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Cet article traite de l'estimation d'état des systèmes non linéaires décrits par des multimodèles de type Takagi-Sugeno avec des fonctions d'activation qui dépendent de l'état du système. Les méthodes de conception de deux types d'observateurs, à savoir un observateur à entrées inconnues et un observateur proportionnel intégral (PI), sont détaillées en utilisant la seconde méthode de Lyapunov ainsi que l'approche L 2 . Les conditions de convergence des deux observateurs sont données sous forme LMI. Enfin, un exemple est proposé pour illustrer et comparer les performances des deux observateurs.

I. Introduction

Généralement, un système évolue par l'influence simultanée d'entrées connues et inconnues. l'éstimation de ces dernières peut être réalisé, sous certaines conditions, ce qui permet d'améliorer les performances des lois de commande. Les mesures effectuées en sortie du système ne donnent pas une information complète sur les états internes de ce système, car une partie de ces états n'est pas mesurable directement. De plus, pour des raisons purement technologiques, mais aussi pour des raisons de coût, le nombre de capteurs est limité. De ce fait, l'idée utilisée, depuis plusieurs années, est le remplacement des capteurs matériels par des capteurs logiciels ou observateurs d'état, qui permettent de reconstruire les informations internes (états, entrées inconnues, paramètres inconnus) du système à partir du modèle du système, des entrées connues et des sorties mesurées.

Ce besoin d'informations internes peut être motivé par divers objectifs : identification, commande par retour d'état ainsi que surveillance et diagnostic du système. De ce fait le problème de la conception d'observateurs est au coeur du problème général de contrôle.

Parmi les solutions apportées au problème de conception d'observateurs, on peut citer l'observateur de Luenberger [START_REF] Luenberger | An introduction to observers[END_REF] pour des systèmes linéaires variants ou invariants dans le temps. Ce type d'observateur est basé sur la synthèse d'un gain statique ou dynamique afin de stabiliser l'erreur d'estimation d'état et d'assurer la convergence de l'état de l'observateur vers l'état du système réel. Cependant, la présence de bruits sur l'entrée et la sortie du système ainsi que des perturbations peut conduire à une mauvaise recons-truction. On peut également citer le filtre de Kalman [START_REF] Kalman | A new approach to linear filtering and prediction problems[END_REF] qui permet de reconstruire l'état du système en présence de bruits de mesure, en utilisant des connaissances statistiques a priori de ces bruits. Toujours dans le souci d'améliorer les performances des observateurs, l'observateur à entrées inconnues (Unknown Input Observer (UIO)) permet de reconstruire l'état du système même en présence d'entrées non mesurées ; il se base sur des méthodes de découplage de l'entrée inconnue vis-à-vis de l'erreur d'estimation d'état. Dans [3][4], les auteurs proposent un UIO d'ordre minimal pour des systèmes linéaires, suivi par plusieurs travaux sur l'estimation d'état et des entrées inconnues [START_REF] Darouach | Full-order observers for linear systems with unknown inputs[END_REF] [START_REF] Cherrier | Estimation de l'état et des entrées inconnues pour une classe de systèmes non linéaires[END_REF].

Dans le contexte du diagnostic, la surveillance des systèmes à base de modèles linéaires a fait l'objet de plusieurs travaux de recherche et d'applications réelles [START_REF] Maquin | Diagnostic des systèmes linéaires[END_REF] en utilisant les observateurs d'état. Cependant, l'hypothèse de linéarité d'un système n'est généralement valide que dans une zone de fonctionnement réduite. De ce fait, la demande croissante en terme de performances a conduit à adopter des modèles plus réalistes et donc non linéaires. Cependant, la complexité des modèles non linéaires limite en partie la généralisation des outils d'analyse et de synthèse élaborés dans le domaine des modèles linéaires.

En revanche, des résultats intéressants ont d'ores et déjà été obtenus si la démarche de modélisation s'appuie sur l'utilisation d'un ensemble de modèles de structures simples, chaque modèle décrivant le comportement du système dans une « zone de fonctionnement » particulière. Dans ce contexte, l'approche multimodèle qui consiste à élaborer le modèle global par interpolation de modèles locaux linéaires a produit des résultats intéressants. Cette structure permet la représentation d'une classe plus large de systèmes non linéaires et peut même décrire de façon exacte le comportement de certains systèmes non linéaires [START_REF] Yoneyama | H∞ output feedback control for fuzzy systems with immeasurable premise variables : Discrete-time case[END_REF].

II. Approche multimodèle

L'approche multimodèle permet de représenter le comportement d'un système sous forme de plusieurs modèles linéaires. Chaque sous-modèle contribue à cette représentation globale suivant une fonction de pondération µ i (ξ(t)) à valeurs dans l'intervalle [0, 1]. La structure multimodèle est la suivante : 

   ẋ(t) = r i=1 µ i (ξ(t))(A i x(t) + B i u(t) + E i d(t)) y(t) = Cx(t) + Gd(t) (1 
   r i=1 µ i (ξ(t)) = 1 0 ≤ µ i (ξ(t)) ≤ 1 ∀i ∈ {1, 2, ..., r} (2) 
L'analyse et la synthèse de tels systèmes peut être faite en adaptant certains outils du domaine linéaire. On trouve par exemple dans [START_REF] Bergsten | Fuzzy observers[END_REF][10] [START_REF] Kruszewski | Lois de commande pour une classe de modèles non linéaires sous la forme Takagi-Sugeno : Mise sous forme LMI[END_REF] des outils inspirés directement de l'étude des systèmes linéaires pour l'étude de la stabilité et la stabilisation des systèmes non linéaires. Dans [START_REF] Akhenak | Conception d'observateurs non linéaires par approche multi-modèle : application au diagnostic[END_REF], l'auteur traite le problème de l'estimation d'état de systèmes non linéaires décrits par des multimodèles, ce qui a permis de concevoir des observateurs, puis de les utiliser pour la génération de résidus indicateurs de défauts pour le diagnostic.

Cependant, dans tous ces travaux, les auteurs supposent que la variable de décision ξ(t) est mesurable i.e ξ(t) = u(t) ou ξ(t) = y(t). Dans le problème du diagnostic, cette hypothèse oblige à concevoir des bancs d'observateurs à base de multimodèles dont les fonctions d'activation dépendent de l'entrée u(t), pour la détection et la localisation des défauts capteurs, ou de la sortie y(t) pour la détection et la localisation des défauts actionneurs. Ceci nécessite l'élaboration de deux multimodèles différents, représentant le même système, selon que l'on veut détecter et localiser des défauts capteurs ou des défauts actionneurs. Pour éliminer ce problème, il est intéressant de considérer le cas où les fonctions d'activation dépendent de l'état du système. Parmi les rares travaux publiés dans ce contexte, on peut citer par exemple [START_REF] Palm | Sliding mode observers for Takagi-Sugeno fuzzy systems[END_REF] [14] [9] qui, sous l'hypothèse de fonctions d'activation µ i (x) lipschitziennes, ont proposé un observateur de type Luenberger. Les conditions de stabilité de ce dernier sont formulées sous forme d'inégalités linéaires matricielles (LMI) ce qui en rend la synthèse facile. Le problème de cette méthode réside dans le fait que la constante de Lipschitz apparaît dans les LMIs. Si cette constante de Lipschitz est de grande amplitude, le domaine de solution défini par les contraintes peut être très restreint ou même, dans certains cas, être vide. Dans [START_REF] Bergsten | Observers for Takagi-Sugeno fuzzy systems[END_REF] [9], se basant sur les résultats obtenus dans [START_REF] Palm | Sliding mode observers for Takagi-Sugeno fuzzy systems[END_REF], un observateur à mode glissant est proposé pour compenser les termes inconnus du système. Dans [START_REF] Ichalal | Conception d'observateurs pour un modèle de Takagi-Sugeno à variables de décision non mesurables[END_REF], une autre approche a été proposée pour permettre de réduire le conservatisme inhérent aux méthodes précédentes et d'élargir le domaine des solutions même si la constante de Lipschitz est importante.

Cet article présente deux types d'observateurs pour des systèmes décrits par un multimodèle avec des fonctions d'activation qui dépendent de variables d'état du système. Le premier observateur est un observateur à entrée inconnue qui permet, sous certaines conditions, d'estimer l'état du système en découplant l'entrée inconnue ; il permet aussi d'estimer l'entrée inconnue. La première étape consiste d'abord à ré-écrire le multimodèle sous forme d'un multimodèle perturbé à variable de décision mesurable. Deux situations sont alors envisagées. La première s'appuie sur l'hypothèse que la perturbation vérifie la propriété de Lipschitz alors que la seconde s'affranchit de cette hypothèse. Ces deux situations sont également envisagées pour concevoir un observateur PI qui ne permet pas de découpler l'estimation de l'entrée inconnue, mais permet de l'estimer et d'utiliser cette estimée pour reconstruire l'état du système (reconstruction simultanée).

III. Conception d'observateur à entrées inconnues

Dans cette section, nous considérons un système non linéaire à temps continu décrit par un multi-modèle utilisant des fonctions d'activation qui dépendent de l'état du système :

   ẋ(t) = r i=1 µ i (x(t))(A i x(t) + B i u(t) + E i d(t)) y(t) = Cx(t) + Gd(t) (3) 
Par la suite, on suppose que le nombre d'entrées inconnues est inférieur au nombre de sorties mesurées (s < p). Le multimodèle à variables de décision non mesurables (3) peut se ramener à un multimodèle perturbé à variables de décision mesurables comme suit :

   ẋ(t) = r i=1 µ i (x(t)) (A i x(t) + B i u(t) + E i d(t) + ω(t)) y(t) = Cx(t) + Gd(t) (4 
) où la perturbation omega(t) est obtenue par :

ω(t) = r i=1 (µ i (x(t)) -µ i (x(t))) (A i x(t) + B i u(t) + E i d(t))
(5) Les multimodèles (3) et (4) sont équivalents. Pour la conception de l'observateur, on utilisera la deuxième structure. L'observateur est pris sous la forme :

   ż(t) = r i=1 µ i (x(t)) (N i z(t) + G i u(t) + L i y(t)) x(t) = z(t) -Hy(t) (6) 
L'erreur d'estimation d'état est donnée par :

e(t) = x(t) -x(t) = x(t) -z(t) + HCx(t) + HGd(t) = P x(t) -z(t) + HGd(t) (7) 
où :

P = I + HC (8) 
La dynamique de l'erreur d'estimation d'état est donnée par :

ė(t) = P ẋ(t) -ż(t) + HG ḋ(t) = r i=1 µ i (x(t))(P A i x(t) + P B i u(t) + P E i d(t) + P ω(t) -N i z(t) -G i u(t) -L i y(t)) + HG ḋ(t) (9) 
Après réorganisation des termes de la partie droite de la dynamique de l'erreur d'estimation d'état et en utilisant les définitions de y(t) et de z(t), on obtient :

ė(t) = r i=1 µ i (x(t))((P A i -N i -K i C)x(t) + (P B i -G i )u(t) + (P E i -K i G)d(t) + P ω(t) + N i e(t)) + HG ḋ(t) (10) 
avec

K i = N i H + L i .
Si les conditions suivantes sont vérifiées :

HG = 0 (11) 
N i = P A i -K i C (12) 
P B i = G i (13) 
P E i = K i G (14) 
L i = K i -N i H (15) 
alors, la dynamique de l'erreur d'estimation d'état devient :

ė(t) = r i=1 µ i (x(t)) (N i e(t) + P ω(t)) (16) 
montrant ainsi l'influence de la perturbation ω(t). Pour synthétiser les matrices de l'observateur [START_REF] Cherrier | Estimation de l'état et des entrées inconnues pour une classe de systèmes non linéaires[END_REF], deux méthodes sont proposées.

A. Première méthode

On suppose que le terme ω(t) défini en (5) satisfait la conditions suivante :

|ω(t)| ≤ γ |e(t)| (17) 
où γ est une constante positive.

Théorème 1. Un observateur à entrées inconnues existe pour le système (3) s'il existe une matrice symétrique et définie positive X, des matrices M i et S et un scalaire positif λ tels que les conditions suivantes soient vérifiées pour tout i = 1, ..., r :

Ψ i (X + SC) (X + SC) T -λI < 0 (18) SG = 0 (19) (X + SC)E i = M i G (20) 
où :

Ψ i = A T i (X + C T S) + (X + SC)A i -C T M T i -M i C + λγ 2 I (21)
Les matrices de l'observateur sont déterminées par :

H = X -1 S (22) 
K i = X -1 M i ( 23 
)
N i = (I + HC)A i -K i C (24) 
L i = K i -N i H (25) 
G i = (I + HC)B i (26) 
Démonstration. On choisit une fonction de Lyapunov quadratique :

V (t) = e(t) T Xe(t), X = X T > 0 (27)
dont la dérivée par rapport au temps est donnée par :

V (t) = ė(t) T Xe(t) + e(t) T X ė(t) (28) 
En utilisant [START_REF] Boyd | Linear Matrix Inequalities in System and Control Theory[END_REF], on obtient :

V (t) = r i=1 µ i (x(t))(e(t) T (N T i X + XN i )e(t)
+ e(t) T XP ω(t) + ω(t) T P T Xe(t))

Lemme 1. Soit deux matrices X et Y de dimensions appropriées, alors la propriété suivante est vérifiée :

X T Y + Y T X ≤ λX T X + λ -1 Y T Y, λ > 0 (30) 
En utilisant le lemme 1 ansi que (17), on obtient :

e T XP ω + ω T P T Xe ≤ λω T ω + λ -1 e T XP P T Xe ≤ λγ 2 e T e + λ -1 e T XP P T Xe (31) 
En substituant (31) dans la dérivée de la fonction de Lyapunov (29), on obtient :

V (t) ≤ r i=1 µ i (x)e T (N T i X + XN i + λγ 2 I + λ -1 XP P T X)e
(32) Puisque les fonctions d'activation vérifient les conditions (2), la dérivée de la fonction de Lyapunov est négative si :

N T i X + XN i + λγ 2 I + λ -1 XP P T X < 0 (33) 
D'après [START_REF] Akhenak | Conception d'observateurs non linéaires par approche multi-modèle : application au diagnostic[END_REF], on a :

(P A i -K i C) T X +X(P A i -K i C
)+λγ 2 I +λ -1 XP P T X < 0 (34) La résolution de l'inégalité matricielle (34) en les inconnues K i , X et λ est difficile à cause des non-linéarités entre X et K i et entre X et λ. Pour résoudre ce problème, on procède comme suit. D'abord, on effectue le changement de variables :

M i = XK i (35) 
et en utilisant le complément de Schur [START_REF] Boyd | Linear Matrix Inequalities in System and Control Theory[END_REF], on obtient les inégalités matricielles linéaires :

A T i P T X + XP A i -C T M T i -M i C + λγ 2 I XP P T X -λI < 0
(36) Pour satisfaire la condition [START_REF] Kruszewski | Lois de commande pour une classe de modèles non linéaires sous la forme Takagi-Sugeno : Mise sous forme LMI[END_REF], on résout l'égalité :

XHG = 0 (37) 
En utilisant le changement de variable S = XH, on obtient l'égalité matricielle linéaire :

SG = 0 (38) 
Il faut satisfaire simultanément les conditions [START_REF] Bergsten | Observers for Takagi-Sugeno fuzzy systems[END_REF], en utilisant le changement de variable (35), on obtient :

(X + SC)E i = M i G (39) 
Comme P = I+HC, en remplaçant P dans (36), on obtient l'inégalité matricielle du théorème 1. Les conditions (18)-(21) du théorème 1 sont ainsi démontrées.

B. Deuxième approche

Dans le cas où l'hypothèse (17) n'est pas satisfaite, ce qui veut dire que l'information sur sa borne γ n'est pas disponible, la méthode développée dans la section précédente ne peut pas être appliquée. Dans cette section, nous proposons une autre méthode basée sur l'utilisation de l'approche L 2 .

Théorème 2. Un observateur à entrées inconnues existe pour le système (3) s'il existe une matrice symétrique et définie positive X, des matrices M i et S et un scalaire positif λ tels que les conditions suivantes soient vérifiées pour tout i = 1, ..., r :

Ψ i X + SC (X + SC) T -γI < 0 (40) SG = 0 (41) (X + SC)E i = M i G (42) 
où :

Ψ i = A T i (X +C T S)+(X +SC)A i -C T M T i -M i C +I (43)
Les matrices de l'observateur sont déterminées par les équations ( 22)-(26).

Démonstration. Pour démontrer le théorème 2, on utilise le lemme borné réel [START_REF] Boyd | Linear Matrix Inequalities in System and Control Theory[END_REF].

Lemme 2. [START_REF] Boyd | Linear Matrix Inequalities in System and Control Theory[END_REF]. Soit le système polytopique suivant :

       ẋ(t) = r i=1 µ i (x) (A i x(t) + B i ω(t)) y(t) = r i=1 µ i (x)C i x(t) (44) 
Le système (44) est asymptotiquement stable et le gain L 2 du transfert de ω(t) vers y(t) est borné par γ s'il existe une matrice symétrique et définie positive X telle que (45) est vérifiée pour i = 1, ..., r :

A T i X + XA i + C T i C i P B i B T i X -γ 2 I < 0, X = X T > 0 (45)
La dynamique de l'erreur d'estimation d'état est donnée par :

ė(t) = r i=1 µ i (x(t)) (N i e(t) + P ω(t)) (46) 
L'erreur d'estimation converge vers zéro et le gain L 2 du transfert de ω(t) vers e(t) est borné par γ si l'inégalité suivante est vérifiée :

r i=1 µ i (x(t)) N T i X + XN i + I XP P T X -γ 2 I < 0 (47)
La propriété de convexité des fonctions d'activation permet d'écrire ∀i ∈ {1, ..., r} :

N T i X + XN i + I XP P T X -γ 2 I < 0 (48)
En utilisant l'expression [START_REF] Akhenak | Conception d'observateurs non linéaires par approche multi-modèle : application au diagnostic[END_REF] de N i et les changements de variables M i = XK i et γ = γ 2 on obtient ∀i ∈ {1, ..., r} :

A T i P T X + XP A i -C T M T i -M i C + I XP P T X -γI < 0
L'algorithme de résolution est le même que celui de la section A en remplaçant des inégalités matricielles (18) par les inégalités (40).

IV. Estimation des entrées inconnues

Dans le système (4), l'entrée inconnue d(t) apparaît avec la matrice d'influence :

W (t) =   r i=1 µ i (x(t))E i G   ( 49 
)
Pour estimer l'entrée inconnue, il faut que le rang de la matrice W (t) vérifie à chaque instant t la condition :

rang (W (t)) = s (50)
s étant la dimension de d(t). Si cette condition est vérifiée, W (t) est de plein rang colonne et sa pseudo-inverse à gauche W -(t) existe :

W -(t) = W T (t)W (t) -1 W T (t) (51) 
L'entrée inconnue peut alors se calculer en fonction de l'état estimé de la façon suivante :

d(t) = W -(t)   ẋ(t) - r i=1 µ i (x(t)) (A i x(t) + B i u(t)) y(t) -C x(t)   (52)
Sous la condition (50) la convergence asymptotique de x vers x entraîne la convergence asymptotique de d vers d.

V. Observateur PI

Considèrons le système (4) et supposons que l'entrée inconnue d(t) est constante :

ḋ(t) = 0 (53) 
Le système peut s'écrire sous la forme augmentée suivante :

ẋa (t) = r i=1 µ i (x a (t))( Āi x a (t) + Bi u(t) + Γω(t)) y(t) = Cx a (t) (54) où 
: Āi = A i E i 0 0 , Bi = B i 0 , C = C G , Γ = I 0 , x a (t) = x(t) d(t)
On propose l'observateur PI sous la forme augmentée :

ẋa (t) = r i=1 µ i (x a (t))( Āi xa (t) + Bi u(t) + Ki (y(t) -C xa (t)) (55) 
où :

Ki = K P i K Ii , x a (t) = x(t) d(t)
L'erreur d'estimation d'état est définie par :

e a (t) = x a (t) -xa (t) (56) 
sa dynamique est alors donnée par :

ėa (t) = r i=1 µ i (x a (t)) ( Āi -Ki C)e a (t) + Γω(t) (57) 
La convergence de l'erreur d'estimation d'état e a (t) est étudiée en fonction du terme ω(t) défini par [START_REF] Darouach | Full-order observers for linear systems with unknown inputs[END_REF]. Deux cas peuvent être considérés :

A. Cas 1 : ω(t) vérifie la condition (17)

Les conditions de convergence de l'observateur PI (55) sont données dans le théorème suivant : Théorème 3. L'erreur d'estimation d'état entre l'observateur PI (55) et le système (54) converge asymptotiquement vers zéro, s'il existe une matrice symétrique et définie positive X, des matrices M i et un scalaire positif λ tels que les conditions suivantes soient vérifiées pour tout i = 1, ..., r :

ĀT i X + X Āi -M i C a -C T a M i + λγ 2 I XΓ Γ T X -λI < 0
Les gains de l'observateur sont donnés par : Ki = X -1 M i .

Démonstration. Il suffit de considérer une fonction de Lyapunov quadratique :

V (t) = e a (t) T Xe a (t), X = X T > 0 (58) 
En utilisant (57), la dérivée de la fonction de Lyapunov est donnée par :

V (t) = r i=1 µ i (x a (t))(e a (t) T ( ΦT i X + X Φi )e a (t) + e a (t) T XΓω(t) + ω(t) T Γ T Xe a (t)) (59) 
où :

Φi = Āi -Ki C
La suite de la démonstration est identique à celle donnée dans la preuve du théorème 1.

B. Cas 2 : ω(t) ne vérifie pas la la condition (17)

Dans ce cas, l'utilisation de l'approche L 2 permet de synthétiser les gains de l'observateur de manière à atténuer cette perturbation. Les conditions de convergence de l'observateur PI (55) sont données dans le théorème suivant : Théorème 4. L'erreur d'estimation d'état entre l'observateur PI (55) et le système converge asymptotiquement vers zéro, s'il existe une matrice symétrique et définie positive X, des matrices M i et un scalaire positif λ tels que les conditions suivantes soient vérifiées pour tout i = 1, ..., r :

ĀT i X + X Āi -M i C a -C T a M T i + I ΓX XΓ T -γI < 0
Les gains de l'observateur sont donnés par : Ki = X -1 M i .

Démonstration. La démonstration est similaire à celle du théorème 2.

VI. Exemple de simulation et comparaison

A. Exemple et résultats de simulation

Soit le multimodèle (3) défini par les matrices suivantes :

   ẋ(t) = r i=1 µ i (x(t))(A i x(t) + B i u(t) + E i ω(t)) y(t) = Cx(t) + Gω(t) (60) 
avec :

A 1 =   -2 1 1 1 -3 0 2 1 -4   , A 2 =   -3 2 -2 5 -3 0 0.5 0.5 -4   B 1 =   1 0.3 0.5   , B 2 =   0.5 1 0.25   , C = 1 1 1 1 0 1 E 1 =   0.5 -1 0.25   , E 2 =   -1 0.52 1   , G = 0.3 0.9
Les fonctions d'activation sont choisies sous la forme : 

µ 1 (x) = 1-tanh(x1) 2 µ 2 (x) = 1 -µ 1 (x) = 1+tanh(x1) 2 (61) d(t 

B. Discussion

On observe une bonne convergence de l'erreur d'estimation d'état pour les deux observateurs proposés (figure 1). Cependant, l'observateur PI reconstruit l'état en utilisant l'estimation de l'entrée inconnue, contrairement à l'observateur à entrée inconnue qui découple complètement l'entrée inconnue de l'état et permet ainsi une meilleure reconstruction (figure 1). En présence de bruit de mesure de moyenne nulle et d'amplitude maximale de 0.04, l'observateur PI filtre la sortie bruitée et fournit une meilleure reconstruction que celle issue de l'observateur à entrée inconnue.

Il est clair que l'entrée inconnue reconstruite par l'observateur PI est meilleure que celle donnée par l'observateur à entrée inconnue, à cause de l'utilisation de la fonction dérivée du signal x(t) qui n'est pas facile à réaliser du point de vue numérique (figure 3). En effet, la présence d'un bruit de mesure, en haute fréquence, diminue la qualité de reconstruction de l'entrée inconnue alors que l'observateur PI est moins sensible au bruit et permet son filtrage (figure 4). Avec l'observateur à entrée inconnue, on peut estimer l'état du système même en présence d'une entrée inconnue variant rapidement puisque celle-ci est totalement découplée de l'état, mais pour l'observateur PI cela n'est pas possible théoriquement car les conditions de convergence sont établies sous l'hypothèse de variations nulles de l'entrée inconnue. On observe cependant en pratique un comportement correct de l'observateur PI, même lorsque cette hypothèse n'est pas satisfaite, ce qui est le cas de l'exemple puisque l'entrée inconnue est constante par morceaux.

En ce qui concerne les conditions de convergence des observateurs, si la condition (17) sur le terme ω(t) n'est pas vérifiée ou la valeur de la constante γ est très importante (impossibilité de trouver une solution avec les théorèmes 1 et 3), les théorèmes 2 et 4 offrent respectivement la possibilité de concevoir l'observateur à entrée inconnue et l'observateur PI. Une amélioration des dynamiques des deux observateurs est possible par placement des pôles (voir [START_REF] Ichalal | Conception d'observateurs pour un modèle de Takagi-Sugeno à variables de décision non mesurables[END_REF]).

VII. Conclusions et perspectives

Dans cet article, nous avons proposé deux observateurs à entrées inconnues et PI pour un système non linéaire décrit par un multimodèle à variables de décision non mesurables. La première étape consiste à réécrire le multimodèle sous la forme d'un multimodèle équivalent perturbé et à variables de décision mesurables. Deux cas sont considérés, le premier cas utilise l'hypothèse que la perturbation qui apparaît après la réécriture du multimodèle vérifie une condition de type Lipschitz alors que le deuxième cas n'utilise pas cette hypothèse. Dans ce deuxième cas, nous avons élaboré une autre méthode basée sur une approche 2 . Les conditions de convergence des observateurs sont données sous forme d'inégalités matricielles linéaires (LMI) que l'on peut résoudre facilement avec les outils numériques classiques. Enfin, un exemple de simulation est proposé pour illustrer l'efficacité des deux observateurs et permettre une comparaison des résultats qu'ils fournissent. Des travaux futurs concerneront l'extension de l'observateur PI au cas où les entrées inconnues varient rapidement (dérivée non nulle), puis à l'application au diagnostic des systèmes non linéaires.

  ) où x(t) ∈ R n est le vecteur d'état, u(t) ∈ R m est le vecteur des entrées, d(t) ∈ R s est le vecteur des entrées inconnues, y(t) ∈ R p représente le vecteur de sortie. les matrices A i , B i , E i , C et G sont connues réelles et constantes, de di-

	mensions compatibles avec celles des signaux définis plus
	haut. Enfin, les quantités µ i (ξ(t)) représentent les fonctions
	d'activation qui dépendent de la variable ξ(t) elle-même
	pouvant être une variable mesurable (entrée ou sortie du
	système) ou une variable non mesurable (état du système) ;
	ces fonctions ont les propriétés suivantes :

  ) est l'entrée inconnue (présentée à la figure2). Le but est d'estimer l'état du système en découplant l'effet de cette entrée inconnue sur l'erreur d'estimation d'état.Les résultats de simulation sont présentés sur les figures suivantes.

	0.6								d(t) estimée par UIO		
									d(t) estimée par PI		
	0.4											
	0.2											
	0											
	-0.2											
	-0.4											
	0	2	4	6	8	10	12	14	16	18	20	
	Fig. 3. Entrée inconnue estimée par les deux observateurs sans bruits	
	de mesure affectant la sortie							
	0.6								d(t) estimée par UIO		
									d(t) estimée par PI		
	0.4											
	0.2											
	0											
	-0.2											
	-0.4											
	0	2	4	6	8	10	12	14	16	18	20	
	Fig. 4. Entrée inconnue estimée par les deux observateurs avec bruits	
	de mesure affectant la sortie							
													e 1
											0.4	
											0.3		e 1 par PI e 1 par UIO
											0.2	
											0.1	
											0	
											10	11	12	13	14	15 e 2	16	17	18	19	20
											0.5	
													e 2 par PI
											0		e 2 par UIO
											-0.5	
											-1	0	2	4	6	8	10 e 3	12	14	16	18	20
											0.6	
											0.4		e 3 par PI e 3 par UIO
											0.2	
											0	
											-0.2	0	2	4	6	8	10	12	14	16	18	20
													Fig. 1. Erreurs d'estimation d'état
											0.4	
											0.2	
											0	
											0		2	4	6	8	10	12	14	16	18	20
													Fig. 2. Entrée inconnue

VIII. Remerciements

travail a été réalisé avec le soutien du programme Egide TASSILI No. 07 MDU 714.

Références