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This paper considers the exponential stabilization of delay systems of the neutral type via sampled-data control. The control input of the neutral system can present a delay, constant or variable. The sampling period is not necessarily constant. It is only assumed that the time between to successive sampling instants is bounded. Since the sampling effect (sampling and zero-holder) is equivalent to a variable delay, the resulting system is modelled as a continuous-time one, where the control input has a 'non-small' time-varying delay belonging to some interval [h -µ, h + µ]. For instance, h -µ may represent the minimum input delay, and 2µ the additional delay generated by the combination of the sampling effect with the input delay variation. This results in a system with 'nonsmall' time-varying delays (i.e. delays with a known and nonzero minimum value), the exponential stabilization of which is possible under LMI conditions. Two examples are provided. The first one deals with the sampled-data control of a neutral system. The second one considers the stabilization of a flexible rod with continuous, delayed control

I. INTRODUCTION

Recent papers [START_REF] Fridman | Robust sampled-data stabilization of linear systems: An input delay approach[END_REF], [START_REF] Yu | An LMI approach to networked control systems with data packet dropout and transmission delays[END_REF] considered the modelling of continuous-time systems with sampled-data control in the form of continuous-time systems with delayed control input and which model was combined with Lyapunov-based methods. The digital control law produced by a sampler with zero-holder can be represented as follows:

u(t) = u d (t k ) = u d (t -(t -t k )) = u d (t -η(t)), t k ≤ t < t k+1 , η(t) = t -t k . (1) 
Here, u d is the discrete-time control signal and the timevarying delay η(t) = tt k is piecewise-linear with derivative η(t) = 1 for t = t k . Moreover, η(t) ≤ t k+1t k ≤ µ 1 , where µ 1 is the maximum sampling interval. This case of 'small' time-varying delay τ(t) ∈ [0, µ] has been analyzed in the above papers by using Lyapunov-Krasovskii method via the descriptor model transformation [START_REF] Fridman | New Lyapunov-Krasovskii functionals for stability of linear retarded and neutral type systems[END_REF] and by the Lyapunov-Razumikhin technique, correspondingly.

If there is an additional constant delay h 2 > 0 in the control input, the delayed digital control law can be modelled in the form:

u(t -h 2 ) = u d (t k -h 2 ) = u d (t -h 2 -(t -t k )), u(t -h 2 ) = u d (t -τ(t)), t k ≤ t < t k+1 , τ(t) = h 2 + t -t k . (2) 
Thus, the delay is 'non-small', i.e. τ(t) ∈ [h 2 -µ 2 , h 2 + µ 2 ] with h 2 > 0 and h 2 -µ 2 ≥ 0. Only a few papers [START_REF] Fridman | Stability of linear functional differential equations: A new Lyapunov technique[END_REF], [START_REF] Kharitonov | On the stability of linear systems with uncertain delay[END_REF], [START_REF] Suplin | H ∞ control of linear uncertain time-delay systems -a projection approach[END_REF] have been published on this topic. The asymptotic stability of linear retarded-type systems with one time-varying 'non-small' delay has been analyzed by [START_REF] Kharitonov | On the stability of linear systems with uncertain delay[END_REF]. Sufficient stability conditions, there, have been derived via a modification of 'complete' Lyapunov-Krassovskii functionals, which corresponds to necessary and sufficient stability conditions. In [START_REF] Fridman | Stability of linear functional differential equations: A new Lyapunov technique[END_REF], a new construction of Lyapunov-Krasovskii functionals, which generalizes the descriptor one [START_REF] Fridman | New Lyapunov-Krasovskii functionals for stability of linear retarded and neutral type systems[END_REF], was introduced. Stability and H ∞ control of neutral systems with multiple 'non-small' delays have been studied in [START_REF] Suplin | H ∞ control of linear uncertain time-delay systems -a projection approach[END_REF], using the same idea.

Concerning the sampled-data stabilization problem, two main approaches have been used before the paper [START_REF] Fridman | Robust sampled-data stabilization of linear systems: An input delay approach[END_REF] (see e.g. [START_REF] Dullerud | Robust Stabilization of sampled-data systems to structured LTI perturbations[END_REF], [START_REF] Sivashankar | Characterization of the L 2introduced norm for linear systems with jumps with applications to sampled-data systems[END_REF], [START_REF] Oishi | A bound of conservativeness in sampled-data robust stabilization and its dependence on sampling periods[END_REF], [START_REF] Trentelman | Sampled-data and discrete-time H 2 optimal Control[END_REF]). The first one is based on the lifting technique [START_REF] Bamieh | A general framework for linear periodic systems with applications to H ∞ sampled-data control[END_REF], [START_REF] Yamomoto | New approach to sampled-data control systems -A function space method[END_REF] in which the problem is transformed into an equivalent finite-dimensional discrete problem. This approach seems to be unapplicable to the case of state-delay. The second approach is based on the representation in the form of an hybrid discrete/continuous model. Application of this approach to linear systems leads to necessary and sufficient conditions for stability and L 2 -gain analysis in the form of differential equations (or inequalities) with jumps (see e.g. [START_REF] Chen | H 2 optimal sampled-data control[END_REF], [START_REF] Sivashankar | Characterization of the L 2introduced norm for linear systems with jumps with applications to sampled-data systems[END_REF]). The latter approach has been applied to H ∞ control of retarded type systems with constant state delay [START_REF] Fridman | Finite horizon H ∞ state-feedback control of continuous-time systems with state delay[END_REF], where partial differential Riccati equations with jumps have been derived. The method is not applicable to neutral systems with input delay. Recently, it has been applied to the sampled-data stabilization of linear state-delay systems in the case of uniform (periodic) sampling [START_REF] Hu | Sampled-data Control for time-delay systems[END_REF]. To overcome difficulties of solving differential inequalities with jumps, a piecewise-linear in time Lyapunov functional has been suggested. As a result, LMIs have been derived which do not depend on the sampling interval and thus are very conservative.

Concerning the exponential stabilization problem, some applications such as observer design, networked control, tele-operated systems or chained systems often need exponential convergence, since it is the best way of ensuring some speed performance. Some authors have investigated the exponential stability of delayed systems [START_REF] Liu | Robust exponential stabilization for uncertain systems with state and control delay[END_REF], [START_REF] Niculescu | Robust exponential Stability of uncertain systems with time-varying delays[END_REF].

However, these results are limited to constant delays. In many cases, such as the communication lines used in networked control, the delays cannot be reduced to constant ones. Recently, Seuret et al developed exponential stability results for retarded systems with time-varying delays [START_REF] Seuret | Robust exponential stabilization for systems with time-varying delays[END_REF].

The present work focuses on exponential stability and stabilization of neutral systems with bounded, time-varying delays. The approach, which involves a Lyapunov-Krasovskii functional and a descriptor model, was developed in [START_REF] Fridman | An improved Stabilization method for linear time-delay systems[END_REF], [START_REF] Fridman | Parameter dependent stability and stabilization of uncertain time-delay systems[END_REF], [START_REF] Fridman | Sliding mode control of systems with time-varying delays via descriptor approach[END_REF] for asymptotic stabilization. We combine it with a polytopic approach [START_REF] Xia | Robust control of state delayed systems with politopic uncertainties via parameter-dependent Lyapunov functionals[END_REF] that allows one to reduce the time-varying delay to a convex sum of its bounds [START_REF] Seuret | Robust exponential stabilization for systems with time-varying delays[END_REF].

In the present paper, we generalize the approach of [START_REF] Fridman | Robust sampled-data stabilization of linear systems: An input delay approach[END_REF] to the sampled-data stabilization of systems with state and input delay. Moreover we consider, more widely, neutral-type linear systems described by: ẋ

(t) -F ẋ(t -g(t)) = A 0 x(t) + A 1 x(t -τ 1 (t)) + Bu(t -h 2 )
), which will be presented in the next section. For systems with g(t) = h 1 constant, we complete this result with the exponential stabilization. The solutions are derived by solving the problem for a continuous-time system with uncertain but bounded timevarying 'non small' delay in the control input.

The obtained conditions are robust with respect to different samplings with the only requirement that the maximum sampling interval µ 1 is not greater than some computed µ. Moreover, the feasibility of the LMI is guaranteed for small µ if the corresponding continuous-time controller stabilizes the system.

Notation: Throughout the paper, the superscript T stands for matrix transposition, R n denotes the n-dimensional Euclidean space with the norm |x| of vector x, R n×m is the set of n × m real matrices with the Euclidean norm • . The notation P>0 for P ∈ R n×n means that P is symmetric and positive definite. A star * in a matrix represents a symmetrical entry.

II. PROBLEM FORMULATION Consider the system:

ẋ(t) -F ẋ(t -g(t)) = A 0 x(t) + A 1 x(t -τ 1 (t)) +Bu(t -h 2 ), x(t) = φ (t), f or t ∈ [-h, 0], (3) 
where x(t) ∈ R n is the system state, u(t) ∈ R m is the control input, A i and B are constant matrices, φ is a continuously differentiable initial function and h is an upper-bound on the time-delays τ 1 and g. For simplicity only, we consider one delay τ 1 and one delay g. However, the results of this paper can be easily extended to the case of multiple delays τ 1 , ..., τ m , g 1 , ..., g k . The input delay h 2 is constant but this also can be easily generalized to h 2 (t) time-varying, since h 2 will be considered in combination with an additional varying delay coming from the variable sampling.

We assume that g(t) is a differentiable function satisfying ġ(t) ≤ d 0 < 1 for all t ≥ 0, where d 0 is a known upperbound. Moreover, we assume that F < 1. The latter guarantees that the difference equation x(t) -Fx(tg(t)) = 0 is asymptotically stable [START_REF] Byrnes | A several complex variables approach to feedback stabilization of linear neutral delay-differential systems[END_REF], [START_REF] Kolmanovskii | Applied theory of functional differential equations[END_REF]. Our asymptotic stability results will be independent on g and dependent on d 0 . Our exponential stability results will be considered in the case ġ(t) = 0.

The uncertain delay τ 1 (t) is supposed to have the follow- ing form τ 1 (t) = h 1 +η 1 (t), where h 1 > 0 is a constant value and η 1 is a time-varying perturbation. We will consider that η 1 (t) is a piecewise-continuous function, satisfying:

-µ 1 ≤ η 1 (t) ≤ µ 1 , ∀ t ≥ 0. ( 4 
)
We consider a piecewise-constant control law of the form

u(t -h 2 ) = u d (t k -h 2 ), t k ≤ t < t k+1
, where u d is a discretetime control signal and 0 = t 0 < t 1 < ... < t k < ... are the sampling instants. Our objective is to find a state-feedback stabilizing controller in the form:

u(t -h 2 ) = Kx(t k -h 2 ), t k ≤ t < t k+1 . (5) 
The piecewise-constant control law is equivalent to a continuous-time control with a time-varying piecewisecontinuous (continuous from the right) delay τ 2 (t) = h 2 + tt k as given in [START_REF] Byrnes | A several complex variables approach to feedback stabilization of linear neutral delay-differential systems[END_REF], where h = h 2 . Thus, we look for a state-feedback controller of the form u(t) = Kx(t -τ 2 (t)). Substituting the latter controller into (3), we obtain the following closed-loop system:

ẋ(t) -F ẋ(t -g(t)) = A 0 x(t) + A 1 x(t -τ 1 (t)) +BKx(t -τ 2 (t)) τ 2 (t) = h 2 + t -t k , t k ≤ t < t k+1 . (6) 
We assume that A1: -µ 2 ≤ t k+1 -t k ≤ µ 2 , ∀k ≥ 0. From A1 and since τ 2 (t) = h 2 + t k+1 -t k , it follows that h 2 -µ 2 ≤ τ 2 (t) ≤ h 2 + µ 2 . We will further consider (6) as the 'system with uncertain and bounded delay'.

III. ASYMPTOTIC STABILITY OF THE CLOSED-LOOP

SYSTEM

Lemma 1 (Stability, [START_REF] Fridman | Stability of linear functional differential equations: A new Lyapunov technique[END_REF] (Case 1)): Given a gain matrix K, the system ( 6) is stable for all the samplings satisfying A1, if there exist n × n matrices 0

< P 1 , P 2 , P 3 , S i , U, Y k1 , Y k2 , Z k1 , Z k2 , Z k3 , R k and R ka , k=1, 2 that satisfy:          Ψ1 P T 0 A 1 -Y T 1 P T 0 BK -Y T 2 P T 0 F * -S 1 0 0 * * -S 2 0 * * * -(1 -d 0 )U * * * * * * * * µ 1 P T 0 A 1 µ 2 P T 0 BK 0 0 0 0 0 0 -µ 1 R 1a 0 * -µ 2 R 2a          < 0, (7) 
R k Y k * Z k ≥ 0, k = 1, 2, (8) 
where Y k , Z k and Ψ1 are given by:

Ψ1 = Ψn + 0 0 0 ∑ 2 k=1 2µ k R ka , Ψn = P T 0 I A 0 -I + 0 I A 0 -I T P + ∑ 2 k=1 (h k + µ k )Z k + ∑ 2 k=1 Y k 0 + ∑ 2 k=1 Y k 0 T , + ∑ 2 k=1 S k 0 0 ∑ 2 k=1 (h k + µ k )R k +U Y k = [Y k1 Y k2 ], Z k = Z k1 Z k2 * Z k3 (9) 

IV. EXPONENTIAL STABILITY OF THE CLOSED-LOOP

SYSTEM

We consider in this section the neutral type system (3) in the (particular but frequent) case g(t) = h 1 . As usual [START_REF] Niculescu | Robust exponential Stability of uncertain systems with time-varying delays[END_REF], [START_REF] Seuret | Robust exponential stabilization for systems with time-varying delays[END_REF], being given some rate α > 0, the closed-loop system (3) is said to be α-stable, or 'exponentially stable with the rate α', if there exists a scalar K ≥ 1 such that its solution x(t;t 0 , φ ) satisfies:

|x(t,t 0 , φ )| ≤ K|φ |e -α(t-t 0 ) . (10) 
Substituting the new variable z(t) = e αt x(t) in ( 6), we find:

ż(t) = (A 0 + αI)z(t) + e ατ 1 A 1 z(t -τ 1 (t)) +e ατ 2 BKz(t -τ 2 (t)) + Fe αt ẋ(t -h 1 ), (11) 
the last term of which can be expressed with the variable z :

e αt ẋ(t -h 1 ) = e αh 1 ż(t -h 1 ) -αe αh 1 z(t -h 1 ), (12) 
which finally leads to the transformed neutral system:

ż(t) = (A 0 + αI)x(t) + e ατ 1 (t) A 1 x(t -τ 1 (t)) -αe αh 1 Fz(t -h 1 ) + Fe αh 1 ż(t -h 1 ) +e ατ 2 (t) BKx(t -τ 2 (t)). ( 13 
)
Our purpose is to find conditions for the solution z = 0 of this transformed system (13) to be stable. Then, these conditions will assure the exponential, α-stability (10) of the original system [START_REF] Fridman | New Lyapunov-Krasovskii functionals for stability of linear retarded and neutral type systems[END_REF]. Note that a necessary condition of exponential stability is that the spectral radius of e αh 1 F is less than one.

However, system ( 13) is a linear time-varying one because of the gains e ατ 1 (t) and e ατ 2 (t) .This does not allow for applying directly Lemma 1. This difficulty can be overcome by applying a polytopic approach [START_REF] Seuret | Robust exponential stabilization for systems with time-varying delays[END_REF] [START_REF] Gouaisbaut | Robust control of nonlinear systems with delay : A design via polytopic formulation[END_REF]. Indeed, according to A1 and (2), the time-varying terms e ατ 1 (t) and e ατ 2 (t) are bounded as follows:

e α(h i -µ i ) ≤ e ατ i (t) ≤ e α(h i +µ i ) , ∀t ≥ 0, ∀i = 1, 2.
This means there exists unknown scalar and positive functions λ i j : R → R, (i, j) ∈ {1, 2} 2 , satisfying the following convexity conditions:

∀t ≥ 0, ∀(i, j) ∈ {1, 2} 2 λ i j (t) ≥ 0, ∑ 2 i, j=1 λ i j (t) = 1 ( 14 
)
and such that equation ( 13) is written as:

ż(t) = ∑ 2 i, j=1 λ i j (t){(A 0 + αI)z(t) + β 1i A 1 z(t -τ 1 (t)) -αe αh 1 Fz(t -h 1 ) + Fe αh 1 ż(t -h 1 ) +β 2 j BKz(t -τ 2 (t))}, ( 15 
)
where

β 11 = e α(h 1 -µ 1 ) , β 12 = e α(h 1 +µ 1 ) , β 21 = e α(h 2 -µ 2 ) , β 22 = e α(h 2 +µ 2 ) , (16) 
Now, applying the results of [START_REF] Fridman | Stability of linear functional differential equations: A new Lyapunov technique[END_REF] (Case 1) yields the following result.

Theorem 1 (Exponential stability): Given a gain matrix K, the system ( 6) is α-stable for all the samplings satisfying A1, if there exist n×n matrices 0 < P 1 ,P 2 ,P 3 ,

S k , U, Y k1 , Y k2 , Z k1 , Z k2 , Z k3 , R k and R ka , k = 1, 2 that satisfy (8) and          Ψ 2 P T 0 β1i A 1 -αe αh 1 F -Y T 1 P T 0 β 2 j BK -Y T 2 * -S 1 0 * * -S 2 * * * * * * * * * P T 0 e αh 1 F µ 1 P T 0 β 1i A 1 µ 2 P T 0 β 2 j BK 0 0 0 0 0 0 -U 0 0 * -µ 1 R 1a 0 * * -µ 2 R 2a          < 0, ∀(i, j) ∈ {1, 2} 2 (17) 
where Y i , Z i are given by ( 9) and

Ψ 2 = Ψne + 0 0 0 ∑ 2 k=1 2µ k R ka , Ψne = P T 0 I A 0 + αI -I + 0 I A 0 + αI -I T P + ∑ 2 k=1 Y k 0 + Y k 0 T + ∑ 2 k=1 (h k + µ k )Z k + ∑ 2 k=1 S k 0 0 ∑ 2 k=1 (h k + µ k )R k +U , (18) 
V. EXPONENTIAL STABILIZATION OF NEUTRAL SYSTEMS Theorem 2 (Exponential stabilization): The control law (5) exponentially stabilizes system (3) if, for some positive numbers α and ε, there exists a positive definite matrix P1 , matrices of size n × n P, Ū, Zk1 , Zk2 , Zk3 , Ȳk1 , Ȳk2 from definition (9) and a n × m matrix W, such that the following LMI conditions hold for i, j = 1, 2 :

         Ψ 3 β1i A 1 P -αe αh 1 F P -Ȳ T 11 ε( β1i A 1 P -αe αh 1 F P) -Ȳ T 12 β 2 j BW -Ȳ T 21 εβ 2 j BW -Ȳ T 22 * -S1 0 * * -S2 * * * * * * * * * e αh 1 F P εe αh 1 F P µ 1 β 1i A 1 P εβ 1i A 1 P µ 2 β 2 j BW εβ 2 j BW 0 0 0 0 0 0 -Ū 0 0 * -µ 1 R1a 0 * * -µ 2 R2a          < 0, ∀(i, j) ∈ {1, 2} 2 (19) 
and

Ri Ȳi1 Ȳi2 * Zi1 Zi2 * * Zi3 ≥ 0, (20) 
where

Ψ311 = (A 0 + αI) P + PT (A 0 + αI) T + ∑ 2 k=1 Sk + (h k + µ k ) Zk1 + Ȳk1 + Ȳ T k1 , Ψ312 = P1 -P + ε PT (A 0 + αI) T + ∑ 2 k=1 ((h k + µ k ) Zk2 + Ȳk2 ) , Ψ322 = -ε( P + PT ) + ∑ 2 k=1 ((h k + µ k )( Zk3 + Rk ) + 2µ k Rka ) .
The corresponding α-stabilizing state-feedback gain is given by:

K = W P-1 . (21) 
Proof: Following [START_REF] Suplin | H ∞ control of linear uncertain time-delay systems -a projection approach[END_REF], we apply Theorem 1 with: P 3 = εP 2 , where ε ∈ R is a tuning scalar parameter. Note that P 2 is nonsingular since the only matrix which can be negative definite in the second block on the diagonal of ( 19) is -ε(P 2 + P T 2 ). Defining:

P = P -1 2 (22)
For all the matrical variables V ∈ [P 1 Y i j S i U R i R ia Z ik ] for all i = 1, 2, j = 1, 2, k = 1, 2, 3 the new variable V is defined by PT V P. and W = K P, multiplying [START_REF] Niculescu | Robust exponential Stability of uncertain systems with time-varying delays[END_REF] by diag{ P, P, P, P, P, P, P}, and its transpose, from the right and the left, respectively, and multiplying (8) diag{ P, P, P} and its transpose, from the right and the left, achieves the proof. Remark 1: In the case α = 0, Theorem 1 assures that the state-feedback gain K asymptotically stabilizes system (3).

VI. EXAMPLE 1

Consider the following example, taken from [START_REF] Li | Criteria for robust stability and stabilization of uncertain linear systems with state delay[END_REF]. We address the problem of finding an exponentially stabilizing control for system (3) with the values:

A 0 = 1 0 0 1 , A 1 = -1 0 -1 -0.9 , F = 0.1 0 0 0.1 , B = 0 1 . (23) 
Solving the LMIs of Theorem 2 for h 1 = 0.5, µ 1 = 0.2, h 2 = 0.6, and ε = 4.2 leads to the state-feedback gain K = [0.7670 , -0.2241] which asymptotically stabilizes (α = 0) the system up to µ 2 = 0.21.

Concerning the α-stabilization, for α = 1.19, h 1 = h 2 = 0.16, µ 1 = µ 2 = 0.09 and ε = 2.3, the computed state-feedback gain K = [1.0215 -1.0741] exponentially stabilizes the system. This result ensures that the system is exponentially stable with a delayed and nonuniform sampled control. The corresponding simulation results are given on Figure 2. 

VII. EXAMPLE 2

The second example , of the neutral type, is not concerned with sampled-data control, but it still uses Theorem 2. Several authors interpreted the wave equation describing the torsional behavior of a flexible rod with a mass as a linear system with delayed terms. A neutral state representation for flexible rod equation is given in [START_REF] Fliess | Controlability and motion planning for linear delay systems with application to flexible rod[END_REF] :

ẋ1 (t) = x 2 (t), ẋ2 (t) = ẋ2 (t -2T ) -x 2 + x 2 (t -2T ) + u(t -T ), (24) 
where T represents the delay and depends on the parameters of the system. In such a neutral case, the difference operator x(t) -Fx(tg) must be stable in sense of Shür-Cohn, which corresponds to formal stability [START_REF] Byrnes | A several complex variables approach to feedback stabilization of linear neutral delay-differential systems[END_REF]. Then, [START_REF] Byrnes | A several complex variables approach to feedback stabilization of linear neutral delay-differential systems[END_REF] and [START_REF] Fliess | Controlability and motion planning for linear delay systems with application to flexible rod[END_REF] introduce a stabilizing control of the form :

u(t) = -λ ẋ2 (t -T ) + v(t)
with λ ∈]0, 2[. In [START_REF] Byrnes | A several complex variables approach to feedback stabilization of linear neutral delay-differential systems[END_REF] and [START_REF] Fliess | Controlability and motion planning for linear delay systems with application to flexible rod[END_REF], v(t) was designed on the basis of x(t -T ) measurement. Here, one suppose that ẋ2 (t -T ) is still measured, but that x is measured with some additional time-varying delay µ, i.e. x(t -T -µ(t). So the following control law is proposed:

v(t) = Kx(t -T -µ(t)), ( 25 
)
where µ is such that µ(t) ≤ µ 2 and K is a state feedback gain of appropriate dimension.

Then, flexible rod equations are in the form of (3) with:

A 0 = 0 1 0 -1 , A 1 = 0 0 0 1 , F = 0 0 0 1 -λ , B = 0 1 . ( 26 
)
Theorem 2 is adapted to the flexible rod case, with λ = 0.2, T = 0.1, by taking α = 1.05, µ 1 = 0, µ 2 = 0.08 and ε = 1.32. After controlling that e αh 1 F < 1, the corresponding simulation results are given on Figure 3. They show the expected exponential convergence. 

VIII. CONCLUSION

The obtained results generalize several recent works: [START_REF] Fridman | Robust sampled-data stabilization of linear systems: An input delay approach[END_REF] and [START_REF] Hu | Sampled-data Control for time-delay systems[END_REF] to neutral systems; [START_REF] Fridman | Stability of linear functional differential equations: A new Lyapunov technique[END_REF], [START_REF] Fridman | Robust sampled-data stabilization of linear systems: An input delay approach[END_REF] and [START_REF] Kharitonov | On the stability of linear systems with uncertain delay[END_REF] to exponential stabilization; [START_REF] Hu | Sampled-data Control for time-delay systems[END_REF] to non uniform sampling; [START_REF] Fridman | Robust sampled-data stabilization of linear systems: An input delay approach[END_REF] to non-small delays; [START_REF] Byrnes | A several complex variables approach to feedback stabilization of linear neutral delay-differential systems[END_REF] and [START_REF] Fliess | Controlability and motion planning for linear delay systems with application to flexible rod[END_REF] to delayed measurement.. In order to shorten the presentation, it was only considered one delay τ 1 , one delay g and a constant input delay h 2 . However, the results of this paper can be easily extended to the case of multiple delays τ 1 , ..., τ m , g 1 , ..., g k and of a time-varying h 2 (t). Another possible extension includes robustness issues.
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 3 Fig. 3. Simulation of flexible rod with α = 1.05, h 1 = h 2 = 0.1, µ 1 = 0µ 2 = 0.08