations of Lemma 1, we have :

E [Mx,y(k)|Fk] ≤ d′y−θ∗xθ∗ L(θ∗)
kW (k)(θ∗),

where d′ := d(−θ∗)(1 + 1/j)−θ∗. We finally get

E [Mx,y(k)] ≤ d′y−θ∗xθ∗ L(θ∗)
k.

For x = xk and y = jφα
k ≥ j, we obtain for every integer k ∈ N :

E
[

Mxk,jφα
k
(k)
]

≤ d′j−θ∗kθ∗(u−u′α).

Now θ∗(u− u′α) < −1. As a consequence

E





∑

k∈Z+

1Mxk,jφα
k

(k)≥1



 ≤ E





∑

k∈Z+

Mxk,jφα
k
(k)



 <∞.

In particular, there is an a.s. finite number of integers k such that Mxk,jφα
k
(k) ≥ 1, which

proves (11).
Performing the same calculations as at the end of the proof of Proposition 4, one finally

gets :

lim inf
n→∞

Gn,jnα − (1 − α)C∗ lnn

ln lnn
≥ −u′(1 − α)C∗ a.s.

The fact that u′ can be chose arbitrarily close to − 1
(1−α)θ∗

completes the proof. �

19



5.1.2 Upper bound

In this section, we are interested in the upper bound of the saturation levels Gn,j. We prove
that the inequalities (6) and (7) are in fact equalities whenever (1) and (2) hold by studying
the smallest box, regardless of the value of j; there is no phase transition.

Proposition 7 Suppose that (1) and (2) hold. Let j ≥ 1 be an integer and α ∈ (0, 1). Then

lim sup
n→∞

Gn,j − C∗ lnn

ln lnn
≤ 3

2 ln L(θ∗)
+
C∗

j
a.s.

and

lim sup
n→∞

Gn,jnα − (1 − α)C∗ lnn

ln lnn
≤ 3

2 lnL(θ∗)
a.s.

In order to prove both inequalities simultaneously, we may suppose that α ∈ [0, 1), the case
Gn,j corresponding to Gn,jnα with α = 0.

By definition, Gn,jnα ≤ k if and only if at generation k, there exists a box contain-
ing less than jnα balls when n balls have been thrown. We shall see that it suffices to
consider the smallest box. As we intend to show that Gn,jnα is bounded from above by

((1 − α)C∗ + ε) lnn, we take k ≈ ((1 − α)C∗ + ε) lnn, i.e. n ≈ exp
(

k
(

1
(1−α)C∗

− ε
))

.

Proof : Let γ, γ′ and γ′′ be three real numbers such that :

• γ > − 3
2θ∗

, γ′ > γ + 1
j

and γ′′ > γ′ if α = 0,

• γ > − 3
2θ∗

, γ′ > γ
1−α

and γ′ < γ′′ < γ′−γ
α

if α > 0.

Define

xk := k−γ′

exp

(

k
1

(1 − α)C∗

)

and φk := k−γ′′

exp

(

k
1

(1 − α)C∗

)

.

Let us prove the following result : for almost all ω, there exists k0(ω) such that

Mxk,jφα
k
(k) ≥ 1, for all k ≥ k0(ω). (12)

Define p(k) := kγe−k/C∗ . We consider an imaginary box b(k) at generation k such that

1. if 1 ≤ p(k) : every ball thrown is placed in b(k).

2. if p(k) < p(k) < 1, where p(k) is the size of the smallest box b(k) : every ball fallen
in b(k) is also placed in the imaginary box and every other ball is placed in b(k) with
probability (p(k) − p(k))/(1 − p(k)). Hence, the imaginary box has size p(k).

3. if p(k) ≤ p(k) : every ball fallen in the smallest box is placed in the imaginary box
with probability p(k)/p(k), and no other ball is placed in b(k).
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The box b(k) has thus size p(k)∧ 1, and whenever p(k) > p(k), it contains the smallest box.
From Lemma 4, we know that a.s., for all integers k sufficiently large, p(k) > p(k). To prove
Lemma 12, all we have to do is therefore to prove that P(lim supAk) = 0, where the event
Ak is defined by

Ak := {b(k) contains at least jφα
k balls when the first Pxk

balls have been thrown}.

By the Borel-Cantelli lemma, it suffices to show that
∑

P(Ak) < ∞. Let k be an integer
sufficiently large so that p(k) < 1. The imaginary box has then size p(k), so we have :

P(Ak) = P
(

Pxkp(k) ≥ jφα
k

)

We would like to apply (8). To do so, let p := j if α = 0 and p := 2/(γ′ − γ − αγ′′) > 0 if
α > 0. Note that for all integers k sufficiently large, jφα

k ≥ p. Equation (8) then ensures
that :

P(Ak) ≤ c(p)j−pkp(αγ′′+γ−γ′).

As p(αγ′′ + γ − γ′) < −1,
∑

P(Ak) <∞, which proves (12).
Performing the same calculations as at the end of the proof of Proposition 3, one finally

gets :

lim sup
n→∞

Gn,jnα − (1 − α)C∗ lnn

ln lnn
≤ γ′′(1 − α)C∗ a.s.

The fact that γ′′ can be chosen arbitrarily close either to − 3
2θ∗

+ 1
j

if α = 0 or to − 3
2(1−α)θ∗

if α > 0 completes the proof. �

Proposition 2 and a part of Theorem 2 have been proved. We now turn our attention to the
other part of Theorem 2.

5.2 The case θ∗ = −∞
In this section, we prove that if θ∗ = −∞, then Gn,j ∼ C∗ lnn a.s. We begin by showing the
following lemma :

Lemma 9 If θ∗ = −∞, then −θ/ ln L(θ) tends to C∗ as θ tends to −∞.

Proof : The condition θ∗ = −∞ means that ϕ(θ) > 0 for all θ < 0. Let ψ = ln L. Recall
that C∗ = limθ→−∞−1/ψ′(θ). As ψ is convex decreasing, it is known that −ψ(θ)/θ tends to
l ∈ (0,∞] as θ tends to −∞. We distinguish two cases.

Either l is finite, then one can easily show that θ 7→ ψ(θ) + lθ is increasing. As a result,
ψ′ ≥ −l. If l 6= 1/C∗, then ψ′(θ) 9 −l as θ tends to −∞ , so there exists ε > 0 such that

ψ′ ≥ ε− l. Let θ < 0. Then
∫ 0

θ
ψ′ ≥ (ε− l)(−θ), i.e. ψ(θ) + lθ ≤ ψ(0) + εθ. Dividing by −θ

and taking the limit, we get ε ≤ 0, which is absurd. We deduce that l = 1/C∗, which means
that −θ/ ln L(θ) → C∗ as θ tends to −∞.

Or l is infinite. As for all θ < 0, ϕ(θ) > 0, the function θ ∈ (−∞, 0) 7→ θ/ψ(θ) − 1/ψ′(θ)
is increasing. It is also positive. If it does not tend to 0 at −∞, then it is bounded from
below by some ε > 0. Multiplying by −ψ′(θ) > 0, we get : 1 ≥ 1 − θψ′(θ)/ψ(θ) ≥ −εψ′(θ).
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Consequently ψ′(θ) ≥ −1/ε and ψ(0) − ψ(θ) ≥ θ/ε. Dividing by θ < 0, we obtain :
−ψ(θ)/θ ≤ 1/ε − ψ(0)/θ. Taking the limit, we have ∞ ≤ 1/ε, which is absurd. Finally,
θ/ψ(θ) − 1/ψ′(θ) tends to 0 as θ tends to −∞. Now, by definition of C∗, ψ

′(θ) tends to
−1/C∗. As a result, −θ/ψ(θ) tends to C∗ as θ tends to −∞. �

5.2.1 Lower bound

We show that Gn,j ≥ C∗ lnn+ o(lnn) a.s. Equation (9) will be very useful.

Proposition 8 Suppose that θ∗ = −∞. Let j ≥ 1 be an integer. Then

lim inf
n→∞

Gn,j

lnn
≥ C∗ a.s.

Proof : We follow the usual strategy. Let θ < 0 and u > − ln L(θ)/θ. Define for all k ∈ Z+,
xk := eku. Applying (9), we can show that

E[Mxk,j(k)|Fk] ≤ d(−θ)j−θxθ
k L(θ)kW (k)(θ),

so
E[Mxk,j(k)] ≤ d(−θ)j−θ exp {kθ(u+ ln L(θ)/θ)} .

As θ(u + ln L(θ)/θ) < 0, E [
∑Mxk,j(k)] < ∞, so a.s., for all integers k sufficiently large,

Mxk,j(k) = 0. The usual calculations yield :

lim inf
n→∞

Gn,j

lnn
≥ −θ

ln L(θ)
a.s.

Lemma 9 enables us to complete the proof. �

5.2.2 Upper bound

We finally prove that Gn,j ≤ C∗ lnn+ o(lnn) a.s. As θ∗ = −∞, Lemma 3 cannot be applied
(we do not know how the size of the smallest box behaves). Surprisingly, we are inspired by
the proof of Proposition 5.

Proposition 9 Suppose that θ∗ = −∞. Let j ≥ 1 be an integer. Then

lim sup
n→∞

Gn,j

lnn
≤ C∗ a.s.

Proof : We may suppose that j = 1. Let θ < 0. Here, the boxes of the k-th generation that
will play a key role are those having a size approximatively s(k), where

s(k) := exp

(

−k−L′(θ)

L(θ)

)

.

Applying Lemma 2, we have with probability one :

lim
k→∞

√
ke−kϕ(θ)#

{

i ∈ N
k : s(k)/2 ≤ pi ≤ s(k)

}

= Q(θ),
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where

Q(θ) :=
1√
2π

1 − 2θ

−θ

(

L′′(θ)

L(θ)
−
(

L′(θ)

L(θ)

)2
)−1/2

W (θ).

Notice that, by Lemma 1, Q(θ) > 0 a.s. Define

ν(k) :=
⌈

Q(θ)k−1/2ekϕ(θ)/2
⌉

.

Then (recall that ϕ(θ) > 0), for almost all ω, there exists k0(ω) such that

#
{

i ∈ N
k : pi ≤ s(k)

}

≥ ν(k) ≥ 1, for all k ≥ k0(ω). (13)

Let u < −L′(θ)/L(θ). Define for all k ∈ Z+, xk := eku. Let us prove that for almost all
ω, there exists k1(ω) such that

Mxk,1(k) ≥ 1, for all k ≥ k1(ω). (14)

Denote by Gk the family of boxes having a size at most s(k). We define ν(k) new boxes :
if #Gk ≥ ν(k), we create ν(k) imaginary boxes b1(k), . . . , bν(k)(k) of size s(k) contain-
ing the first ν(k) real boxes belonging to the family Gk. If #Gk < ν(k), we denote by
b1(k), . . . , bν(k)(k) the first ν(k) boxes of the k-th generation. Introduce the event Ak :=
{#Gk ≥ ν(k)} and

Bk := {∀l ≤ ν(k), bl(k) contains at least one ball when the first Pxk
have been thrown} .

Conditionally on F∞ and Ak, the boxes bl(k) have size s(k) so the numbers of balls contained
in bl(k), l ≤ ν(k), when Pxk

balls have been thrown are independent Poisson variables with
parameters xks(k). Therefore

P(Ak ∩ Bk|F∞) ≤ P(Pxks(k) ≥ 1)ν(k).

Thus

ln P(Ak ∩ Bk|F∞) ≤ Q(θ)

2
k−1/2ekϕ(θ) ln P(Pxks(k) ≥ 1).

Now P(Pxks(k) ≥ 1) ≤ xks(k), so

P(Ak ∩Bk|F∞) ≤ exp

{(

u+
L′(θ)

L(θ)

)

Q(θ)

2
k1/2ekϕ(θ)

}

.

As u + L′(θ)/L(θ) < 0, ϕ(θ) > 0 and Q(θ) > 0 a.s., we get E [
∑

1Ak∩Bk
|F∞] < ∞ a.s., so

∑

1Ak∩Bk
< ∞ a.s. Combined with (13), this proves that a.s., for all integers k sufficiently

large, there exists an empty imaginary box when Pxk
have been thrown. As every imaginary

box contains a real box, (14) is proved.
Proceeding as usual, we deduce that for all θ < 0,

lim sup
n→∞

Gn,1

lnn
≤ L(θ)

−L′(θ)
a.s.

We get the result by letting θ tend to −∞. �

Finally, Theorem 2 has been proved.
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6 An explanation for the phase transition

In this section, we explain heuristically why a phase transition may occur in the asymptotics
of Hn,j but not in those of Hn,nα, Gn,j and Gn,nα. To do so, we rephrase the setting in terms
of interval-fragmentations. One can easily construct a family (F (k), k ∈ Z+) of random
open subsets of (0, 1) with F (0) = (0, 1), which is nested in the sense that F (k′) ⊆ F (k)
for all k ≤ k′, and such that the set of the lengths of the interval components of F (k) is
{pi : |i| = k} for every integer k. The boxes correspond to the interval components and
the balls to a sequence (Ui)i∈N of independent random variables uniformly distributed on
(0, 1) and independent of the fragmentation F . The height Hn,j corresponds to the least
integer k such that every interval component of F (k) contains less than j elements of the set
{U1, . . . , Un}, and the saturation level Gn,j to the least integer k such that there exists an
interval component of F (k) containing less than j elements of the set {U1, . . . , Un}. Roughly
speaking, the height Hn,j depends crucially on the minimal length mn,j of the intervals

[Ûi, Ûi+j−1] for 1 ≤ i ≤ n− j + 1, where 0 < Û1 < · · · < Ûn < 1 are the ordered statistics of
the family (U1, . . . , Un), whereas the saturation level Gn,j is related to the maximal length

mn,j of the intervals [Ûi, Ûi+j ] for 0 ≤ i ≤ n− j + 1, where Û0 := 0 and Ûn+1 := 1. Indeed,

the height Hn,j is the first time k when no cluster [Ûi, Ûi+j−1], 1 ≤ i ≤ n− j+1, of size j (in
particular the smallest one) is included in an interval component of F (k), and the saturation
level Gn,j is the first time k when there exists a cluster [Ûi, Ûi+j ], 0 ≤ i ≤ n− j + 1, of size
j + 1 (possibly the largest one) containing an interval component of F (k).

It is easy to show from Lemma 3 that if we used equidistributed points {j/(n+ 1) : 1 ≤
j ≤ n} instead of i.i.d. uniform points, then no phase transition would occur. More precisely,
all the heights Hn,j would be equivalent to C∗ lnn a.s. Further, the heights Hn,nα would be
equivalent to (1 − α)C∗ lnn a.s. and the saturation levels Gn,jnα to (1 − α)C∗ lnn a.s.

We first explain why the clusters of size nα behave as if the points Ui, 1 ≤ i ≤ n, were
equidistributed on (0, 1). It will follow that no phase transition occurs in the asymptotics
of Hn,nα and Gn,nα. To do so, let us first prove that mn,nα ≥ n−1+α+o(1) a.s. Let ε > 0. We
have :

P(mn,nα ≤ n−1+α−2ε) ≤ nP(Ûnα − Û1 ≤ n−1+α−2ε).

Let (ei)i∈N be a sequence of independent exponential variables with parameters 1. Define
γk :=

∑

1≤i≤k ei, for all k ≥ 1. Then we have :

(Û1, . . . , Ûn)
(d)
= (γ1/γn+1, . . . , γn/γn+1), (15)

so

P(Ûnα − Û1 ≤ n−1+α−2ε) = P

(

γnα − γ1

γn+1
≤ n−1+α−2ε

)

≤ P
(

γnα − γ1 < n1+εn−1+α−2ε
)

+ P
(

γn+1 ≥ n1+ε
)

= P (Pnα−ε ≥ nα) + P (Pn1+ε ≤ n+ 1)

since the sequence (γi)i∈N has the same law as the ordered sequence of points of a standard
Poisson process. Applying Lemma 5 with p = 3/ε, we have for every integer n sufficiently
large :

P (Pnα−ε ≥ nα) + P (Pn1+ε ≤ n+ 1) ≤ (c(p) + 2pd(p))n−3.
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We deduce that that for every integer n sufficiently large, we have :

P(mn,nα ≤ n−1+α−2ε) ≤ (c(p) + 2pd(p))n−2.

Applying the Borel-Cantelli lemma and letting ε tend to 0, we easily conclude that mn,nα ≥
n−1+α+o(1) a.s. Similar calculations yield : mn,nα ≤ n−1+α+o(1) a.s. We conclude that the
clusters of size nα essentially behave as if the points Ui, 1 ≤ i ≤ n, were equidistributed on
(0, 1), which explains why no phase transition occur in the asymptotics of Hn,nα and Gn,nα.

On the contrary, the clusters of size j behave very differently from the equidistribution
case. For instance, thanks to the identification (15), we may apply well-known results on
extreme values (see e.g. [26]). One finds that mn,j ≈ n−j/(j−1), so that mn,j is much smaller
than j/n, even at a logarithmic scale. Furthermore, the larger the integer j is, the closer these
two quantities are, so that Hn,j may eventually be equivalent to C∗ lnn a.s. if j is sufficiently
large. On the other hand, if the integer j is too small, then Hn,j may be greater than
(1+ε)C∗ lnn+o(ln n) a.s. for some ε > 0 : one has to wait for a long time before the smallest
clusters of size j are no longer included in any interval component of the fragmentation; in
that case, there is a phase transition.

Concerning the saturation level Gn,j, one gets mn,j ≈ lnn/n, which differs from the
equidistribution case only up to a logarithmic factor, and the impact of the latter is asymp-
totically negligible. It explains why no phase transition occurs in the asymptotics of Gn,j.

Acknowledgements. I would like to express my gratitude to my thesis director Jean
Bertoin who suggested this subject to me. I sincerely thank him for his invaluable advice
and for his careful reading.

References

[1] M. Abramowitz and I. A. Stegun, editors. Handbook of Mathematical Functions with
Formulas, Graphs, and Mathematical Tables. Dover Publications, 1964.

[2] L. Addario-Berry and B.A. Reed. Minima in branching random walks. To appear in
Ann. Probab.

[3] J. Bertoin. The asymptotic behavior of fragmentation processes. J. Euro. Math. Soc.,
5:395–416, 2003.

[4] J. Bertoin. Random Fragmentation and Coagulation Processes, volume 102. Cambridge
Studies in Advanced Mathematics, 2006.

[5] J. Bertoin. Asymptotic regimes for the occupancy scheme of multiplicative cascades.
Stochastic Process. Appl., 118(9):1586–1605, 2008.

[6] J. Bertoin and A. Rouault. Discretization methods for homogeneous fragmentations. J.
London Math. Soc., 72:91–109, 2005.

[7] J. D. Biggins. Uniform convergence of martingales in the branching random walk. Ann.
Probab., 20(1):137–151, 1992.

25



[8] S. Boucheron and D. Gardy. An urn model from learning theory. Random Structures
Algorithms, 10(1-2):43–67, 1997.

[9] J. Bunge and M. Fitzpatrick. Estimating the number of species : a review. J. Am. Stat.
Assoc., 88:364–373, 1993.

[10] B. Chauvin, T. Klein, J.-F. Marckert, and A. Rouault. Martingales and profile of binary
search trees. Electron. J. Probab., 10(12):420–435, 2005.

[11] L. Devroye. A note on the height of binary search trees. J. Assoc. Comput. Mach.,
33(3):489–498, 1986.

[12] L. Devroye. Branching processes in the analysis of the heights of trees. Acta Inform.,
24(3):277–298, 1987.

[13] L. Devroye. Branching processes and their applications in the analysis of tree struc-
tures and tree algorithms. Probabilistic methods for algorithmic discrete mathematics,
Springer:249–314, 1998.

[14] L. Devroye. Universal limit laws for depths in random trees. SIAM J. Comput.,
28(2):409–432, 1999.

[15] M. Drmota. Stochastic analysis of tree-like data structures. Proc. R. Soc. Lond. Ser. A
Math. Phys. Eng. Sci., 460(2041):271–307, 2004.

[16] D. Gardy. Occupancy urn models in the analysis of algorithms. J. Statist. Plann.
Inference, 101(1-2):95–105, 2002.

[17] A. Gnedin, B. Hansen, and J. Pitman. Notes on the occupancy problem with infinitely
many boxes: general asymptotics and power laws. Probab. Surv., 4:146–171, 2007.

[18] B. Haas, G. Miermont, J. Pitman, and M. Winkel. Continuum tree asymptotics
of discrete fragmentations and applications to phylogenetic models. Ann. Probab.,
36(5):1790–1837, 2008.

[19] F. He and K. J. Gaston. Estimating species abundance from occurrence. The American
Naturalist, 156(5):553–559, 2000.

[20] L. Holst. On birthday, collectors’, occupancy and other classical urn problems. Internat.
Statist. Rev., 54(1):15–27, 1986.

[21] Y. Hu and Z. Shi. Minimal position and critical martingale convergence in branching
random walks, and directed polymers on disordered trees. To appear in Ann. Probab.

[22] N. L. Johnson and S. Kotz. Urn Models and Their Application. An Approach to Modern
Discrete Probability Theory. John Wiley & Sons, New York-London-Sydney, 1977.

[23] V. F. Kolchin, B. A. Sevast’yanov, and V. P. Chistyakov. Random Allocations. John
Wiley & Sons, New York-London-Sydney, 1978.

26



[24] McDiarmid. Minimal positions in a branching random walk. Ann. Appl. Probab., 5:128–
139, 1995.

[25] B. Pittel. On growing random binary trees. J. Math. Anal. Appl., 103(2):461–480, 1984.

[26] S. Resnick. Extreme Values, Regular Variation, and Point Processes. Springer Series in
Operations Research and Financial Engineering, 1987.

[27] M. Robson. The height of binary search trees. Austral. Comput. J., 11:151–153, 1979.

27


