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Exponential Stabilization of Delay Neutral Systems under
Sampled-Data Control

Alexandre Seuret, Emilia Fridman and Jean-Pierre Richard

Abstract— This paper considers the exponential stabilization in the form:
of delay systems of the neutral type via sampled-data control.

The control input of the neutral system can present a delay, ut—hz) = ug(tc—hg) = gt —ha2— (t —t)),
constant or variable. The sampling period is not necessarily ut—hy) =ug(t—r1(t)), (2)
constant. It is only assumed that the time between to succes- e <t<typr, T(t)=hp+t—tx.

sive sampling instants is bounded. Since the sampling effect

(sampling and zero-holder) is equivalent to a variable delay, Thus, the delay is ‘non-small’, i.et(t) € [hy — o, h2 +
the resulting system is modelled as a continuous-time one, Hz] with hy > 0 and h, — yp > 0. Only a few papers
where the control input has a ‘non-small’ time-varying delay [7], [15], [23] have been published on this topic. The

belonging to some interval[h— u,h+ u]. For instance, h— . e . .
may represent the minimum input delay, and2u the additional asymptotic stability of linear retarded-type systems with

delay generated by the combination of the sampling effect with On€ time-varying ‘non-small’ delay has been analyzed by
the input delay variation. This results in a system with ‘non-  [15]. Sufficient stability conditions, there, have been derived
small’ time-varying delays (i.e. delays with a known and non- via a modification of ‘complete’ Lyapunov-Krassovskii
Zero .'E:Ii”im” " Vi',\L/‘lf)' thz.s"pon‘%”“a' Stabi"fa“o“ of Whi_cdhids functionals, which corresponds to necessary and sufficient
ossible under conditions. Two examples are provided. - o .
'Fl)'he first one deals with the sampled-data cpontrol of% neutral stability C_(_)ndltlo.ns. In [7], anew Cons_tructlon of Lya_punov-
system. The second one considers the stabilization of a flexible Krasovskii functionals, which generalizes the descriptor one
rod with continuous, delayed control [6], was introduced. Stability andH., control of neutral

systems with multiple ‘non-small’ delays have been studied
Index Terms— Time-varying delay, neutral system, sampled- 1N [23], using the same idea.

data control, stabilization, LMI, flexible rod. Concerning the sampled-data stabilization problem, two
main approaches have been used before the paper [8] (see
I. INTRODUCTION e.g. [4], [22], [20], [24]). The first one is based on the lifting

technique [1], [26] in which the problem is transformed
Recent papers [8], [27] considered the modelling ointo an equivalent finite-dimensional discrete problem. This
continuous-time systems with sampled-data control in thgpproach seems to be unapplicable to the case of state-delay.
form of continuous-time systems with delayed control inThe second approach is based on the representation in the
put and which model was combined with Lyapunov-basefbrm of an hybrid discrete/continuous model. Application
methods. The digital control law produced by a samplesf this approach to linear systems leads to necessary and
with zero-holder can be represented as follows: sufficient conditions for stability and,-gain analysis in the
form of differential equations (or inequalities) with jumps
u(t) = ug(t) = Ua(t = (t ~t)) = ua(t —n (1)), (1) (see e.g. [3], [22]). The latter approach has been applied
st <t N(t) =t—t to He, control of retarded type systems with constant state
Here, uq is the discrete-time control signal and the timed€lay [9], where partial differential Riccati equations with
varying delayn(t) =t —t is piecewise-linear with deriv- jumps have been Qer!ved. The method is npt applicable to
ative 7 (t) = 1 for t # ty. Moreover,n(t) < ti 1 —tk < pi, ngutral systems with input dela}y. R.ecently', it has been ap-
where 1 is the maximum sampling interval. This case ofdlied to the sampled-data stabilization of linear state-delay

‘small’ time-varying delayr(t) € [0, u] has been analyzed systems in the case of uniform (periodic) sampling [14].
in the above papers by using Lyapunov-Krasovskii metho§© Overcome difficulties of solving differential inequalities

via the descriptor model transformation [6] and by théVith jumps, & piecewise-linear in time Lyapunov functional
Lyapunov-Razumikhin technique, correspondingly. has been suggested. As a result, LMIs have been derived

If there is an additional constant dely > 0 in the con- which do not depend on the sampling interval and thus are

trol input, the delayed digital control law can be modelled®"Y conservative. _ o
Concerning the exponential stabilization problem, some
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However, these results are limited to constant delays. In i - . NDE .
many cases, such as the communication lines used in Sampling ha ar
networked control, the delays cannot be reduced to constani
ones. Recently, Seuret al developed exponential stability
results for retarded systems with time-varying delays [21]. Feodback K
The present work focuses on exponential stability and sta-
bilization of neutral systems with bounded, time-varying de-
lays. The approach, which involves a Lyapunov-Krasovskii Fig. 1. Problem representation
functional and a descriptor model, was developed in [10],
[11], [12] for asymptotic stabilization. We combine it with

a polytopic approach [25] that allows one to reduce th@uarantees that the difference equatiét) — Fx(t —g(t)) =
time-varying delay to a convex sum of its bounds [21]. 0 js asymptotically stable [2],[16]. Our asymptotic stability
In the present paper, we generalize the approach of [8] tasylts will be independent oand dependent ody. Our

the sampled-data stabilization of systems with state and igxponential stability results will be considered in the case
put delay. Moreover we consider, more widelgutral-type g(t) = 0.

linear systems described by(t) — Fx(t —g(t)) = Aox(t) +
Aax(t — 11(t)) + Bu(t — h2)), which will be presented in

The uncertain delay, (t) is supposed to have the follow-
] X ing form 71(t) = hy +n1(t), whereh; > 0 is a constant value
the next sectlo.n. For systems wit(t) = _hl cons.t.ant., andn; is a(ti)me-varyiné)perturbation. We will consider that
we compl_ete this resul_t with the ex_ponentlal stab|I|zat|onnl(t) is a piecewise-continuous function, satisfying:

The solutions are derived by solving the problem for a
continuous-time system with uncertain but bounded time-
varying ‘non small’ delay in the control input.

The obtained conditions are robust with respect to differ-
ent samplings with the only requirement that the maximum We consider a piecewise-constant control law of the form
sampling intervalu; is not greater than some computgd ~ U(t —h2) = Ug(tc —hp), t <t <tx;1, whereuy is a discrete-
Moreover, the feasibility of the LMI is guaranteed for smalitime control signal and &-to <t; <... <t <... are the
u if the corresponding continuous-time controller stabilize§ampling instants. Our objective is to find a state-feedback

—pr <m(t) <pg, YV t>0. 4)

the system. stabilizing controller in the form:
Notation: Throughout the paper, the supersciipstands
for matrix transposition,#" denotes then-dimensional u(t—hp) =Kx(tk —hp), t<t<tgs. (5)
Euclidean space with the norfix| of vectorx, Z™™ is
the set ofnx mreal matrices with the Euclidean norjm||. The piecewise-constant control law is equivalent to a

The notationP>0 for P € ™" means thaP is symmetric  continuous-time control with a time-varying piecewise-
and posi_tive definite. A stak in a matrix represents a continuous (continuous from the right) delay(t) = h, +
symmetrical entry. t —t, as given in (2), wherér = h,. Thus, we look for a
[I. PROBLEM FORMULATION state-feedback controller of the foroft) = Kx(t — 12(t)).
Substituting the latter controller into (3), we obtain the

Consider the system: X
following closed-loop system:

X(t) —Fx(t—g(t)) = AoX(t() +ﬁ1)><(t —1(t))
+Bu(t — hy), WA =N _ _
X(t) = @(t), for te[-h,0], 3 ) =F=a) Té@;ﬁf&n i) (6)
() =hy+t —t, t <t <tyq1.

wherex(t) € " is the system statet) € Z™ is the control
input, Ay and B are constant matriceg is a continuously We assume thaAl: —pp < t1—t < pp, Yk > 0.
differentiable initial function anch is an upper-bound on  From A1 and since(t) = hp +ty 1 — ty, it follows that
the time-delaysry andg. For simplicity only, we consider p, _ 1, < 1,(t) < h,+ . We will further consider (6) as

one delayr; and one delay. However, the results of this e ‘system with uncertain and bounded delay’.
paper can be easily extended to the case of multiple delays

T1,...; Tm, 01, .-, Ok-

The input delayh, is constant but this also can be Ill. ASYMPTOTIC STABILITY OF THE CLOSEBLOOP
easily generalized ti(t) time-varying, sincehy will be SYSTEM
considered in combination with an additional varying delay
coming from the variable sampling. Lemma 1 (Sability, [7] (Case 1)): Given a gain ma-

We assume thay(t) is a differentiable function satisfying trix K, the system (6) is stable for all the sam-
g(t) <dy <1 for all t >0, wheredp is a known upper- plings satisfying Al, if there exisnxn matrices 0<
bound. Moreover, we assume th@F| < 1. The latter P, P, P3; S, U, Yk, Yk, Zk1, Zk2, Zk3, Rc andRya, k=1,2



that satisfy:
W, PT[/SJ—YJ PT[B(IL}—YZT PT['C:)]
* -5 0 0
* * -S 0
N X % —(1—do)U
* * * *
* * * *
(7)
HlPT[ P?l } IJzPT[ B?( ]
0 0
0 0 <0,
0 0
—H1R1a 0
* —2Rea
\%
[ % ¥]z0 k=12 (®)
whereY, Zx and Y, are given by:
. . 0 0
= w”[ 0 SE12URa }
— 0o | o 1 1" )
Y, = PT[ A 0 }«F[ Ao | :| P+zk:1(hk+},lk)zk
T
+Z§:1[T§]+Z§:1[Yok} ) (9)
+[ SeaSe 0 ]
0 S (he+ ) Re+U
Y= MaYel ze=| 24 2@

*

Za

IV. EXPONENTIAL STABILITY OF THE CLOSED-LOOP
SYSTEM

for applying directly Lemma 1. This difficulty can be

overcome by applying a polytopic approach [21] [13].
Indeed, according to Al and (2), the time-varying terms
et ande?™2() are bounded as follows:

o (hi—k) < eCfTi(t)Seﬂf(hiﬂii)7 vt>0, Vi=12

This means there exists unknown scalar and positive
functions Aij : Z — %, (i, j) € {1,2}?, satisfying the
following convexity conditions:

V>0, V(i) e{L2}? Ajt)>0, Nt =1 (24)
and such that equation (13) is written as:
)= 3Foy M O){(Ro+al)z(t) + BuAuz(t — Ta(t))
—ae®MFz(t —hy)+Fe"Mz(t —hy) (15)
+B2; BKz(t — 12(1)) },
where
— eu(hi—py) — ea(hi+p)
Bi1=¢€ , Br2=¢€ ; (16)

[321 — ea(hZ*IJz)’ BZZ — ea(thrlJz),

Now, applying the results of [7] (Case 1) yields the
following result.

Theorem 1 (Exponential stability): Given a gain matrix
K, the system (6) isr—stable for all the samplings satis-
fying Al, if there existnxn matrices 0< P,P,,Ps, S, U,

We consider in this section the neutral type system (3) iMa, Yk, Zi1, Zk2, Zks, R« and Rea, k=1,2 that satisfy (8)

the (particular but frequent) caggt) = h; . As usual [19],
[21], being given some rate > 0O, the closed-loop system
(3) is said to bex—stable, or ‘exponentially stable with the
rate a’, if there exists a scalak > 1 such that its solution
X(t;to, @) satisfies:

IX(t,to, )| < K|gple~ 910, (10)

Substituting the new variablet) = e?'x(t) in (6), we
find:
2(t)

(Ag+al)z(t) + e A z(t — 11(t))
+eT2BKZ(t — To(t) + FeTX(t —hy),

(11)

the last term of which can be expressed with the variable

z:
e™x(t —hy) = ™Mzt —h;) —aeMz(t—hy),  (12)
which finally leads to the transformed neutral system:

Zt) = (Ao+al)x(t)+ e OAx(t — 1y(t))
—ae®MFz(t —hy) + FeMz(t —hy)
+e92(0BKX(t — T2(t)).

Our purpose is to find conditions for the solutiar= 0

(13)

and
0 0
¥a PT{ BuAs — aethF ]’YIT PT[ [2BK ]*YJ
* - 0
* * -S
* * *
* * *
* * *
0 17
P [ oty ] ulPT[ Ay ] P [ By BK } 17)
0 0 0
0 0 0 <0,
Y 0 0
* —H1R1a 0
" * —H2Roq
v(i,j) € {1,2)?
whereY;,Z; are given by (9) and
. 0 0
W, = Whe + [ 0 Z§:1 20Rea ] ) :
- 0 I 0 I
e = PT[ Ao+al I ]*[ Ao+al I ] P
Yi v 17 (18)
+z£:1<[ 0 }ﬂ 0 ] >+z§:1<hk+uk>zk
Tk 0

+[ 55

Y21 (e + p)Re+U

of this transformed system (13) to be stable. Then, these , EXPONENTIAL STABILIZATION OF NEUTRAL

conditions will assure the exponential—stability (10) of

SYSTEMS

the original system (6). Note that a necessary condition of

exponential stability is that the spectral radiuse8f1F is
less than one.

Theorem 2 (Exponential stabilization): The control law
(5) exponentially stabilizes system (3) if, for some positive

However, system (13) is a linear time-varying one benumbersa andeg, there exists a positive definite mati,

cause of the gaing”™(V and e?™2) This does not allow

matrices of sizenx n P, U, Z, Zko, Z3, Ya1. Yo from



definition (9) and an x m matrix W, such that the following Concerning thea—stabilization, fora = 1.19, h; =

LMI conditions hold fori, j=1,2: h, = 0.16, y; = U, = 0.09 and ¢ = 2.3, the computed
W [ BuAP— ae®MFP Y ] [ BoyBW Y, } statet-.feedback gaiK = [1.9215 —1.0747 exponentially
° &(BiAP — ae™MFP) - Y, £B2iBW — Y], stabilizes the system. This result ensures that the system
. _fl _052 is exponentially stable with a delayed and nonuniform
* * * sampled control. The corresponding simulation results are
. : : given on Figure 2.
eMEP. BulsP_ B2iBW (19)
|: ee"MFP :| 1|: gélip:\llp :| 2|: EBZZJJ'B\N :| 10
0 0 0 =l
0_ 0 0 <0, Exponential Bounds
-u 0_ 0 .
* —thRia 0_
* * —H2Rea
v(i, j) € {1,2)2
and o T
R Yo Yo g
{ * Zn Zp ] >0, (20)
* * Zi3 -5F
where
Wy = (Ro+al)P+P (Ag+al)T -op )
_ + 55 (St (et ) Zia +Ya + YD) i
Wao= P —P+ePT(Ag+al)T
_ + Ykt ((h+ ) Zie + Vi) , s ‘ ‘ ‘ ‘ ‘ ‘
Wipp= —&(P+P") 0 1 2 3 e 5 6 7

+ 520 (h+ ) (Zia + Re) + 204Rea) - o
The correspondingr —stabilizing state-feedback gain is Fig. 2. Simulation of the system far = 1.19, hy = hy = 0.16, g —

given by: _ 0.09
K=wp1 (21)

Ho =

Note that for larger valuesr > 1, Theorem 2 cannot

Proof: Following [23], we apply Theorem 1 with: ensurea —stability.

P = P, wheree € #Z is a tuning scalar parameter. Note
that P, is nonsingular since the only matrix which can be
negative definite in the second block on the diagonal of (19) VII. EXAMPLE 2

. T . . .
is —&(P2+ P, ). Defining: The second example , of the neutral type, is not concerned

pP= Pgl (22) with sampled-data control, but it still uses Theorem 2.
. ] Several authors interpreted the wave equation describing the
For all the matrical variables/ € [P ¥ij § U R Ra  torsjonal behavior of a flexible rod with a mass as a linear

Zy] for all i =1,2, j_:T 1,2, k=123 the new vari- system with delayed terms. A neutral state representation
able V is defined byP'VP. and W = KP, multiplying o flexible rod equation is given in [5] :

(19) by diag{P,P,P,P,P,P,P}, and its transpose, from

the right and the left, respectively, and multiplying (8) by >:<1(t) = >_<2(t), (24)
diag{P,P,P} and its transpose, from the right and the left, Y2(t) = X2(t—2T) —Xxa+X(t—2T)+u(t—T),
achieves the proof. B whereT represents the delay and depends on the parameters

Remark 1: In the casexr =0, Theorem 1 assures that thegf the system.
state-feedback gaik asymptotically stabilizes system (3). |y such a neutral case, the difference operat) —
Fx(t —g) must be stable in sense of 8HCohn, which cor-
VI. EXAMPLE 1 responds to formal stability [2]. Then, [2] and [5] introduce

i i a stabilizing control of the form :
Consider the following example, taken from [17]. We stabllizing r

address the problem of finding an exponentially stabilizing ut) = —Ax(t—=T)+v(t)

control for system (3) with the values: _ . )
with A €]0,2[. In [2] and [5], v(t) was designed on the basis

Ao — [ 10 ] A= { -1 0 } of x(t —T) measurement. Here, one suppose xh@t—T) is
0o 1} -1 -09 |’ (23) still measured, but that is measured with some additional
F_ { 01 0 } B_ [ 0 } _ time-varying delayy, i.e. x(t — T — u(t). So the following
0 01} 1 control law is proposed:
Solving the LMIs of Theorem 2 foh; = 0.5, u; = 0.2, v(t) = Kx(t — T — (1)), (25)

h, = 0.6, ande = 4.2 leads to the state-feedback g#&in=
[0.7670, —0.2241 which asymptotically stabilizesx(=0) wherep is such that|u(t)|| < y2 andK is a state feedback
the system up tqp = 0.21. gain of appropriate dimension.



Then, flexible rod equations are in the form of (3) with: [6]
0 1 00
A0:|:0 _1:|a Al:|:0 l:|7 [7]
(26)
|0 0 10 [8]
S CES I b
[9]

Theorem 2 is adapted to the flexible rod case, Witk
0.2, T =0.1, by takinga = 1.05, i3 =0, p =0.08 ande =
1.32. After controlling that|e”™F || < 1, the corresponding [10]
simulation results are given on Figure 3. They show the
expected exponential convergence. [11]

T
— X1()

- x2(t) [12]
Exponential Bounds
10k 7

N

[13]

[14]

X1/X2

=)

i
\
i

I

I
\
i
I
I
|

[15]

[16]

(17]

25 3
time (s)

[18]
Fig. 3. Simulation of flexible rod witho =1.05, h; =h, =0.1, 1y =
Opp = 0.08

[19]

VIIl. CONCLUSION [20]

The obtained results generalize several recent works: [8]
and [14] to neutral systems; [7], [8] and [15] to exponential?L]
stabilization; [14] to non uniform sampling; [8] to non-small
delays; [2] and [5] to delayed measurement.. [22]

In order to shorten the presentation, it was only consid-
ered one delay;, one delayg and a constant input deldg.
However, the results of this paper can be easily extendezh)
to the case of multiple delays, ..., Tm, 01,---,0kx and of
a time-varyinghy(t). Another possible extension includes[24]
robustness issues.
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