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This paper deals with exponential stabilization of linear systems with delay using a state feedback sliding mode controller. The approach is based on Lyapunov-Krasovskii techniques and uses a descriptor representation. The exponential stability properties are proved using an appropriate change of variables associated with a polytopic representation. The system under consideration is subject to unknown, time-varying but bounded delays. The results are given in terms of LMIs. An example is given to show the efficacy of the approach.

I. INTRODUCTION

Robust control of time-delay systems is currently a topic of considerable research interest [START_REF] Niculescu | Delay effects on stability. a robust control approach[END_REF], [START_REF] Richard | Time delay systems: an overview of some recent advances and open problems[END_REF]. Time-delays can be considered as a major cause of instability and poor performance in dynamic systems. Several results have been established for specific systems representations. Cases involving known or unknown, constant or time-varying delays, generally reduce to an LMI optimization problem. The majority of results give criteria for asymptotic stability [START_REF] Richard | Time delay systems: an overview of some recent advances and open problems[END_REF] but some applications such as observer design, networked control, tele-operated systems or chained systems often require exponential convergence, in order to ensure an adequate speed of response. Recently, some authors have investigated the exponential stability of delayed systems [START_REF] Hou | On an estimate of the decay rate for applications of razumikhin-type theorems[END_REF], [START_REF] Lehman | delay independant stability coditions and decay estimates for time-varying functionnal differential equations[END_REF], [START_REF] Liu | Robust exponential stabilization for uncertain systems with state and control delay[END_REF], [START_REF] Niculescu | Robust exponential stability of uncertain systems with time-varying delays[END_REF], [START_REF] Xu | New exponential estimates for timedelay systems[END_REF]. However, these results are limited to the case of constant delay. In many situations, such as in the communication lines used in networked control, the delays cannot be reduced to the constant case. Recently [START_REF] Seuret | Robust exponential stabilization for systems with time-varying delays, 5th Workshop on Time Delay Systems[END_REF] and [START_REF] Seuret | Sampled-data exponential stabilization of neutral systems with input and state delays[END_REF] propose a method to take into account the variation of the delay in the stability analysis, by using a change of variable and an appropriate polytopic representation [START_REF] Xia | Robust control of state delayed systems with politopic uncertainties via parameter-dependent lyapunov functionals[END_REF].

Sliding mode control is a particular type of variable structure control. Variable structure control systems (VSCS) are characterised by a suite of feedback control laws and a decision rule. The decision rule, termed the switching function, has as its input some measure of the current system behaviour and produces as an output the particular feedback controller which should be used at that instant in time. In sliding mode control, VSCS are designed to drive and then constrain the system state to lie within a neighbourhood of the switching The Authors are with the Control and Instrumentation Research Group, Department of Engineering, University of Leicester, University Road, Leicester, LE1 7RH, UK as389, mi42, eon,ce14@le.ac.uk. function. There are a number of advantages to this approach. Firstly, the dynamic behaviour of the system may be tailored by the particular choice of switching function. Secondly, the closed-loop response becomes totally insensitive to a particular class of uncertainty in the system.

The application of the sliding mode control methodology to the problem of systems with time-delay is not new, but the literature is limited. Generically it is a far from trivial problem involving the combination of delay phenomenon with relay actuators, and has the potential to induce oscillations around the sliding surface during the sliding mode. The problem of the development of sliding mode controllers for operation in the presence of single or multiple, constant or time-varying state delays has been solved by Gouaisbaut et al, [START_REF] Gouaisbaut | Robust control of dealy systems: a sliding mode control design via LMI[END_REF]. This uses the usual regular form method of solution and the uncertainty is assumed to be matched, ie. the class of uncertainty is implicit in the range of the input channels and will be rejected by an appropriately designed sliding mode control strategy. It is important to note that in [START_REF] Gouaisbaut | Robust control of dealy systems: a sliding mode control design via LMI[END_REF] full state availability is assumed. This problem has also been considered by Li and DeCarlo [START_REF] Li | Robust sliding mode control of uncertain time delay systems[END_REF] where a class of uncertain time delay systems with multiple fixed delays in the system states are considered. The paper considers unmatched and time varying parameter uncertainties together with matched and bounded external disturbances, but again full state information is assumed to be available to the controller. Most recently, the problem has been considered by Jafarov [START_REF] Jafarov | Robust sliding mode controllers design techniques for stabilization of multivariable time-delay systems with parameter perturbations and external disturbances[END_REF], who again considers an uncertain system in the presence of fixed state-delay, and again full-state feedback is assumed. For systems where input delays are present, the problem of sliding mode control is very much open. Limited work is available such as the application specific contribution of Choi and Hedrick [START_REF] Choi | An observer based controller design method for improving air/fuel characterisation of spark ignition engines[END_REF] which uses an observer based controller design framework for improving the air/fuel characteristics in engines and the work of Gouaisbaut et al. [START_REF] Gouaisbaut | A sliding mode control for linear systems with input and state delays[END_REF].

This motivates the present work, which focuses on αstability, exponential stability and stabilization using sliding mode control of systems subject to unknown timevarying but bounded delays. The results proposed here use a polytopic approach which allows the time-varying delay to be reduced to a convex sum of its bounds, a Lyapunov-Krasovskii functional and sliding mode control.

Notation : Throughout the paper, the superscript 'T ' stands for matrix transposition, R n denotes n-dimensional Euclidean space, and R n×m is the set of n × m real matrices. The set I r for all integers r ≥ 0 contains all the integers between 1 and r. The notation |.| and . refer to the Euclidean vector norm and the induced matrix two norm, respectively. The notation |.| τ 2 for any function φ from C 1 ([-τ

2 ; 0], R n ) is sup s∈[-τ 2 , 0] (|φ (s)|) and φ h = max(|φ (s)| τ 2 , | φ (s)| τ 2 )
. The notation P > 0 for P ∈ R n×n means that P is a symmetric and positive definite matrix. Finally I n represents the n × n identity matrix.

II. PROBLEM FORMULATION

Consider the following linear system with time-varying delay and parametric uncertainties:

           ż1 (t) = g 1 (z(t),t) + g τ1 (z(t -τ(t)),t), ż2 (t) = g 2 (z(t),t) + g τ2 (z(t -τ(t)),t) +Bu(t) + D f (z,t), z 1 (θ ) = φ 1 (θ ), ∀θ ∈ [-τ 2 , 0], z 2 (θ ) = φ 2 (θ ), ∀θ ∈ [-τ 2 , 0], (1) 
where z 1 (t) ∈ R n , z 2 (t) ∈ R m represent vectors of internal variables and u(t) ∈ R m is the control input vector. The function f (z(t),t) represents disturbances which are assumed to satisfy:

f (z,t) ≤ M. ( 2 
)
Assume that: A1) f (z,t) is Lipschitz continuous and satisfies the inequality

f (z,t) < F M (t, z), (3) 
where F M is a continuous functional assumed to be known a priori. The functions g 1 , g τ1 , g 2 and g τ2 are written using a polytopic representation:

g 1 (z(t),t) = ∑ i∈I r λ i (t) A i 11 z 1 (t) + A i 12 z 2 (t) , g τ1 (z(t -τ(t),t) = ∑ i∈I r λ i (t) A i τ11 z 1 (t -τ(t)) +A i τ12 z 2 (t -τ(t)) , g 2 (z(t),t) = ∑ i∈I r λ i (t) A i 21 z 1 (t) + A i 22 z 2 (t) , g τ2 (z(t -τ(t),t) = ∑ i∈I r λ i (t) A i τ21 z 1 (t -τ(t)) +A i τ22 z 2 (t -τ(t)) . The matrices A i 1k , A i τ1k , A i 2k , A i τ2k
, for i ∈ I r and k = 1, 2, together with B and D are assumed to be known and constant with appropriate dimensions. The matrix B is assumed to be nonsingular. The scalar functions λ i are not necessarily known, but they satisfy convexity properties:

∑ i∈I r λ i (t) = 1, ∀t ≥ 0, λ i (t) ≥ 0, ∀t ≥ 0 and ∀i ∈ I r . (4) 
The function τ(t) represents a time-varying delay satisfying the following inequalities:

0 ≤ τ(t) ≤ τ 2 . (5) 
A state feedback sliding mode control law is sought which exponentially stabilizes system (1), so that there exist positive numbers α and β > 1 such that the solution x(t;t 0 , φ ) of the system satisfies, for any initial function φ :

|x(t;t 0 , x 0 )| < β φ (s) τ 2 e -α(t-t 0 ) . (6) 

III. EXPONENTIAL STABILITY CONDITIONS FOR TIME DELAY SYSTEMS

In this section, consider the following time-delay system:

ẋ(t) = ∑ i∈I r λ i (t) A i 0 x(t) + A i 1 x(t -τ(t)) . (7) 
To develop exponential stability conditions, a change of variables will be employed as previously adopted in [START_REF] Seuret | Robust exponential stabilization for systems with time-varying delays, 5th Workshop on Time Delay Systems[END_REF], [START_REF] Xu | New exponential estimates for timedelay systems[END_REF]. With the new variable x α = x(t)e αt , the differential equations of the initial system (7) can be written as:

ẋα (t) = ∑ i∈I r λ i (t) (A i 0 + αI)x α (t) + e ατ(t) A i 1 x α (t -τ(t)) . (8) x α (s) = e αs φ (s), ∀ s ∈ [-τ 2 , 0]
Asymptotic stability of system (8) for some α > 0 implies α-stability of system [START_REF] Guerra | Conditions of output stabilization for nonlinear models in the Takagi-Sugeno's form[END_REF]. The main difficulty which appears here stems from the fact that the system ( 8) is time-varying because of the gain e ατ(t) which appears with the delayed term A 1 . In the case of a constant delay, the change of variable only adds gain modifications to the asymptotic stability conditions and then it becomes very easy to ensure exponential stability. However in the case of time-varying delays, the conditions are no longer applicable. As the delay is assumed to be bounded as in [START_REF] Gouaisbaut | Robust control of dealy systems: a sliding mode control design via LMI[END_REF], the exponential gain e ατ(t) can be rewritten using a polytopic representation as in [START_REF] Seuret | Robust exponential stabilization for systems with time-varying delays, 5th Workshop on Time Delay Systems[END_REF]. This approach uses the fact that the function e ατ(t) is bounded. Knowing the bounds of the delay τ(t) as given in [START_REF] Gouaisbaut | Robust control of dealy systems: a sliding mode control design via LMI[END_REF], the term e ατ(t) can be written as a convex sum of its bound β 1 = e α0 = 1 and β 2 = e ατ 2 :

e ατ(t) = µ 1 (t)β 1 + µ 2 (t)β 2 , µ 1 (t), µ 2 (t) ≥ 0 and µ 1 (t) + µ 2 (t) = 1, (9) 
where the scalar functions µ 1 (t) = (β 2 -e ατ(t) )/(β 2 -β 1 ) and µ 2 (t) = (e ατ(t) -β 1 )/(β 2 -β 1 ) only depend on the unknown delay value τ(t). Consequently these functions are thus also unknown but they satisfy the convexity conditions [START_REF] Hu | Robust digital model predicitve control for linear uncertain systems with saturations[END_REF]. By using the first equation of (9), the system (8) can be expressed in the following polytopic form:

ẋα (t) = ∑ i∈I r λ i (t) (A i 0 + αI n )x α (t) + ∑ 2 j=1 µ j (t)β j A i 1 x α (t -τ(t)) , or ẋα (t) = ∑ 2 i∈I r , j=1 λ i j (t) (A i 0 + αI n )x α (t) +β j A i 1 x α (t -τ(t)) , (10) 
where λ i j (t) = λ i (t)µ j (t), for all i ∈ I r and j = 1, 2. Applying the Newton-Leibniz formula:

ẋα (t) = ∑ 2 i∈I r , j=1 λ i j (t) (A i 0 + αI n + β j A i 1 )x α (t) -β j A i 1 t t-τ(t) ẋα (s)ds . ( 11 
)
To analyse the asymptotic stability properties of this system, equation ( 11) can be rewritten using the descriptor representation introduced in [START_REF] Fridman | New Lyapunov-Krasovskii functionals for stability of linear retarded and neutral type systems[END_REF], [START_REF] Fridman | A descriptor system approach to H ∞ control of linear time-delay systems[END_REF]:

E ẋα (t) = ∑ 2 i∈I r , j=1 λ i j (t) 0 I n Λ i j -I n xα (t) - 0 β j A i 1 t t-τ(t) ẋα (s)ds , with xα (t) = col{x α (t), ẋα (t)}, E = diag{I n , 0} and Λ i j = αI n + A i 0 + β j A i 1 .
Then the following result holds: Theorem 1: The system (7) is α-stable for all time-varying delays 0 ≤ τ(t) ≤ τ 2 , if there exist n × n matrices P 2 , P 3 , Z i j 1 , Z i j 2 , Z i j 3 , for i = 1, 2, and two symmetric definite matrices P 1 > 0 and R > 0 such that the following LMI conditions are satisfied for i ∈ I r and j = 1, 2:

Ψ i j < 0 ( 12 
)
and R 0 β j A iT

1 P * Z i j ≥ 0, (13) 
where

P = P 1 0 P 2 P 3 , Z i j = Z i j 1 Z i j 2 Z i jT 2 Z i j 3 , and 
Ψ i j = P T 0 I n Λ i j -I n + 0 I n Λ i j -I n T P +τ 2 Z i j + 0 0 0 τ 2 R ,
Proof: Define the following Lyapunov-Krasovskii functional:

V ( xα (t)) = xT α (t)EP xα (t) + 0 -τ 2 t t+θ ẋT α (s)R ẋα (s)dsdθ . ( 14 
) This functional is positive definite as xT α (t)EP xα (t) = x T α (t)P 1 x α (t).
Then noting that EP = P T E, the computation of the time-derivative yields:

V (t) = ∑ 2 i∈I r , j=1 λ i j (t) xT α (t)Ψ i 0 j xα (t) + η i 0 j (t) +τ 2 ẋT α (t)R ẋα (t) -t t-τ 2 ẋT α (s)R ẋα (s)ds, (15) 
where

Ψ i 0 j = P T 0 I n Λ i j -I n + 0 I n Λ i j -I n T P, η i 0 j (t) = -2 t t-τ(t) xT α (t)P T 0 β j A i 1 ẋα (s)ds.
The function η i 0 j has to be bounded to guarantee the negativity of V . Define the following linear matrix inequality:

R N N T Z

≥ 0, which ensures, for all vectors a and b and for all matrices N, R and Z of appropriate dimensions, the following inequality holds :

a b T R N N T Z a b ≥ 0, ⇔ ±2a T N T b ≤ a T Ra + b T Zb.
As η i 0 j is already written in a polytopic form, it is also necessary to find a bound for each polytope, for each subsystem. Let N = 0 β j A iT 1 P and suppose R and Z i j satify:

R 0 β j A iT 1 P * Z i j ≥ 0, i ∈ I r and j = 1, 2,
which, together with the convexity properties in ( 9), a = ẋα (s) and b = xα (t), yields:

η i 0 j (t) ≤ t t-τ(t) xT α (t)Z i j xα (t) + ẋT α (s)R ẋα (s) ds,
Integrating with respect to the variable "s" from t -τ 2 to t and applying (5) yields:

∑ 2 i∈I r , j=1 λ i j (t)η i 0 j (t) ≤ t t-τ 2 ẋT α (s)R ẋα (s)ds +τ 2 xT α (t) ∑ 2 i∈I r , j=1 λ i j (t)Z i j xα (t)
with R, Z i1 and Z i2 satisfying [START_REF] Li | Robust sliding mode control of uncertain time delay systems[END_REF]. Then it follows:

V (t) ≤ xT α (t)Ψ(t) xα (t),
where

Ψ(t) = ∑ 2 i∈I r , j=1 λ i j (t) P T 0 I n Λ i j -I n + 0 I n Λ i j -I n T P + τ 2 Z i j + 0 0 0 τ 2 R .
By rewriting as a polytopic sum, V < 0 if:

2 ∑ i∈I r , j=1 λ i j (t)Ψ i j < 0.
If each individual matrix Ψ i j is negative definite, Ψ(t) will also be negative definite and the transformed system ( 8) is asymptotically stable. Consequently, the original system ( 7) is exponentially stable with a guaranteed decay rate α.

IV. SLIDING MODE CONTROLLER

In this section, time delay systems that can be rewritten in the form (1) are considered. The time-varying functions λ i are not necessarily known, but are assumed to be convex. Consider the following switching function :

s(z) = z 2 -Kz 1 . ( 16 
)
where K ∈ R m×n is a gain to be defined.

A. Sliding mode control design for a system with state delay

Denote

Θ(t, z t ) = g 2 (z t ,t) -Kg 1 (z t ,t) (17) 
D M (z t ) = g d2 (t -v, z(t -v)) -Kg d1 (t -v, z(t -v)))
The function Θ(t, z t ) can be bounded by using the convex properties of the scalar functions λ i . It follows that:

Θ(t, z t ) ≤ D 1 (t) = 2 ∑ k=1 max i∈I r { A i 2k -KA i 1k } z k (t) . ( 18 
)
Using the same technique:

D M (z t ) ≤ D 2 (t) = ∑ 2 k=1 max i∈I r { A i τ2k -KA i τ1k } × sup 0<s<τ 2 z k (t -s) ( 19 
) Theorem 2: Consider system [START_REF] Choi | An observer based controller design method for improving air/fuel characterisation of spark ignition engines[END_REF]. If for all time-varying delay τ(t) satisfying ( 5), there exist n × n matrices

Q 1 > 0, S > 0 Q 2 , Q 3 , W i j
1 , W i j 2 , W i j 3 and a m × n matrix Y such that the following LMI conditions are satisfied for i ∈ I r and j = 1, 2:

  Q 2 + Q T 2 + τ 2 W i j 1 Φ i j 12 τ 2 Q T 2 * -Q 3 -Q T 3 + τ 2 W i j 3 τ 2 Q T 3 * * -τ 2 S   < 0, (20)   2Q 1 -S 0 β j (Q 1 A iT τ11 +Y T A iT τ12 ) * W i j 1 W i j 2 * * W i j 3   ≥ 0, ( 21 
)
where

Φ i j 12 = Q 1 (A i 11 + αI n + β j A i τ11 ) T + Y T (A i 12 + β j A i τ12 ) T -Q T 2 + Q 3 + τ 2 W i j 2 , the sliding mode gain is given by K = Y Q -1
1 and, for any Hurwitz Matrix G l , the control law :

u(t) = -B -1 (-G l s(t) + [D 1 (t) + D 2 (t) + D F M (z,t) + δ ] s(t) s(t) , ( 22 
)
ensures the systems trajectories reach the sliding manifold s(t) = 0 in finite time. Furthermore the solutions converge exponentially.

Proof: The proof is divided into two parts. The first part deals with the proof of the existence of an ideal sliding motion on the surface s(z) = 0 and the second with the α-stability of the reduced system. To demonstrate the attractivity of the set "s(z(t)) = 0", the following Lyapunov-Krasovskii functional is used:

V (t) = s T (z(t))s(z(t)) = s(z(t)) 2 . (23) 
Differentiating ( 23), along the trajectories of the closed-loop system gives

V (t) = 2s T (t) [g 2 (z(t),t) + Kg 1 (z t ,t) +g d2 (z(t -h(t)),t) + Kg d1 (z(t -h(t)),t)) +D f (z,t) + Bu(t)]
Using the control law (22), it follows that:

V (t) ≤ -2δ s(z(t)) = -2δV (t) 1 2
The last inequality is known to prove the finite time convergence of the system (1) to the surface s = 0. Substituting for A i 0 and A i 1 using A i 11 , A i τ11 , A i τ12 and A i τ12 , it follows that:

ż1 (t) = (A i 11 +A i 12 K)z 1 (t)+(A i τ11 +A i τ12 K)z 1 (t -τ(t)).
(24) From Theorem 1, the α-stability of (24) is proved if the following inequalities are satisfied for i = 1, 2:

Ψ i j < 0, R 0 β j (A i τ11 + A i τ12 K) T P * Z i j ≥ 0, (25) with 
P = P 1 0 P 2 P 3 , Z i j = Z i j 1 Z i j 2 Z i jT 2 Z i j 3 , Ψ i j = P T 0 I n Λ i j -I n + 0 I n Λ i j -I n T P +τ 2 Z i j + 0 0 0 τ 2 R , Λ i j = αI n + A i 11 + A i τ12 K + β j (A i τ11 + A i τ12 K).
Note that these conditions are not LMIs because of product terms involving K and P. The following exposition deals with the transformation of these inequalities into LMIs. First, following the proof of [START_REF] Fridman | Sliding mode control of systems with time-varying delays via descriptor approach[END_REF], the previous conditions are developed and modified by using the Schur complement where diag(0, τ 2 R) is written as:

0 0 0 τ 2 R = τ 2 0 I n (τ 2 R)τ 2 0 I n T . (26) 
Note that P 1 and (P T 3 + P 3 ) must be positive definite to guarantee the negativity of Ψ i j in [START_REF] Li | Robust sliding mode control of uncertain time delay systems[END_REF]. Consequently the matrix P is nonsingular. Define the matrix Q as follows :

Q = Q 1 0 Q 2 Q 3 = P -1 .
By applying the Schur complement to (26) and by multiplying the previous LMIs by ∆ 1 = diag{Q, I 2n×2n } and ∆ T 1 respectively on the right and on the left, the definitions

W i j = Q T Z i j Q = W i j 1 W i j 2 * W i j 3 and S = R -1 lead to:   Q 2 + Q T 2 +W i j 1 Θ 21 τ 2 Q T 2 * -Q 3 -Q T 3 +W i j 3 τ 2 Q T 3 * * -τ 2 S   < 0,
where

Θ 21 = Q 1 (A i 11 + αI n + β j A i τ11 ) T -Q T 2 + Q 3 +Q 1 K T (A i 12 + β j A i τ12 ) T +W i j 2 . (27) 
The second LMI condition of Theorem 1 must be expressed in terms of the same variables defined above. Multiply [START_REF] Liu | Robust exponential stabilization for uncertain systems with state and control delay[END_REF] by diag{Q 1 , Q T } on the left and by its transpose on the right leads to the following nonlinear inequality:

  Q T 1 S -1 Q 1 0 β j Q 1 (A i τ11 + A i τ12 K) T * W i j 1 W i j 2 * * W i j 3   ≥ 0. ( 28 
)
The term Q T 1 S -1 Q 1 cannot be computed directly. Adding an additional constraint such that Q 1 = εS can solve the problem directly, but this also leads to conservative results. Alternatively, the following inequality, introduced in

[7] (Q 1 -S) T S -1 (Q 1 -S) ≥ 0 can be used which ensures -Q 1 S -1 Q 1 ≤ -2Q 1 + S. Denoting D i j = β j (A i τ11 + A i τ12 K)Q 1 ,
then the Schur complement enables (28) to be expressed as:

-Q 1 SQ 1 + 0 D i j T (W i j ) -1 0 D i j < 0. ( 29 
)
If the condition:

-2Q 1 + S + 0 D i j T (W i j ) -1 0 D i j < 0,
is satisfied, then (29) will also be satisfied. By applying the Schur complement, (21) is obtained. Defining Y = KQ 1 finally ensures that ( 20) and ( 21) guarantee exponential stability of the system (24) on the sliding manifold.

Remark 1: Note that in the case where the scalar functions λ i are known, the conservatism of the result can be reduced by defining a sliding surface for each subsystem i ∈ I r using Y i (and furthermore K i ) in Theorem 2. Then it is also possible to reduce the gain of the discontinuous term by modifying the control law u(t) defined in (22) to:

u(t) = -B -1 -G l s(t) + ∑ 2 k=1 λ i (t){A i 2k -K i A i 1k }z k (t) +(D 2 (t) + D F M (z,t) + δ ) s(t) s(t) , B.

Gain optimization

As the controller depends on the variable s, it is a interesting to minimize the value of the gain K defined in Theorem 2. Consider minimization of KK T . As K depends on the LMI variables Q 1 and Y the minimization of such a function is not straightforward. However introducing an additional LMI variable c such that KK T < cI m or equivalently

-cI m + Y Q -1 1 I n Q -1
1 Y T < 0 will help to solve this problem. Consider the following result. For any matrices A, P 0 > 0 and P 1 > 0, the following equivalence holds [START_REF] Hu | Robust digital model predicitve control for linear uncertain systems with saturations[END_REF]:

-P 0 + A T P 1 A < 0 ⇔ ∃X ∈ R n×n , -P 0 A T X T XA -X -X T + P 1 < 0.
Applying this result to the optimization problem and replacing P 0 , P 1 and A by cI m , I n and Q -1 1 Y T and choosing X = Q 1 leads to the LMI: min c subject to [START_REF] Xu | New exponential estimates for timedelay systems[END_REF] 

and (21) and:

-

cI m Y * -2Q 1 + I n < 0. (30) 

C. Example

Consider system (1) with: 1. shows the relation between τ 2 and the maximum exponential decay rate α using Theorem 2. For τ 2 = 0.2 and α = 1.5, Theorem 2 and the optimization problem (30) ensures the sliding mode controller (22) exponentially stabilizes the system and the resulting gain is K = [2.9199 -5.8823] (instead of K = [4.3196 -8.3191] without optimization). For τ 2 = 0.2 and α = 0.5, Theorem 2 and the optimization problem (30) ensures the sliding mode controller (22) exponentially stabilizes the system and the resulting gain is K = [0.3912 -2.4650] (instead of K = [1.0674 -4.0708] without optimization). Figures 2. and The main difference between the two simulations is in the cost of the control function. Increasing the exponential decay rate α produces a faster response as expected but it increases the energy required by the controller.

A 1 11 = -2.07 -1 -0.6 0.1 , A 1 12 = -1 0 , A 2 11 = -2 -1 -0.4 0.1 , A 2 12 = -1.7 0 , A 1 τ11 = -0.2 -.9 -0.9 -0.55 , A 1 τ12 = 0 0.1 , A 2 τ11 = -0.2 -0.9 -0.9 -0.55 , A 2 τ12 = 0 0.1 , A 1 21 = A 2 21 = -1.9 1 , A 1 22 = A 2 22 = -2.1, A 1 τ21 = A 2 τ21 = -0.1 0.1 , A 1 τ22 = A 2 τ22 = 0.9 Figure

V. CONCLUSION

This paper has considered the exponential stabilization of linear, uncertain systems in the presence of unknown timevarying delays. Using a classical switching function, the existence of an ideal sliding mode and the α-stability of the reduced order sliding mode dynamics is proved. The proofs are based on Lyapunov-Krasovskii methods and particular parameterizations. The approach is constructive and the method has been demonstrated on a numerical example.
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