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Chaotic Pseudo Random Number Generators via

Ultra Weak Coupling of Chaotic Maps and
Double Threshold Sampling Sequences.

René Lozi

Abstract—Generation of random or pseudorandom numbers,
nowadays, is a key feature of industrial mathematics.
Pseudorandom or chaotic numbers are used in many areas of
contempor ary technology such as modern communication systems
and engineering applications. More and more European or US
patents using discrete mappings for this purpose are obtained by
researchers of discrete dynamical systems [1], [2]. Efficient
Chaotic Pseudo Random Number Generators (CPRNG) have been
recently introduced. They use the ultra weak multidimensional
coupling of p 1-dimensional dynamical systems which preservethe
chaotic properties of the continuous models in numerical
experiments. Together with chaotic sampling and mixing
processes, ultraweak coupling leadsto families of (CPRNG) which
arenoteworthy [3], [4].

In this paper we improve again these families using a double
threshold chaotic sampling instead of a single one.

We analyze numerically the properties of these new families
and underline their very high qualities and usefulness as CPRNG
when very long series are computed.

Index Terms—Chaos, Discrete time systems, Floating point
arithmetic, Random number generation.

I. INTRODUCTION

multiplications are used in the computation proreedivision
being required. Moreover the computations are dasiag
floating point or double precision numbers, allogvthe use of
the powerful Floating Point Unit (FPU) of the moder
microprocessors (built by both Intel and Advancedcriv!
Devices (AMD)). In addition, a large part of thengoutations
can be parallelized taking advantage of the mukico
microprocessors which appear on the market of fapto
computers.

In this paper we improve the properties of thesuilfas
using a double threshold chaotic sampling instefad single
one. The genuine mapused as one-dimensional dynamical
systems to generate them is henceforth perfeattyen.

II. ULTRA WEAK MULTIDIMENSIONAL COUPLING

A. System of p-Coupled Symmetric Tent Map

When a dynamical system is realized on a compugigigu
floating point or double precision numbers, the patation is
of a discretization, where finite machine arithroeteplaces
continuum state space. For chaotic dynamical systehe
discretization often has collapsing effects toxadi point or to
short cycles [5], [6]. In order to preserve theati@properties

Efficient Chaotic Pseudo Random Number Generato$ the continuous models in numerical experimengshave

(CPRNG) have been recently introduced. The ideappfying
discrete chaotic dynamical systems, intrinsicadiyploits the

property of extreme sensitivity of trajectoriesstoall changes

of initial conditions. They use the ultra weak ndithensional

coupling ofp 1-dimensional dynamical systems which preserve

the chaotic properties of the continuous modelaumerical
experiments. The process of chaotic sampling andngiof
chaotic sequences, which is pivotal for these fesjilworks
perfectly in numerical simulation when floating pb{or double
precision) numbers are handled by a computer.

It is noteworthy that these families of very weakhyupled

maps are more powerful than the usual formulas used

generate chaotic sequences mainly because onljicaddand

R. Lozi is with the Laboratory J. A. Dieudonné, UMIRIRS 6621, University
of Nice Sophia-Antipolis, 06108 Nice Cedex 02, FE&rand the Institut

recently introduced an ultra weak multidimensicc@lpling of
p one-dimensional dynamical systems which is notdwdf7].

In this specific case we have chosen as an exathple
symmetric tent map defined by
f.(9=1-ax (1)
with the valuea = 2, later denoted simply ds even though
others chaotic map of the interval (as the logistap) can be
used for the same purpose. The dynamical systesgiatsd to
this one dimensional map is defined by theatiqQn on the
intervald = [-1, 1]OR [8].

X, =1-dx | (2)

The system op-coupled dynamical systems is then:

Xon =F (X,)= AL(f (X)) )
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Xt f(xh) A second mechanism can improve the unpredictalufithe

x=| | fx)=| 4) chaotic sequence generated as above, using syieaifysall
o - o the components of the vect® instead of two. This simple
X F(x) mechanism is based on the chaotic mixing ofptfiesequences

and (¢, ) s (X, ) e
1-(p-1g & g & (kg %Pt xp?, . xet X2t ) using  the  last  one
1-(p-1 . . .
8:2 (p.' )z, 8:2 &2 5) (x¢, %7, X, ..., x?, P, ...) with respect to a given partitia,

T, ..., Tpa0f J to distribute the iterated points.

’ C. Numerical Results

. P
Fis a map 08" into itself. As an example we explicit both mechanisms taking

Several combinations can be given for the relatdlaes of the 4-coupled equations for (3). The value if commands the

¢ , in this paper we choose chaotic sampling and the mixing processes as fsllow
: Let us set three threshold valugsT, andT;

Si:i«‘il i:21"'!p (6) -1<T1<T2<T3<1 (8)
The matrix A is always a stochastic matrix iff tbeupling
constants, verify we sample and mix together chaotically the sequence
0sg <— () b6, X X Xy ) o b ) and
p-1 (6, 5, %, oo 52 C,,, ) defining (x5, %, -+, X, X, ++-) DY

When g =0 the maps are decoupled, when 1 they
p-1 xiff x0]T,T
are fully cross coupled. Generally, researcheraataconsider =l iff X D[T T [ 9)
very small values of because it seems that the maps are quasi a o 4 2
: X iff x0[T,.

decoupled with those values and no special effécthe
coupling is expected. In fact it is not the casd aftra small
coupling constant (as small as“1f@r floating point numbers or
10** for double precision numbers), allows the constoucof
very long periodic orbits, leading to sterling ctiaegenerators.
Moreover each component of these numbers belortging
RP is equally distributed over the finite intervdlOR .
Numerical computations show that this distributismbtained
with a very good approximation. They have also ghaperty -
that the length of the periods of the numericabgerved orbits J= Uri (20)
is very large [7].

Numerical results about chaotic numbers produce®Bby
(9) show that they are equally distributed overititervalJ.

In order to compute numerically an approximationtlod
invariant measure also called the probability @stion
functionPy (X) linked to thel-dimensional map we consider a
regular partition oM small intervals (boxes) of J.

= 1 ,i=0,M=2 11
B. Chaotic Pseudo-Random Generators =08, Sl (11)

However chaotic numbers are not pseudo-random msmbe v = [S'V!-l 1 (12)
because the plot of the couples of iterated p@iyix,.1) in the s = _1+ﬂ i=0,M (13)
phase plane reveals the mdpused as one-dimensional M
dynamical systems to generate them. the length of each box is

Nevertheless we have recently introduced a family o Su-S = 2 (14)
Enhanced Chaotic Pseudo Random Number Generators M

(CPRNG) in order to compute very fast long serids o All iteratesf ™M(x) belonging to these boxes are collected
pseudorandom numbers with desktop computer [9F Ttmily (_after a transient regime fiterations decided priori,_i.e. the

is based on the previous ultra weak coupling wis@nhanced first Q iterates are neglected). Once the computatioR+oQ

in order to conceal the chaotic genuine function. iterates is completed, the relative number of iesravith respect

In the aim of hidingf in the phase spac@(:‘,x' ) two to N/M in each boxr; represents the valuBy (s). The

mechanisms are used. The pivotal idea of ﬂ:: finse approximatedPy (X) defined in this article is then a step
: égnction, withM steps. AsM may vary, we define

mechanism is to sample chaotically the sequen 1M
(<, %, %, ..., X, X.,...) generated by theth component', Pun (g):EW(#ri) (15)

selectingx; every time the value of the mth component here # is the number of iterates belonging to the interya

X", is strictly greater than a threshdidl J, and the constant 1/2 allows the normalisatiopof, (x) on the
withl #m, for 1<l, m<p. interval J.

Pin(9) =R, y(s) OxOr,  (16)
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In the case of coupled maps, we are more interdstetie

distribution of each componert, ..., %" of X rather than the function which is the correlation functiop
distribution of the variablX itself in J°. We then consider the

approximated probability distribution functi®(xX) associated
to one among several component§Ef) defined by (3) which
are one-dimensional maps.

The discrepancieg; (in norm L) and E, (in norm L)

betweenR,  (X) and the Lebesgue measure which is th

invariant measure associated to the symmetric rreay, are
defined by

B (NygrNig) = HPN(,,E, N
E,(Naws Ni) =[Py, 09 0.5||L2 (18)

iter

(x) - 0.5HL1 17

3

Finally letac, , (x,y) be the autocorrelation distribution

i (X Y) Of (26)
defined in the phase spa(:)crg, X:Hl) instead of the phase space

(X, X™. In order to control that the enhanced chaotimimers

Xor X1 Xg1 - Xgs Xquts ) are uncorrelated, we plot them in the

ghase subspa((g?n, E) and we check if they are uniformly

distributed in the squat¥ and iff is concealed .
Fig. 1 shows the values af, (N, ,NSampl ) for a

system of 4-coupled equations when the three components
xt, %%, x2 are mixed and sampled kYfor the threshold values
T,=0.98, T,=0.987,T;=0.994 ofT, = 0.998.T, = 0.9987,

T3 = 0.9994.

iter

In the same way an approximation of the correlation

distribution functionCy (X, y) is to obtained numerically
building a regular partition dfl ? small squares (boxes) 4t
imbedded in the phase subspadex{’)

ri,j = [S ’ 3+l[ x [t] vtj+1[ ’ IvJ = O!M -2 (19)
fvaj = [Swa, A X[, e , j=0,M=2  (20)
lim-1 = [S ’ S-HL[>< [tM-l ’ 1] ’ I = Ol M — 2 (21)

rmomr = [Svers 1 X [tmea o 1] (22)

S:_1+%ﬂh:_1+%quj:am (23)

the measure of the area of each box is

(%-s)[{tm-ti):(i

Mf (24)

0,5
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-1,5
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-2,5

log(Eac1)
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-3,5

-4 -
45

5 6 7 8 9 10 11
LOg(Nsampliter)

T T
2 3 4

—o6— Thresholds 0,98 ; 0,987; 0,994
—l— Thresholds 0,998 ; 0,9987; 0,9994

Figure 1. Error of E, (N, NSampl,,) Ngis=10°x10%,

OnceN + Q iterated pointfy , x) belonging to these boxes NSamplie= 10°to 10°, g=i.&, §=10"

are collected the relative number of iterateish wespect to
N/M 2 in each boxr;; represents the valu€y (s, ;). The
approximated probability distribution functi@y (x, y) defined
here is then a-dimensional step function, witfi * steps. Asv
can take several values in the next sections, fimade

CM,N(S:t'):%MWZ(#I},j) (25)

where #;; is the number of iterates belonging to the squgre
and the constant 1/4 allows the normalisatiorcf (x, y) on

the squard?

Cun(x¥)=Cyy(s.t) Oxy)Or,  (26)

The discrepancieECl in norm Ly betweenc, | (x,y)

iter

and the uniform distribution on the square is defityy

Ecl(Ndisc’ Niter) = HCNd,E, Niter (X’ y) - O'Zi‘g (27)

Ec, (Ngg, NSampl,,.)

4-coupled
Niter NSampliter equation

T, = 0.998,

T,=0.9987,T,=0.9994

10° 93 0.68924731
10° 1015 0.25881773
10’ 10,139 0.086706776
10° 100,465 0.026815309
10° 1,000,549 0.0089111078
10%° 9,998,814 0.0027932033
10t 100,001,892 0.00085967214
10% 999,945,728 0.0002346851
10" | 10,000,046,137 0.000073234736

Table 1. Error of £, (N, NSampl,,) for a system of 4

coupled-equations when the three componghts , x* are
mixed and sampled by’ for the threshold valudg = 0.998,
T, = 0.9987 T, = 0.9994.
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I1l. DOUBLE TRHESHOLDCHAOTIC SAMPLING

A. Improved CPRNG

On can again improve the CPRG previously introdweittl
respect to the infinity norm instead of the &r L, norms
because the _norm is more sensitive than the others to reveal /

the concealed. For this aim, consider first that in the phase

space(XL' Xlnﬂ) the graph of the chaotically sampled chaotic
numbers is a mix of the graphs of all & (Fig. 2).

It is obvious as showed on Fig. 3 thatfer 1ifM=1o0r2, Figure 4. Regions where the autocorrelation distribution
AC, (X, Y) is constant and normalized on the square hencﬁcM,N(x, y) is constant for the symmetric tent nfagwe shaded,

Exo (M,N)=E,,(M,N)=E,.,(M,N)=0. for M =4. (The square on the bottom left of the graph shbws

The autocorrelation function is different fromaeonly if ~ SiZ€ Of therijbox). AC,,  (x,y) vanishes on the white regions.
M > 2 (Fig. 4).

1.0

£0)
[a]

<L
\

I
.

- 10

\
2 Figure 5. In shaded regions the autocorrelation distribution
= AC,, (X, Y) is constant for the symmetric tent nfa@ on the

X interval [-1, 1] forM = 1, 2 and 4.
Figure 2. Graphs of the symmetric tent miap® andf © on the
interval [-1,1].

1.00
- 0.75
— 0.50% =
2
0.00 =
0.2

Figure 6. Regions where the autocorrelation distribution
AC,, (x,y) is constant for the symmetric tent maff’ are
Figure 3. In shaded regions the autocorrelation distributiogn,qed foM = 8.

AC, (X, y) is constant for the symmetric tent mbpn the

interval [-1, 1] forM = 1 or 2.

B. Algorithmand Numerical Results

In the same way as displayed on Fig. 5, 6 and YVe describe again the algorithm of the double tioleschaotic

E_ (M.N)=E,..(M.N)=E,.,(M,N)=0 for f OifF M < 2. sampling in the case diccljpiled e@a@ns.
ace (Vs AcL UV Ac2 i Consider the sequentﬁﬁo, Xph X0 ooy X s X ) we want to mix

Hence for a give, if we cancel the contribution of all thé& q? Mo+

for 2' < M, it is not possible to identify the genuine étionf. ~ and sample. For eactyl there existsng. in the original
sequence. We introduce a second thresidId] N and then
we define:

[ it x0T and n-ng >N
x, =1 iff x!O[T,T[ and n-n,, >N’
x; iff x!0[T,, 4 and n-n, ,>N'

(28)

(9-1
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Figure 7. Regions where the autocorrelation distribution 5 .

AC, (x,y) is constant for the symmetric tent maf are
shaded foM = 16.

As shown previously [9] the errors in br L, norms decrease
with the number of chaotic points (as in the law lafge
numbers) and conversely increase with the nurivbef boxes

used to defineac,,  (x,y)- It is the same for the error ib,,

norm. Fig. 8 shows that when M is greater thjrt sequence
defined by (28) behaves better than the one defigd®).

Ndis:

2 4 8 16 32 64 128 266 512 1024

100

10

Exc

0,1

0,01

0,001

0,0001

—#—Threshold T1 =09, iter=10"9
- -® - Thresholds T1=10.9 and N' = 20, iter=10*3

Figure 8. Error of £, (N, NSampl,_,) Nais= 2" to 2°°,

NSamplie,= 10°, thresholds T=0.9 and N’ =2G;=i.&,
&= 1014.

Fig. 9 shows that when the number of chaotic pantieases
the errorL, decreases drastically. If N’ > 100, it is necessary

use a huge grid of x2'°° boxes splitting the squadéin order
to find a trace of thgenuine functiorf. This is numerically
impossible with double precision numbers. Then ¢haotic
numbers appear as random numbers.

Others numerical results show the high-potenchie$és new
CPRNG. Due to limitation of this article, they wlile published
elsewhere.

IV. CONCLUSION

Using a double threshold in order to sample a éhaot
sequence, we have improved with respect to thaiipfnorm
the CPRNG previously introduced. When the valuethsf

5

second threshold N’ is greater than 100, it is isgiigle to find
the genuine function used to generate the chaatitbers. The
new CPRNG family is robust versus the choice of weak
parameter of the system for < € < 10°, allowing the use of
this family in several applications as for exampgleaotic

cryptography.

Nuisc
512 1024

10

1 —— e

0,1 —

0,01

0,001

0,0001

0,00001

0,000001

- 4 - Threshold T1=0.9 and N'=20, iter = 10°9
—e— Threshold T1=0.9 and N'= 20 , iter = 10*10

—&—Threshald T1=0.9 and N'= 20 , iter= 1011

Figure 9. Error of E, (N, ,NSampl,_) Nas= 2 to 2%,

NSamplier= 10° to 10", thresholds T=0.9 and N’ =20,
s=i.g, §=10%

iter
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