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Abstract: It is well known that for uncertain linear systems, a static output feedback sliding
mode controller can only be determined if a particular triple associated with the reduced order
dynamics in the sliding mode is stabilizable. This paper shows that the static output feedback
sliding mode control design problem can be solved for a broader class of systems if a known
delay term is deliberately introduced into the switching function. Effectively the reduced order
sliding mode dynamics are stabilized by the introduction of this artificial delay.
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1. INTRODUCTION

In many practical situations, all the states are not available
to the controller. In some circumstances it is impossible
or prohibitively expensive to measure all of the process
variables. With this in mind, many authors have developed
methods to control systems only using output feedback, of
which one approach is the output feedback sliding mode
control paradigm Edwards et al. [2003].

The idea developed in this paper is to broaden the class of
systems for which a static output feedback based sliding
mode controller can be developed based on a recent result
from time delay systems. In Gu [2001], Fridman [2006], the
authors show that for some systems, the presence of delay
can have a stabilizing effect. This affords the possibility of
taking a system which is not stabilizable by static output
feedback without delay and finding a constant delay τ
strictly greater than 0 such that the system is stable.
In this case, a stabilizing delay is introduced into the
dynamics to effect output feedback stability.

This design concept is not new. Several authors have
considered this possibility Niculescu and Abdallah [2000],
Niculescu et al. [2003], Michiels et al. [2004] and it has
been shown that introducing a delay in an output feed-
back controller can stabilize a system which cannot be
stabilized without delay. The novelty in this paper is in
overcoming the output feedback stabilizability assumption
of Edwards and Spurgeon [1995] in the design of sliding
mode controllers by static output feedback. The authors
propose a new switching function for robust control which
contains an additional term which is linear in the delayed

1 This work was supported by an EPSRC Platform Grant reference
EP/D029937/1 entitled ‘Control of Complex Systems’.

output developed in Seuret et al. [2007]. This is shown
to be constructive in stabilizing the reduced order sliding
mode dynamics. It is then shown that a sliding motion
can be reached in finite time. Note that in this article the
control law involves only a delay term and does not involve
an amalgamation of delayed and non delayed terms.

The article is organized as follows. The second section
presents the problem formulation. Section three formulates
the definition of a new sliding function which contains an
artificial delay. Section four deals with the exponential
stabilization of non-delayed systems by a sliding mode
controller including delay. In the last section, a numerical
example demonstrates the design of the gains and the
effect of the choice of the delay in the sliding mode
controller.

Throughout the article, the notation P > 0 for P ∈
IR n×n means that P is a symmetric and positive definite
matrix. For the sake of simplicity, a time-varying matrix
D(t) will be written as Dt.The symbol In represents the
n × n identity matrix. The notations |.| and ‖.‖ refer to
the Euclidean vector norm and its induced matrix norm,
respectively. For any function φ from C1([−τ ; 0], Rn),
we denote |φ|τ = sups∈[−τ, 0](|φ(s)|). When there is no

confusion, we write x(t) as x.

2. PRELIMINARIES AND PROBLEM
FORMULATION

Consider the linear uncertain system :

ẋ(t) = Atx(t) + Bt(u(t) + ψ(t, y))
y(t) = Cx(t)

(1)

where x ∈ Rn, u ∈ Rm and y ∈ Rp with m < p < n,
corresponds to the state, control and output variables. The



function ψ ∈ Rm represents the matched disturbances. It
is assumed there exists a known function Ψ2 such that :

‖ψ(t, y)‖ ≤ Ψ2(t, y) (2)

The matrices At ∈ Rn×n, Bt ∈ Rn×m, C ∈ Rp×n have
appropriate dimension. It is also assumed that the input
and the output matrices Bt and C are full rank and it is
assumed rank(CBt) = m, for all t ∈ R. In addition and
based on Edwards and Spurgeon [1995, 1998a], it is also
assumed that there exists a change of coordinates T such
that, for all t > 0,

TBt =

[

0
Bt

2

]

Then the system has the following representation:

ẋ(t) =
[

A
t
11 A

t
12

A
t
21 A

t
22

]

x(t) +
[

0

B
t
2

]

(u(t) + ψ(t, y))

y(t) = [ 0 T ]x(t)

where it is assumed that the time-varying matrices have
the following form for all k, l = 1, 2:

At
kl = A0

kl +
∑

N
i=1λi(t)A

i
kl,

Bt
2 = B20 +

∑

N
i=1λi(t)B

i
2

(3)

where A0
11 ∈ R(n−m)×(n−m), B20 ∈ Rm×m is non singular

and T ∈ Rp×p is an orthogonal matrix. The matrices
have appropriate dimensions. It is assumed that, for all
i ∈ {1, .., N}, the pair of matrices (A0

kl + Ai
kl, B20) is

controllable. The scalar functions λi are such that:

∀i = 1, .., N, λi(t) ∈ [0, 1],

N
∑

i=1

λi(t) = 1. (4)

As it is possible to remove some uncertainties, the system
is rewritten as:

ẋ(t) =
[

A
t
11 A

t
12

A
t
21 A

0
22

]

x(t) +
[

0

B20

]

(u(t) + ψ0(t, y, u))

y(t) = [ 0 T ]x(t)
(5)

where the matched uncertainties are represented by:

ψ0(t, y, u) = B−1
20

(

N
∑

i=1

λi(t)(A
i
22x2(t) + Bi

2u(t))

)

+ψ(t, y)

In Edwards and Spurgeon [1995] a sliding surface S = {x ∈
Rn : FCx(t) = 0} is proposed, where F = F2[K Im]TT ,
K ∈ Rm×(p−m) and F2 ∈ Rm×m is a non singular matrix.
The sliding motion is governed by the choice of K. If
a further coordinate change is introduce based on the
nonsingular transformation z = T̂ x with T̂ defined by

T̂ =
[

In−m 0

KC1 Im

]

with
C1 = [0(p−m)×(n−p) I(p−m)]

Then as argued in Edwards and Spurgeon [1995], the
dynamics of the reduced order sliding motion is governed
by:

ẋ1(t) = (At
11 − At

12KC1)x1(t) (6)

To show the motivation of such a study, consider initially
constant parameters, ie. λi(t) = 0 for all i = 1, .., N and
t ≥ t0. The fictitious system (A0

11, A
0
12, C1) is assumed to

be output stabilizable i.e., there exists a matrix K such
that the matrix A0

11 − A0
12KC1 is Hurwitz. It is shown in

Edwards and Spurgeon [1995] that a necessary condition

for (A0
11, A

0
12, C1) to be stabilizable is that the invariant

zeros of (A, B,C) lie in the open left half-plane. However
the design of a gain K such that the matrix A0

11−A0
12KC1

is Hurwitz is not always straightforward or even possible.
Consider for instance the system (6) with

A0
11 =

[

0 −2

1 0.1

]

, A0
12 =

[

−1

0

]

, C1 = [ 0 1 ]

The output feedback stabilization problem in this case
becomes one of finding a scalar k such that the ma-

trix
[

0 −2 + k

1 0.1

]

has strictly negative eigenvalues, which is

clearly not possible. In this situation some authors Bag
et al. [1997], Edwards and Spurgeon [1998b], Edwards
et al. [2003] have employed a compensator in order to
stabilize the system. However these methods increase the
order of the controller and have an associated computa-
tional overhead both in terms of design and implementa-
tion. The proposed method seeks to introduce an artificial
delay in the system such that the system can be stabilized
by static output feedback without the need to introduce a
compensator.

3. DESIGN OF A NEW SLIDING MODE SURFACE
WITH DELAY

In this section, the design of a new type of sliding surface
will be discussed. The objective is to define a sliding
surface of the form of S but which introduces a delay in
the reduced order dynamics. Consider

S′ = {x : FCx(t) + FτCx(t − τ) = 0} (7)

where as before the matrix F = F2[K Im]TT and where
Fτ = F2[Kτ 0m]TT . Here without loss of generality, the
matrix F2 and T are chosen as identity. In this definition
τ is an artificial fixed and known delay which has to be
chosen to stabilize the reduced order system and represents
a design parameter. The existence of such a delay and
constructive methods to choose it will be discussed in a
latter section. Instead of T̂ , consider the coordinate change
x 7→ Tτx:

x̃1(t) = x1(t)
x̃2(t) = x2(t) + KC1x1(t) + KτC1x1(t − τ)

By construction the sliding function associated with S′ is
s(t) = x̃2(t). This leads to

˙̃x1(t) = (At
11 − At

12KC1)x̃1(t) + At
12x̃2(t)

−At
12KτC1x̃1(t − τ)

˙̃x2(t) = (At
21 + KC1A

t
11)x̃1(t)

+KτC1A
t−τ
11 x̃1(t − τ) + (A0

22 + KC1A
t
12)x̃2(t)

+KτC1A
t−τ
12 x̃2(t − τ) + B20(u(t) + ψ0(t, y, u))

−(A0
22 + KC1A

t
12)KC1x̃1(t)

−KτC1A
t−τ
12 KτC1x̃1(t − 2τ) − (KC1A

t
12Kτ

+A0
22Kτ + KτC1A

t−τ
12 K)C1x̃1(t − τ)

(8)

Remark 1. Note that the system (8) is a particular delay
system. Since the delay τ is artificially introduced, it is
known and can be chosen to improve the stability of the
closed-loop system.

Remark 2. Note that the delayed sliding motion produces
a more complicated system since the resulting equation
contains several delayed terms and two different delays, τ
and 2τ .



Note that the last four lines of the previous equation only
depend on the output information and thus the following
output feedback control law can be defined:

u(t) = −(B20)
−1{(A0

22 + KC1A
0
12)x̃2(t)

+KτC1A
0
12x̃2(t − τ) + ν − (A0

22

+KC1A
0
12)KC1x̃1(t) − (KC1A

0
12Kτ

+A0
22Kτ + KτC1A

0
12K)C1x̃1(t − τ)

−KτC1A
0
12KτC1x̃1(t − 2τ) − Glx̃2(t)}

(9)

where Gl is a Hurwitz matrix. The closed loop system
satisfies the following equations:

˙̃x1(t) = (At
11 − At

12KC1)x̃1(t)
−At

12KτC1x̃1(t − τ) + At
12x̃2(t)

˙̃x2(t) = Glx̃2(t) + (At
21 + KC1A

t
11)x̃1(t)

+KτC1A
t
11x̃1(t − τ) − ν + ψ1(t, y, u)

(10)

where
ψ1(t, y, u) =

∑

N
i=1λi(t)[KC1A

i
12x̃2(t) + KC1A

i
12KC1x̃1(t)

−KC1A
i
12KτC1x̃(t − τ)] +

∑

N
i=1λi(t − τ)

[KτC1A
i
12x̃2(t − τ) + KτC1A

i
12KC1x̃1(t − τ)

−KτC1A
i
12KτC1x̃(t − 2τ)] + B20ψ0(t, y, u)

As ψ1 only depends on t, y and u, there exists a positive
function Ψ02 such that:

‖ψ1(t, y, u)‖ ≤ ‖B20‖Ψ2(t, y, u) + Ψ21(t, y, u)

Now define the discontinuous sliding function ν by:

ν =







ρ(t, y, u)
Q2x̃2(t)

‖Q2x̃2(t)‖
if x̃2(t) 6= 0

0 otherwise

where Q2 is a symmetric positive definite matrix in Rm×m

and

ρ(t, y, u) = ‖B20‖Ψ2(t, y, u) + Ψ21(t, y, u) + δ (11)

where δ is a positive scalar gain.

Remark 3. Note that the control law (9) does not have a
heavy computational overhead.

4. STABILIZATION OF THE CLOSED LOOP
SYSTEM

This section focusses on the stability of the whole system
(10). In particular, it needs to be established that x̃2 = 0
in finite time, i.e. a sliding motion is achieved.

4.1 Exponential Stability Condition

Theorem 1. System (10) is exponentially stable for given
output feedback gains K and Kτ with decay rate α if
there exist P1 > 0, P2, P3, Sp = ST

p , Qp, Rpq = RT
qp,

p, q = 0, ..., N̄ in R(n−m)×(n−m) and Q2 > 0 ∈ Rm×m

which satisfy LMI’s (12) and (13) with h = τ/N̄ and for
all i = 1, .., N :











Ξ
i
α D

s
D

a

[

(Λ
i
21 + KC1Λ

i
11)

T
Q2 + P1Λ

i
12

0

e
ατ

(Kτ C1Λ
i
11)

T
Q2

]

∗ −Rd − Sd 0 0

∗ ∗ −3Sd 0

∗ ∗ ∗ Q2Gl + G
T
l Q2 + 2αQ2











< 0

(12)
[

P1 Q̃

∗ R̃ + S̃

]

> 0 (13)

where the matrix Ξi
α is given by:

[

Ψi PT
[

0n

e
ατ

Λ
i
1

]

−
[

QN

0n

]

∗ −SN

]

, (14)

where ∀i = 1, .., N and (k, l) ∈ [1, 2]2:

Ψi =
[

Q0 + Q
T
0 + S0 0

0 0

]

+ PT
[

0 In

Λ
i
0 + αIn −In

]

+
[

0 In

Λ
i
0 + αIn −In

]T

P,

Λi
0 = Λi

11 + Λi
12KC1, Λi

1 = −Λi
12KC1,

Λi
kl = A0

kl + Ai
kl,

and for p, q = 1, .., N̄

P =
[

P1 0

P2 P3

]

, Q̃ = [Q0 Q1 . . . QN̄ ],

S̃ = diag{1/hS0, 1/hS1, . . . , 1/hSN̄},
Sd = diag{S0 − S1, ..., SN̄−1 − SN̄},

R̃ =







R00 R01 . . . R0N̄

R01 R11 . . . R1N̄

.

.

.
.
.
.

. . .
.
.
.

RN̄0 RN̄1 . . . RN̄N̄






,

Rd =







Rd11 Rd12 . . . Rd1N̄

Rd21 Rd22 . . . Rd2N̄

.

.

.
.
.
.

. . .
.
.
.

RdN̄1 RdN̄2 . . . RdN̄N̄






,

Ds = [Ds
1 Ds

2 . . . Ds
N̄ ],

Da = [Da
1 Da

2 . . . Da
N̄ ],

Rdpq = h(R(p−1)(q−1) − Rpq),

Ds
p =

[

(R0(p−1) + R0p) − (Qp−1 − Qp)

h/2(Qp−1 + Qp)

−h/2(RN̄(p−1) + RN̄p)

]

,

Da
p =

[

−h/2(R0(p−1) − R0p)

−h/2(Qp−1 − Qp)

h/2(RN̄(p−1) − RN̄p)

]

.

Proof. As in Seuret et al. [2004], consider new variables
x̃1α(t) = x̃1(t)e

αt and x̃2α(t) = x̃2(t)e
αt. The new closed-

loop system satisfies the following equations:
˙̃x1α(t) = (At

11 − At
12KC1 + αIn−m)x̃1α(t)

−eατAt
12KτC1x̃1α(t − τ) + At

12x̃2α(t)
˙̃x2α(t) = (Gl + αIm)x̃2α(t) + (At

21

+KC1A
t
11)x̃1α(t) − eαt(ν − ψ1(t, y, u))

+eατKτC1A
t−τ
11 x̃1α(t − τ)

(15)

Consider the Lyapunov-Krasovskii functional:

Vα(t) = V1α(t) + V2α(t),

where V2α(t) = x̃T
2α(t)Q2x̃2α(t) and:

V1α(t) = x̃T
1α(t)P1x̃1α(t) + 2x̃T

1α(t)

∫ 0

−τ

Q(ζ)x̃1α(t + ζ)dζ

+

∫ 0

−τ

x̃T
1α(t + ζ)S(ξ)x̃1α(t + ζ)dζ

+

∫ 0

−τ

∫ 0

−τ

x̃T
1α(t + s)R(s, ζ)dsx̃1α(t + ζ)dζ

(16)
where P1 > 0, Q(ζ) ∈ R(n−m)×(n−m), R(s, ξ) = RT (ζ, s) ∈
R(n−m)×(n−m), S(ζ) ∈ R(n−m)×(n−m), and Q,R, S are
continuous matrix functions. From Gu et al. [2003] (p.
185) V1α is positive definite if the LMI (13) holds. Then
the proof follows along the lines of Fridman [2006] using
a descriptor representation, Fridman and Shaked [2002],
and discretization Gu [2001]. Differentiating the Lyapunov
functional V1α along the trajectories of (15) and using the
convexity of functions λi leads to:



V̇1α(t) = 2 ˙̃xT
1α(t)

[

P1x̃1α(t) +

∫ 0

−τ

Q(ζ)x̃1α(t + ζ)dζ

]

+2x̃T
1α(t)

∫ 0

−τ

Q(ζ) ˙̃x1α(t + ζ)dζ

+2

∫ 0

−τ

∫ 0

−τ

˙̃xT
1α(t + s)R(s, ζ)dsx̃1α(t + ζ)dζ

+2

∫ 0

−τ

˙̃xT
1α(t + ζ)S(ζ)x̃1α(t + ζ)dζ

(17)

Integrating the expression above by parts, the following
equality can be established as in Fridman [2006]:

V̇1α(t) =

N
∑

i=1

λi(t)
{

ξT (t)Ξi
αξ(t)

+2 ˙̃xT
1α(t)

∫ 0

−τ

Q(ζ)x̃1α(t + ζ)dζ

−

∫ 0

−τ

xT
α(t + ζ)Ṡ(ζ)x̃1α(t + ζ)dζ

−

∫ 0

−τ

∫ 0

−τ

x̃T
1α(t + s)

(

∂

∂s
R(s, ζ)

+
∂

∂ζ
R(s, ζ)

)

dsx̃1α(t + ζ)dζ

+2x̃T
1α

∫ 0

−τ

[

−Q̇(ζ) + R(0, ζ)
]

x̃1α(t + ζ)dζ

−2x̃T
1α(t)

∫ 0

−τ

R(−τ, ζ)x̃1α(t + ζ)dζ

}

(18)

where ξ(t) = col{¯̃x1α(t), x̃1α(t−τ)} and Ξi
α has the form in

(14) with Q(0), Q(−τ), S(0) and S(−τ) instead of Q0, QN ,
S0 and SN respectively. The Lyapunov functional is now
expressed in an appropriate representation to apply the
discretization. The continuous matrix functions Q(ζ) and
S(ζ) are chosen to be linear within each interval and the
continuous matrix function R(s, ζ) is chosen to be linear
within each triangle. The proposed matrix functions are:

Q(θp + βh) = (1 − β)Qp + βQp−1

S(θp + βh) = (1 − β)Sp + βSp−1

R(θp + βh, θq + γh) =
{

(1 − β)Rpq + γR(p−1)(q−1) + (β − γ)R(p−1)q, β ≥ γ

(1 − γ)Rpq + βR(p−1)(q−1) + (γ − β)R(p−1)q, β ≤ γ

for 0 ≤ β ≤ 1 and 0 ≤ γ ≤ 1. Simple definitions of the
derivative of the matrix functions can be obtained which
are, for appropriate values of p and q:

Ṡ(ξ) = 1/h(Sp−1 − Sp), Q̇(ξ) = 1/h(Qp−1 − Qp)
∂

∂s
R(s, ξ) +

∂

∂ξ
R(s, ξ) = 1/h(R(p−1)(q−1) − Rpq)

(19)

From Fridman [2006], differentiating V1α along the trajec-
tory of (15a) leads to the following inequality:

V̇1α ≤
∑

N
i=1λi(t)

{

ξT (t)Ξi
αξ(t) −

∫ 1

0

φT (β)Sdφ(β)dβ

+2ξT (t)

∫ 1

0

[Ds + (1 − 2β)Da]φ(β)dβ

−

∫ 1

0

∫ 1

0

φT (β)Rdφ(γ)dβdγ + x̃T
1α(t)P1Λ

i
12x̃2α(t)

}

(20)
where Ξi

α is defined in (14) and the functions φ(β) =
col{x̃1α(t− h + βh), .., x̃1α(t−Nh + βh)}. Differentiating

V2α along the trajectory of (15b) leads to:

V̇2α(t) ≤ −x̃T
2α(t)Q2e

αt(ν + ψ1(t, y, u))
∑

N
i=1λi(t)

{

x̃T
2α(t)Q2[(A

t
21 + KC1A

t
11)x̃1α(t)

+eατKτC1A
t−τ
11 x̃1α(t − τ)]

x̃T
2α(t)(GT

l Q2 + Q2Gl + 2αIm)x̃2α(t)
}

(21)

Then by combining (20) and (21) and by defining ξ′(t) =

col{x̃1α(t), ˙̃x1α(t), x̃1α(t − τ), x̃2α(t)}, the following in-
equality holds:

V̇α(t) ≤
∑

N
i=1λi(t){

ξ′T (t)





Ξ
i
α

[

(Λ
i
21 + KC1Λ

i
11)

T
Q2 + P1Λ

i
12

0(n−m)×m

e
ατ

(Kτ C1Λ
i
11)

T
Q2

]

∗ G
T
l Q2 + Q2Gl



 ξ′(t)

−

∫ 1

0

φT (β)Sdφ(β)dβ

−

∫ 1

0

∫ 1

0

φT (β)Rdφ(γ)dβdγ

+2ξT (t)

∫ 1

0

[Ds + (1 − 2β)Da]φ(β)dβ

}

−xT
2α(t)Q2e

αt(ν − ψ1(t, y, u))

(22)

Note that from (11)
−xT

2α(t)Q2e
αt(ν −ψ1(t, y, u)) ≤ −δeαt‖Q2x2α(t)‖. The

last term is thus negative. Applying Proposition 5.21 from
Gu et al. [2003] to (22) and using the convexity of λi, it

can be concluded that V̇ (t) < 0 if LMI’s (12) hold for all
i = 1, .., N .

4.2 Reachability to the sliding manifold in finite time

Corollary 1. An ideal sliding motion takes place on the
surface x̃2(t) = 0 in the domain

Ω = {(x̃1, x̃2) ∈ [t − τ, t] 7→ Rn−m × Rm :

max
i,j=1,..,N

(‖(Λi
21 + KC1Λ

i
11)‖ + ‖KτC1Λ

j
11‖)|x̃1|τ < δ − η}

where η is a small scalar satisfying 0 < η < δ.

Proof. Consider the following Lyapunov function Vs(t) =
x̃T

2 (t)Q2x̃2(t). By differentiating Vs along the trajectories
of (10b), it follows that:

V̇s(t) = x̃T
2 (t)(Q2Gl + GT

l Q2)x̃2(t)
+2x̃T

2 (t)Q2

[

(At
21 − KC1A

t
11)x̃1(t) − ν

+ψ1(t, y, u) − KτC1A
t−τ
11 x̃1(t − τ)

]

As the matrix Gl is Hurwitz, Q2 is chosen such that
Q2Gl + GT

l Q2 < 0. If the system satisfies the conditions
from Theorem 1, the state x̃1 converges to the solution
x̃1 = 0 with an exponential decay rate. Then the domain
Ω is reached in finite time. Since the gain ρ of the
sliding function is defined as ρ(t, y, u) = ‖B20‖Ψ2(t, y, u)+
Ψ21(t, y, u) + δ, the following inequality holds:

V̇s(t) ≤ −η
√

Vs(t)

This conclude the proof.

Remark 4. As usual, the problem of designing the output
feedback gain is not straightforward. Moreover LMI (12)
is not an appropriate form for synthesis purposes because
the gains K and Kτ appear in different ways in Ξα than in
(KC1Λ

i
11)

T Q2 and (KτC1Λ
i
11)

T Q2. Congruence and other
classical LMI transformations will probably not facilitate



constructive conditions. A constructive method at this
time is to test the stability of the closed-loop system for a
given set of values of K and Kτ as shown in the following
example.

5. EXAMPLE

Consider the non-delayed system (5) with:

At
11 =

[

0 −2

1 0.1

]

, At
12 =

[

−1

0.1(1 − cos(x1))

]

,

At
21 = [ −0.1 −1 ] , At

22 = [ 1 ] ,

BtT = [ 0 0 1 ]
T

, C =
[

0 1 0

0 0 1

]

.

As in Edwards and Spurgeon [1995], this system is not
output stabilizable using traditional static (ie. non delayed
output feedback). The objective here is to design the
controller (9) with appropriate gains K, Kτ ∈ R and
an artificial delay τ such that the closed-loop system is
exponentially stable with decay rate α.

5.1 Design of the output feedback

This section proposes a method to obtain the optimal
controller (K, Kτ , τ). The idea is to test if, for a set of
values of K and Kτ , the LMIs from Theorem 1 have a
solution and if it is possible to find the delay which ensures
the greatest exponential decay rate.

Theorem 1 can only be satisfied when K lies in the interval
[−4; 2] and Kτ in [0; 4]. For each value of the gains K
and Kτ , an optimization process is used to obtain the best
value of α by tuning τ upwards from zero until the LMIs
are not satisfied.

−4 −3 −2 −1 0 1 20 0.5 1 1.5 2 2.5 3 3.5 4
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Fig. 1. Maximum decay rate α with respect to K and Kτ

for N = 1

Figure 1 shows the relationship between the output feed-
back gains and the decay rate α using Theorem 1 with
N = 1. It appears that the solution design a direction
of the plane defined by (K, Kτ ). The length of the set
increase when the discretization number N also increase.
Figure 1 also shows that the graph has a maximum at
K = −1.7 and Kτ = 2.8. This selection of gains K and
Kτ ensures the system is exponentially stable with a decay
rate α = 0.254. The corresponding delay is τ = 0.25.

For N = 3 the same gains are K = −1.7 and Kτ = 2.8.
The corresponding delay is τ = 0.425. For such parameters

the decay rate is α = 0.445. Theorem 1 also ensures for
N = 6 that the same gains exponentially stabilize the
system (5) with a decay rate α = 0.538 with τ = 0.425.

Remark 5. Starting from N = 2, the computation of
the conditions from Theorem 1 become very heavy. The
optimization problem has not been tested for N ≥ 3.

5.2 Simulation results
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Fig. 2. Simulation results for K = −1.7, Kτ = 2.8 and
τ = 0.425s

In the results which follow system (5) is controlled using
(9) with K = −1.7, Kτ = 2.8 and τ = 0.425.

Figure 2 shows the state, the input and the sliding func-
tion. The state converges exponentially to x(t) = 0 with
an exponential decay rate α = 0.538. The sliding function
converges to s(t) = 0 in finite time. The evolution of the
control signal is also shown in Figure 2.

The robustness with respect to the delay is shown in
Figure 3. Assuming that the gains K and Kτ are still
K = −1.7 and Kτ = 2.8, Figure 3 presents several
simulations for different delays. It can be seen that the
delay has a influence on the stability. For small delays
(τ = 0.01 or τ = 0.9), system (5) is unstable. However,
when the delay is sufficiently close to the optimal delay
(τ = 0.3 or τ = 0.6), system (5) becomes stable. It can
also be seen in figures 3 that the decay rates for τ = 0.3
or τ = 0.6 are less than in the optimal delay case shown in
figure 2. This proves the efficiency the proposed method.

6. CONCLUSION

A new sliding mode controller has been suggested for
systems for which finding a traditional static output feed-
back sliding mode controller is not possible. The con-
troller introduces a stabilizing delay in the closed loop
system. The controller is simple and does not require heavy
computation and it ensures robust exponential stability
of the closed-loop system. An example has been used to
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Fig. 3. Simulation results for K = −1.7, Kτ = 2.8 and
different values of τ

demonstrate a method to design the gains and the delay
of the controller. It also shows that this controller still
stabilizes the system even when system has vertices which
have invariant zeros on the right side of the complex plane.
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