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Abstract—Generation of random or pseudorandom numbers, 

nowadays, is a key feature of industrial mathematics. 
Pseudorandom or chaotic numbers are used in many areas of 
contemporary technology such as modern communication systems 
and engineering applications. More and more European or US 
patents using discrete mappings for this purpose are obtained by 
researchers of discrete dynamical systems [1], [2]. Efficient 
Chaotic Pseudo Random Number Generators (CPRNG) have been 
recently introduced. They use the ultra weak multidimensional 
coupling of p 1-dimensional dynamical systems which preserve the 
chaotic properties of the continuous models in numerical 
experiments. Together with chaotic sampling and mixing 
processes, ultra weak coupling leads to families of (CPRNG) which 
are noteworthy [3], [4]. 

In this paper we improve again these families using a double 
threshold chaotic sampling instead of a single one. 

We analyze numerically the properties of these new families 
and underline their very high qualities and usefulness as CPRNG 
when very long series are computed. 
 

Index Terms—Chaos, Discrete time systems, Floating point 
arithmetic, Random number generation. 

I. INTRODUCTION 

Efficient Chaotic Pseudo Random Number Generators 
(CPRNG) have been recently introduced. The idea of applying 
discrete chaotic dynamical systems, intrinsically, exploits the 
property of extreme sensitivity of trajectories to small changes 
of initial conditions. They use the ultra weak multidimensional 
coupling of p 1-dimensional dynamical systems which preserve 
the chaotic properties of the continuous models in numerical 
experiments. The process of chaotic sampling and mixing of 
chaotic sequences, which is pivotal for these families, works 
perfectly in numerical simulation when floating point (or double 
precision) numbers are handled by a computer. 

It is noteworthy that these families of very weakly coupled 
maps are more powerful than the usual formulas used to 
generate chaotic sequences mainly because only additions and 
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multiplications are used in the computation process; no division 
being required. Moreover the computations are done using 
floating point or double precision numbers, allowing the use of 
the powerful Floating Point Unit (FPU) of the modern 
microprocessors (built by both Intel and Advanced Micro 
Devices (AMD)). In addition, a large part of the computations 
can be parallelized taking advantage of the multicore 
microprocessors which appear on the market of laptop 
computers. 

In this paper we improve the properties of these families 
using a double threshold chaotic sampling instead of a single 
one. The genuine map f used as one-dimensional dynamical 
systems to generate them is henceforth perfectly hidden. 

II. ULTRA WEAK MULTIDIMENSIONAL COUPLING 

A. System of p-Coupled Symmetric Tent Map 

When a dynamical system is realized on a computer using 
floating point or double precision numbers, the computation is 
of a discretization, where finite machine arithmetic replaces 
continuum state space. For chaotic dynamical systems, the 
discretization often has collapsing effects to a fixed point or to 
short cycles [5], [6]. In order to preserve the chaotic properties 
of the continuous models in numerical experiments we have 
recently introduced an ultra weak multidimensional coupling of 
p one-dimensional dynamical systems which is noteworthy [7]. 

In this specific case we have chosen as an example the 
symmetric tent map defined by 

xaxfa −=1)(  (1) 

with the value a = 2, later denoted simply as f, even though 
others chaotic map of the interval (as the logistic map) can be 
used for the same purpose. The dynamical system associated to 
this one dimensional  map  is  defined  by  the  equation  on  the 
interval J = [-1, 1]⊂ ℝ  [8]. 

nn xax −=+ 11
 (2) 

 
The system of p-coupled dynamical systems is then: 

 
( ) ( ))( nn1n XfAXFX ⋅==+

 (3) 

with 
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F is a map of Jp into itself. 
 
Several combinations can be given for the relative values of the 

iε
, in this paper we choose 

1i εε i=   i = 2, …, p (6) 

The matrix A is always a stochastic matrix iff the coupling 
constants 

iε
 verify 

i

1
0 ε

1p
≤ ≤

−
 (7) 

When 
iε 0=  the maps are decoupled, when 

i

1
ε

1p
=

−
 they 

are fully cross coupled. Generally, researchers do not consider 
very small values of 

iε
 because it seems that the maps are quasi 

decoupled with those values and no special effect of the 
coupling is expected. In fact it is not the case and ultra small 
coupling constant (as small as 10-7 for floating point numbers or 
10-14 for double precision numbers), allows the construction of 
very long periodic orbits, leading to sterling chaotic generators. 

Moreover each component of these numbers belonging to 
p
ℝ  is equally distributed over the finite interval J ⊂ ℝ . 
Numerical computations show that this distribution is obtained 
with a very good approximation. They have also the property 
that the length of the periods of the numerically observed orbits 
is very large [7]. 

B. Chaotic Pseudo-Random Generators 

However chaotic numbers are not pseudo-random numbers 
because the plot of the couples of iterated points (xn, xn+1) in the 
phase plane reveals the map f used as one-dimensional 
dynamical systems to generate them. 

Nevertheless we have recently introduced a family of 
Enhanced Chaotic Pseudo Random Number Generators 
(CPRNG) in order to compute very fast long series of 
pseudorandom numbers with desktop computer [9]. This family 
is based on the previous ultra weak coupling which is enhanced 
in order to conceal the chaotic genuine function. 

In the aim of hiding f in the phase space ( )l
n

l
n xx 1, +

 two 

mechanisms are used. The pivotal idea of the first one 
mechanism is to sample chaotically the sequence 
( )…… ,,,,,, 1210

l
n

l
n

lll xxxxx +
 generated by the l-th component lx , 

selecting l
nx  every time the value m

nx  of the m-th component 
mx , is strictly greater than a threshold T ∈ J, 

 with l ≠ m, for 1 ≤ l, m ≤ p . 

A second mechanism can improve the unpredictability of the 
chaotic sequence generated as above, using synergistically all 
the components of the vector X, instead of two. This simple 
mechanism is based on the chaotic mixing of the p-1 sequences 
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ppp xxxxx  using the last one 

( )…… ,,,,,, 1210
p
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 with respect to a given  partition T1, 

T2, …,  Tp-1 of J, to distribute the iterated points.  
 

C. Numerical Results 

As an example we explicit both mechanisms taking 
4-coupled equations for (3). The value of 4

nx  commands the 

chaotic sampling and the mixing processes as follows. 
Let us set three threshold values T1, T2 and T3 

-1 < T1 < T2 < T3 < 1  (8) 
 

we sample and mix together chaotically the sequences 
( )…… ,,,,,, 1

1
11

2
1
1

1
0 +nn xxxxx , ( )…… ,,,,,, 2

1
22

2
2
1

2
0 +nn xxxxx  and 

( )…… ,,,,,, 3
1

33
2

3
1

3
0 +nn xxxxx  defining ( )⋯⋯ ,,,,,, 1210 +qq xxxxx  by 

 

] [
[ [
[ [








∈
∈
∈

=
1,

,

,

3
43

32
42

21
41

Txiffx

TTxiffx

TTxiffx

x

nn

nn

nn

q

  (9) 

 
Numerical results about chaotic numbers produced by (3) - 

(9) show that they are equally distributed over the interval J. 
In order to compute numerically an approximation of the 

invariant measure also called the probability distribution 
function PN (x) linked to the 1-dimensional map f  we consider a 
regular partition of M small intervals (boxes) ri of J. 

 

J=
1

0

M

ir
−

∪  (10) 

ri = [si , si+1[  , i = 0, M – 2  (11) 

rM-1 = [sM-1 , 1]   (12) 

M

i
si

2
1+−=  i = 0, M  (13) 

the length of each box is  

M
ss ii

2
1 =−+

  (14) 

All iterates f (n)(x) belonging to these boxes are collected 
(after a transient regime of Q iterations decided a priori, i.e. the 
first Q iterates are neglected). Once the computation of N+ Q 
iterates is completed, the relative number of iterates with respect 
to N/M in each box ri represents the value PN (si). The 
approximated PN (x) defined in this article is then a step 
function, with M steps. As M may vary, we define 

( )iiNM r
N

M
sP #

2

1
)(, =   (15) 

where #ri is the number of iterates belonging to the interval ri 
and the constant 1/2 allows the normalisation of )(, xP NM

 on the 

interval J. 

iiNMNM rxsPxP ∈∀= )()( ,,
  (16) 
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In the case of coupled maps, we are more interested by the 
distribution of each component x1,  …, xp of X rather than the 
distribution of the variable X itself in Jp. We then consider the 
approximated probability distribution function PN(xj) associated 
to one among several components of F(X) defined by (3) which 
are one-dimensional maps. 

The discrepancies E1 (in norm L1) and E2 (in norm L2) 
between )(, xP

iterdisc NN
 and the Lebesgue measure which is the 

invariant measure associated to the symmetric tent map, are 
defined by 

1

5.0)(),( ,1 LNNiterdisc xPNNE
iterdisc

−=  (17) 

2
2 ,( , ) ( ) 0.5

disc iterdisc iter N N L
E N N P x= −  (18) 

In the same way an approximation of the correlation 
distribution function CN (x, y) is to obtained numerically 
building a regular partition of M 2 small squares (boxes) of J2 
imbedded in the phase subspace (xl, xm) 

 
ri,j = [si , si+1[ × [tj , tj+1[   ,  i, j = 0, M – 2  (19) 

 
rM-1,j = [sM-1 , 1] × [tj , tj+1[   ,  j = 0, M – 2  (20) 

 
ri,M-1 = [si , si+1[× [tM-1 , 1]   ,  i = 0, M – 2  (21) 

 
rM-1,M-1  = [sM-1 , 1] × [tM-1 , 1]   (22) 
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the measure of the area of each box is  
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Once N + Q iterated points( )m

n
l
n xx ,  belonging to these boxes 

are collected the  relative  number  of iterates  with respect to 
N/M 2 in each box ri,j represents the value CN (si, tj). The 
approximated probability distribution function CN (x, y) defined 
here is then a 2-dimensional step function, with M 2 steps. As M 
can take several values in the next sections, we define 

( )jijiNM r
N

M
tsC ,

2

, #
4
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where #ri,j is the number of iterates belonging to the square ri,j 
and the constant 1/4 allows the normalisation of ),(, yxC NM

 on 

the square J2. 
 

jijiNMNM ryxtsCyxC ,,, ),(),(),( ∈∀=    (26) 

 

The discrepancies
1CE  in norm L1 between ),(, yxC

iterdisc NN
 

and the uniform distribution on the square is defined by 
 

1
1
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disc iterC disc iter N N L

E N N C x y= −   (27) 

 

Finally let ),(, yxAC NM
 be the autocorrelation distribution 

function which is the correlation function ),(, yxC NM
 of (26) 

defined in the phase space ( )l
n

l
n xx 1, +

 instead of the phase space 

(xl, xm). In order to control that the enhanced chaotic numbers 
( )⋯⋯ ,,,,,, 1210 +qq xxxxx  are uncorrelated, we plot them in the 

phase subspace ( )1, +nn xx  and we check if they are uniformly 

distributed in the square J2 and if f is concealed . 
Fig. 1 shows the values of ),(1 iterdiscAC NSamplNE  for a 

system  of   4-coupled  equations   when  the  three components 
x1 , x2 , x3 are mixed and sampled by x4 for  the  threshold  values   
T1 = 0.98,   T2 = 0.987,  T3 = 0.994  or T1 = 0.998, T2 = 0.9987, 
T3 = 0.9994.  
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Figure 1. Error of 

1
( , )AC disc iterE N NSampl  Ndisc=102×102, 

NSampliter= 103 to 1010,  εi = i.ε1, ε1=10-14. 
 

Niter NSampliter 

1
( , )AC disc iterE N NSampl  

4-coupled  
equation 

T1 = 0.998, 
 T2 = 0.9987,  T3 = 0.9994 

105 93 0.68924731 
106 1015 0.25881773 
107 10,139 0.086706776 
108 100,465 0.026815309 
109 1,000,549 0.0089111078 
1010 9,998,814 0.0027932033 
1011 100,001,892 0.00085967214 
1012 999,945,728 0.0002346851 
1013 10,000,046,137 0.000073234736 

 
Table 1. Error of 

1
( , )AC disc iterE N NSampl  for a system of 4 

coupled-equations when the three components x1 , x2 , x3 are 
mixed and sampled by  x4 for  the  threshold  values T1 = 0.998, 
T2 = 0.9987, T3 = 0.9994. 
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III.  DOUBLE TRHESHOLD CHAOTIC SAMPLING 

A. Improved CPRNG  

On can again improve the CPRG previously introduced with 
respect to the infinity norm instead of the L1 or L2 norms 
because the L∞

norm is more sensitive than the others to reveal 

the concealed f. For this aim, consider first that in the phase 

space ( )l
n

l
n xx 1, +  the graph of the chaotically sampled chaotic 

numbers is a mix of the graphs of all the f (r) (Fig. 2). 
It is obvious as showed on Fig. 3 that for r = 1 if M = 1 or 2, 

, ( , )M NAC x y  is constant and normalized on the square hence 

1 2( , ) ( , ) ( , ) 0AC AC ACE M N E M N E M N∞ = = = . 

The  autocorrelation function is different from zero  only if 
M > 2 (Fig. 4). 

 

 
Figure 2. Graphs of the symmetric tent map f, f (2) and f (3) on the 
interval [-1,1]. 

 
Figure 3. In shaded regions the autocorrelation distribution 

, ( , )M NAC x y  is constant for the symmetric tent map f on the 

interval [-1, 1] for M = 1 or 2. 
 

In the same way as displayed on Fig. 5, 6 and 7, 

1 2( , ) ( , ) ( , ) 0AC AC ACE M N E M N E M N∞ = = =  for f (i) iff M < 2i. 

Hence for a given M, if we cancel the contribution of all the f (i) 

for 2i < M, it is not possible to identify the genuine function f. 

 
Figure 4. Regions where the autocorrelation distribution 

, ( , )M NAC x y  is constant for the symmetric tent map f are shaded, 

for M = 4. (The square on the bottom left of the graph shows the 
size of the ri,j box). 

, ( , )M NAC x y  vanishes on the white regions. 

 

 
Figure 5. In shaded regions the autocorrelation distribution 

, ( , )M NAC x y  is constant for the symmetric tent map f (2) on the 

interval [-1, 1] for M = 1, 2 and 4. 

 
Figure 6. Regions where the autocorrelation distribution 

, ( , )M NAC x y  is constant for the symmetric tent map f (2) are 

shaded for M = 8. 
 

B. Algorithm and Numerical Results 

We describe again the algorithm of the double threshold chaotic 
sampling in the case of 4-coupled equations. 
Consider the sequence ( )⋯⋯ ,,,,,, 1210 +qq xxxxx  we want to mix 

and sample. For each q-1 there exists n(q-1) in the original 
sequence. We introduce a second threshold 'N ∈ℕ  and then 
we define: 

] [
[ [
[ [

1 4
1 2 ( 1)

2 4
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3 4
3 ( 1)

, '

, '

,1 '

n n q

q n n q

n n q
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  (28) 
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Figure 7. Regions where the autocorrelation distribution 

, ( , )M NAC x y  is constant for the symmetric tent map f (3) are 

shaded for M = 16. 
 

As shown previously [9] the errors in L1 or L2 norms decrease 
with the number of chaotic points (as in the law of large 
numbers) and conversely increase with the number M of boxes 

used to define 
, ( , )M NAC x y . It is the same for the error in L∞  

norm. Fig. 8 shows that when M is greater than 25, the sequence 
defined by (28) behaves better than the one defined by (9). 

 
Figure 8. Error of ( , )AC disc iterE N NSampl∞

 Ndisc= 21 to 210, 

NSampliter = 109,   thresholds T = 0.9    and   N’ = 20,   εi = i.ε1,  
ε1 = 10-14. 
 

Fig. 9 shows that when the number of chaotic points increases 

the error L∞ decreases drastically. If N’ > 100, it is necessary to 

use a huge grid of 2100x2100 boxes splitting the square J2 in order 
to find a trace of the genuine function f. This is numerically 
impossible with double precision numbers. Then the chaotic 
numbers appear as random numbers. 

Others numerical results show the high-potency of theses new 
CPRNG. Due to limitation of this article, they will be published 
elsewhere.  

IV.  CONCLUSION 

Using a double threshold in order to sample a chaotic  
sequence, we have improved with respect to the infinity norm 
the CPRNG previously introduced. When the value of the 

second threshold N’ is greater than 100, it is impossible to find 
the genuine function used to generate the chaotic numbers. The 
new CPRNG family is robust versus the choice of the weak 
parameter of the system for 10-14 < ε < 10-5, allowing the use of 
this family in several applications as for example chaotic 
cryptography. 

 
Figure 9. Error of ( , )AC disc iterE N NSampl∞

 Ndisc= 21 to 210, 

NSampliter = 109 to 1011,    thresholds   T = 0.9   and   N’ = 20, 
 εi = i.ε1,  ε1 = 10-14. 
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