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Implementation of an Internet-controlled system
under variable delays

Alexandre Seuret, M. Termens-Ballester, A. Toguyeni, S. El Khattabi and Jean-Pierre Richard

Abstract— This work deals with the control and the observa-
tion of a remote system using Internet as a communication line.
The process consists in a Slave part S, with poor computing
capacity, connected to a Master M through the Internet. The
internal times of both M and S are synchronized thanks to
a common GPS clock. The global system must ensure some
speed performance whatever the delay variations. The main
technical restriction is that the delays are less than some known
bound, even if the framework we consider takes into account the
perturbations generated by the Internet communication delays,
by the packet losses and by the sampling phenomenon as well.
In what concerns the design of the observer and controller, most
of the theorems to be used here refer to proofs given in [14], and
this will allow for focussing on the implementation aspects.

I. INTRODUCTION

In a networked control situation, communication links un-
avoidably introduce delays that have to be taken into account
in the design of control/observation loops. In the case of In-
ternet, these delays are variable (jitter phenomenon), unknown
and asymmetric. By asymmetric, we mean the transmission
delays from Master to Slave h1(t) (shortly, M-to-S), and S-
to-M h2(t) are not equal. The packets are not necessarily
routed via the same way and, if R(t) denotes the round
trip time (RTT), one may have h1(t), h2(t) 6= R(t)/2. The
delay variation is problematic since it forbids one to apply
the classical, predictor-based control laws (see [5], [8], [11]).
Recently, nevertheless, [15] generalized predictor techniques
to the case of variable, known delays. It was applied to
a single-owner Ethernet network, which case, contrarily to
Internet [9], allows for a dynamical model of the delay to
be available. In the case of unknown variable delays, one
may apply independent-of-delay conditions, but this turns out
to be conservative, even if [1] obtained some success in the
particular case of symmetric delays. For symmetric varying
delays again, [6], [7], [10] considered h1(t) = h2(t) ≤ hm by
introducing an input buffer making the delay become constant
and equal to its maximum value hm. However, it is obvious
that maximizing the delay up to its largest value may decrease
the speed performance of the global, remote system. Then,
the speed performance has to be figured out within the design
phase, which problem was not explicitly considered. To end
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this list, note that [4] considered asymmetric delays, but only
in the case of constant ones, i.e. h1(t) = h1 6= h2(t) = h2.

The present work considers the general case of unknown,
asymmetric and varying delays (h1(t) 6= h2(t)), together with
other perturbations such as packet losses and sampling effects.
Since a buffer strategy is involved, the speed performance will
be explicitly considered.

II. ASSUMPTIONS AND PERTURBATIONS

The delays generated by Internet are time-varying, asym-
metric, unknown. Thus, only few realistic hypotheses can be
assumed:
(1) The delay variations satisfy ḣi(t) ≤ 1, which means that
all the packets are re-organized in their chronological emission
order. In the sequel, UDP protocol will be used and the re-
ordering will be ensured by specific threads in M and S.
(2) Delays are assumed to have known upper-bounds him, so
that hi0 ≤ hi(t) ≤ him holds. Of course, an Internet link
does not guarantee such a bound by nature, and it must come
from an additional switching strategy. If a network congestion
occurs, the quality of service becomes too low for a stabi-
lization to be possible (i.e., delays become too large). In this
case, the Master/Slave strategy is not adequate anymore and an
autonomous control of S has to be conducted so not to leave it
without control. This autonomous control corresponds to some
deteriorated but stabilized Slave state. The switching decision
can be based on the maximum admissible delay him for which
our approach guarantees the existence of control/observation
gains.

Besides, the discrete nature of the implementation induces
data-sampling. Denoting tk a kth sampling instant (in S or in
M as well), we assume we know a maximum sampling interval
Ts, so that:

tk+1 − tk ≤ Ts ∀k ≥ 0. (1)

The corresponding sampling effects represent a possible dis-
turbance to the stabilization of the remote system and must
be taken into account in the observer and controller design as
well. Instead of turning into discrete-time, recurrent equations,
[2] has considered such sampling effects as continuous-time
phenomena with variable time delays. Indeed, the sample g(tk)
of a function g(t) at time tk can be written as: g(tk) = g(t−
[t − tk]) = g(t − τ(t)), which notation replaces the sample-
and-hold with an additional delay τ(t) = t−tk, t ∈ [tk, tk+1[.
By this way, an aperiodic sampling is modeled as unknown
delay with the upper-bound Ts defined by (1). This model has
several advantages:



(a) It allows one to consider non constant sampling intervals,
this means, the case where there is no constant period Ts such
that tk = kTs. This situation, coming from the task scheduling,
is usual in real time architectures.
(b) It also includes the problem of lost packets, which are
considered as a lengthening of the sampling interval. If the
kth packet is lost, the sample at time tk is lost as well and the
sampling interval becomes t − tk+1 instead of t − tk. Then,
the upper-bound Ts has to be replaced with T = Ts + qTs,
where q is the maximum number of consecutively packets it
is possible to loose.
(c) It is compatible with the transmission delays, without
introducing any additional complexity. For instance, δi(tk) =
hi(tk)+t−tk denote the two global delays (i = 1, 2) resulting
(at time t) from communication, sampling and packet loss.
Note the limit case δ̇i(t) = 1 occurs.

To finish with, we need additional information on the two
delays S-to-M and M-to-S. With this aim in mind, we equip
both S and M with a GPS antenna, which allows their clocks to
be synchronized. The control and measurements packets will
be sent together with “time-stamps” that permit to reconstruct
the non-symmetric delay information. By this way, both M-to-
S h1(t) and S-to-M h2(t) delays are separately reconstructed
by the system, and not only the RTT.

III. CONTROL OBJECTIVE

The exchanged data correspond to the control (sent by M to
S) and to the output of the remote process (sent by S to M).
For energy saving reasons, S is supposed not to have a large
computation capacity. The control and observation complexity
has to be concentrated in M. Our purpose is to guarantee the
robustness and speed performances of the global M/S system.
The global system must ensure the closed-loop stability and a
guaranteed speed rate whatever the delay variation. We require
the exponential stability with the rate α (or α−stability). In
other words, there must be a real K ≥ 1 such that the solution
x(t; t0, φ) starting at any time t0 from any initial function φ
satisfies: ‖x(t, t0, φ)‖ ≤ K‖φ‖e−α(t−t0).

We want to stress that obtaining the α−stability of the
M/S system in the conditions depicted above is not that easy.
The Master receives the information he needs for the control
computation after it has crossed the communication zone. The
GPS-based estimation of the transmission delay, joined to the
observer, allows the Master to know what was the Slave state
at the instant the information was sent to the Master. Similarly,
the control computed by M will be applied some time after it
is sent to S, and this dead-time is not known in advance.

For simplicity, the Slave is considered to be a linear system.
The global α−stability, robust w.r.t. the delay, will be proven
by using the same Lyapunov-Krasovskii functionals as in [14]
together with a separation principle. This will make possible
to compute the controller and observer gains by using LMI
optimization.

IV. FEATURES OF THE REMOTE SYSTEM

The main features of the system are depicted on Figure 1.

�

Fig. 1. Features of the remote system

(a) S can not build its own control. M computes and forwards
the control to S. The forwarding suffers a delay δ1(t) =
h1(tk) + τ1(t) induced by the communication, the sampling
and the packet losses.
(b) S is driven by a linear, controllable and observable, known
model S(A,B,C), influenced by an input delay δ∗1(t) ≥ δ1(t)
to be defined later on (see “Receipt and processing the control
data”):

{

ẋ(t) = Ax(t) + Bu(t − δ∗1(t)),
y(t) = Cx(t),

(2)

where A ∈ R
n×n, B ∈ R

n×m, C ∈ R
n×p.

(c) S measures its output variables y(t) with a sampling delay
τ2(t) (including the delay due to possible packet loss), which
gives yk = y(t − τ2(t)). M receives this sample after a delay
h2(tk).
(d) The sampling instants tk may not be periodical (i.e., tk 6=
kTs). It is supposed there is a known Ts such that (1) holds.
(e) M only can access y(t − δ2(t)), where δ2(t) = τ2(t) +
h2(tk). M includes an observer which aims at providing an
estimation x̂(t) of the complete Slave state x(t) at the present
time t. From this estimation, the Master elaborates the control
law.
(f) The two generated delays have known bounds δi0 = hi0

and δim = him + T , so that δi0 < δi(t) ≤ δim holds, and the
delay variation satisfies δ̇i(t) ≤ 1 (see Section II).
(g) Each part of the M/S system has a GPS card, which gives
to M and S a shared clock. Each data packet includes a time-
stamp (the time the packet was sent). By this way, the receiver
can calculate the transfer delays hi(t) as soon as it receives
the packet.

The sampling delays
For any signal g(t), we define the global delay δ(t) which

represents the combination of the sampling and packet loss
delays τk(t) (recall that τk(t) ≤ T = Ts + qTs) with the
delay h(tk) that the transmission line subjects to the packet
containing the kth sample:

g(tk − h(tk)) = g(t − h(tk) − (t − tk)),
= g(t − δ(t)),

tk ≤ t < tk+1, δ(t) , h(tk) + t − tk.
(3)

The control law
The controller in M computes a control law which takes into

account some set value to be reached by S. The state feedback
control u(t) is defined from the state estimate x̂ given by the
observer, as follows:

u(t) = Kx̂(t). (4)



The main difficulty is to determine the linear gain K of the
state feedback control so to guarantee the stability of the Slave
motion despite the value of the time-varying delay δ1(t). This
delay is not known by the Master when its control data is sent.

Transmission of the control data
The kth data sent by M to S includes the control u(t1,k) it

has just designed, together with the time t1,k when the packet
was sent. This packet goes across the Internet network. S
receives this information at time tr1,k. Thanks to the GPS clock
synchronization, this time has the same meaning for S as for
M. Then the term tr1,k−t1,k, corresponding to the transmission
delay, is known by S once the packet has reached it.

Receipt and processing of the control data
The control, sent by M at time t1,k, is received by S at time

tr1,k > t1,k. It will be injected in S input only at the pre-defined
“target time” ttarget

1,k = t1,k +h1m. This is achieved by storing
the control during the additional waiting time t1,k +h1m−tr1,k

(see Figure 2). This strategy is realistic because the delay is
bounded by a known value (in general, one can choose h1m =
δ1m). By this way, at any present time, M also knows the time
ttarget
1,k when this control u(t1,k) will be injected at the actuator

input of S.

�

Fig. 2. Control data processing

Transmission of the measured output data
S accesses its output y at discrete instants. A sent packet

contains the output y(t2,k′) together with its measurement
instant t2,k′ which is the k′th one. M receives at time tr2,k′

the output data. Once the packet has reached M, the delay
tr2,k′ − t2,k′ is known thanks to the GPS synchronization.

Observation of the process
For a given k and for t ∈ [t1,k +h1m, t1,k+1 +h1m[, there

is a k′ such that the proposed observer is of the form:
{

˙̂x(t) = Ax̂(t) + Bu(t1,k) − L(y(t2,k′) − ŷ(t2,k′)),
ŷ(t) = Cx̂(t).

(5)
The index k′ corresponds to the most recent output informa-

tion the Master M has received. Note that M knows the time
t1,k and the control u(t1,k) (see Section IV), which makes this
observer realizable.

Using the delay re-writing proposed in (3), one obtains:






˙̂x(t) = Ax̂(t) + Bu(t − δ1(t))
−L(y(t − δ2(t)) − ŷ(t − δ2(t))),

ŷ(t) = Cx̂(t),
(6)

with δ1(t) , t − t1,k and δ2(t) , t − t2,k′ .
In other words, the observer is realizable because the times

t1,k and t2,k′ defining the observer delays are known, thanks to
the common GPS clock. The system features lead to δ1(t) ≤
h1m + T and δ2(t) ≤ h2m + T .

V. DESIGN OF THE CONTROLLER AND OBSERVER GAINS

A. Exponential stabilization and notations

The controller and observer gains will have to be computed
so to guarantee the optimal speed rate α despite the presence
of the various delays. The α−stabilization results we shall use
for the gain design refer to [14].

Because of the transmission, our two delays have a non zero
lower bound (“non small delays” [3]), that we will generally
write as follows:

δi(t) = δi+ηi(t), with |ηi(t)| < µi and η̇i(t) ≤ 1. (7)

This allows for using of a polytopic formulation of the variable
delays, which was introduced in [12], [13]. This leads to the
definition of the following extrema, that will be involved in
our conditions for the gain design:

β11 = eα(δ1−µ1), β12 = eα(δ1+µ1),
β21 = eα(δ2−µ2), β22 = eα(δ2+µ2).

(8)

B. Observer design

Since the pair (A,C) is observable, it is possible to de-
termine a linear gain L such that the observer exponentially
converges to the real system in the non-delayed case. The next
theorem allows one to design another L so that the observer
state x̂(t) converges sufficiently fast (then, with exponential
rate α) to the real system state x(t) despite a variable delay
δ2(t) on the Slave output. The error vector is defined as
e(t) = x(t) − x̂(t). From (2) and (6), it is ruled by:

ė(t) = Ae(t) − LCe(t − δ2(t)). (9)

Theorem 1: Suppose that, for some positive scalars α and
ε, there exists n × n matrices 0 < P1, P , S, Y1, Y2, Z1, Z2,
Z3, R, Ra and a matrix W with appropriate dimensions such
that the following LMI conditions are satisfied for j = 1, 2:

[

Ψ2

»

β2jWC − Y1

εβ2jWC − Y2

–

µ2β2j

»

WC
εWC

–

∗ −S 0
∗ ∗ −µ2Ra

]

< 0, (10)

[

R Y
∗ Z

]

≥ 0, (11)

where β2j are defined by (8) for j = 1, 2 and the matrices Y ,
Z and Ψ2 are given by:

Y = [Y1 Y2], Z =
[

Z1 Z2

∗ Z3

]

, (12)

and:

Ψ11
2 = PT (A0 + αI) + (A0 + αI)T P + S+

δ2Z1 + Y1 + Y T
1 ,

Ψ12
2 = P1 − P + εP T (A0 + αI)T + δ2Z̄2 + Ȳ2,

Ψ22
2 = −ε(P + P T ) + δ2Z̄3 + 2µ2Ra,

Then, the gain:
L = (PT )−1W, (13)



makes the error (9) of observer (6) exponentially converge to
the solution e(t) = 0, with the guaranteed decay rate α > 0.

Note that the delay δ2(t) and then, δ2 and µ2, are imposed
by the various network perturbations. Using Theorem 1 means
to tune ε in order to maximize α.

C. Control design

First, we design of an ideal controller u = Kx, which means
a perfect observer (e(t) = 0, x(t) = x̂(t)). Then, we consider:

ẋ(t) = Ax(t) + BKx(t − δ1(t)), (14)

Theorem 2: Suppose that, for some positive numbers α and
ε, there exists a positive definite matrix P̄1, matrices of size
n×n: P̄ , Ū , Z̄1, Z̄2, Z̄3, Ȳ1, Ȳ2 similarly to (12) and a n×m
matrix W , such that the following LMI conditions hold:








Ψ3

[

β1iBW − Ȳ T
1

εβ1iBW − Ȳ T
2

]

µ1

[

β1iBW
εβ1iBW

]

∗ −S̄ 0
∗ ∗ −µ1R̄a









< 0,

∀i = 1, 2,
(15)





R̄ Ȳ1 Ȳ2

∗ Z̄1 Z̄2

∗ ∗ Z̄3



 ≥ 0, (16)

where β1i, for i = 1, 2, are defined by (8) and

Ψ̄11
3 = (A0 + αI)P̄ + P̄T (A0 + αI)T + S̄

+δ1Z̄1 + Ȳ1 + Ȳ T
1 ,

Ψ̄12
3 = P̄1 − P̄ + εP̄T (A0 + αI)T + δ1Z̄2 + Ȳ2,

Ψ̄22
3 = −ε(P̄ + P̄T ) + δ1Z̄3 + 2µ1R̄a.

Then, the gain:
K = WP̄−1, (17)

exponentially stabilizes the system (14) with the decay rate α
for all delay δ1(t) satisfying (7).

As for the observer, using Theorem 2 means to tune ε in
order to maximize α.

D. The global remote system

The gains K and L have to be computed in such a way
they exponentially stabilize the global Master-Slave-Observer
system despite the variable delays δ1(t) and δ2(t). This global
system is:

{

ẋ(t) = Ax(t) + BKx̂(t − δ1(t)),
ė(t) = Ae(t) − LCe(t − δ2(t)),

(18)

which leads to:
{

ẋ(t) = Ax(t) + BKx(t − δ1(t)) − BKe(t − δ1(t)),
ė(t) = Ae(t) − LCe(t − δ2(t)).

(19)
The exponential stability of the global system can be shown

by using a separation principle: Indeed, (19) is under a block-
triangular form, which diagonal subsystems have been proven
to be stable in Theorems 1 and 2. Then the whole system is
α−stable with the smallest α computed from Theorems 1 and
2.

VI. DATA-PROCESSING STRUCTURE

This section shows the next step to the implementation and
focusses on the data-processing structure of the remote system.

Communication through sockets is designed around the so-
called Client/Server architecture. Two processes connected by
network links are not treated identically but rather one is
considered the server and the other the client. On the other
side, the two entities have synchronized clocks because of the
GPS utilization. They have access to the same time value at
each step of the observation or control data computation.

A. Structure of the Master

M is composed of four threads. These threads are programs
which work independently. They are useful here because they
permit to do parallel tasks in the same program. The structure
is described in Figure 3.�
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Fig. 3. Master Structure

(a) OBSERVERTHREAD concerns the computation of the
estimate x̂ at the current time t0,q . It works with a period
T0 ¿ Ts, where Ts is defined in (1). The sampling instant
t0,q corresponds to the sampling of the OBSERVERTHREAD.
It uses the last delayed output y(t2,k′) and the corresponding
sampling instant t2,k′ delivered by S, as well as the control
u(t1, k). These data are retrieved from lists which contains
a sequence of the past values of x̂ and u. Then, the thread
computes the current estimate x̂(t0,q+1) using (20) and adds
it to the list. T0 must be small enough to obtain a computation
instant nearly equal to t2,k′ . The estimate is computed as
follows for i = 1, .., n and r = 1, .., p :

x̂i(t0,q+1) = x̂i(t0,q) +
[

∑n
j=1 A(i,j)x̂j(t0,q)

+
∑m

s=1 B(i,s)us(t1,k + h1m)
−
∑p

r=1 L(i,r)(yr(t2,k′) − ŷr(t2,k′)))
]

T0,
ŷr(0, t0,k) =

∑n
i=1 Cix̂(t0,q)

(20)
(b) CONSTHREAD is a short program. Its purpose is to
update the task value. The task values are updated periodically
with a large period which allows to be driven the global
system.
(c) SENDERTHREAD works periodically with a period T0 ¿
T1 ≤ Ts. S does not need a large number of control values.
Its tasks are to receive the last estimate x̂(t0,k+1) from the
observer thread. Then it calculates the control u(t1,k+1) =
Kx̂(t1,k+1). It regroups in a data-packet the control u(t0,k+1)
and the sampling instant t0,k+1 in a list which is used by



OBSERVERTHREAD. Then at the sampling instant t1,k+1, it
sends the most recent data to the S.
(d) RECEIVERTHREAD is factual. This means it is only
solicited when a data-packet arrives. It transfers the Slave
information to the OBSERVERTHREAD.

B. Structure of the Slave

As it was mentioned in section IV, S has a reduced
computation power. So its tasks only consist in receiving and
transmitting data from and to M. Figure 4 presents the data-
processing structure of S.
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Fig. 4. Slave Structure

It consists in two threads:
(d) RECEIVERTHREAD is factual. This means it is only
solicited when a data-packet arrives. It stores the control data
u(t1,k) until the associated target time t1,k + h1m and, then,
injects it at the slave input until the next time t1,k+1 + h1m.
(b) SENDERTHREAD receives the last output information
from the sensors, y(t2,k′) and notes the instant t2,k′ . Then
it sends this data to M. This thread works periodically with a
period T2 ≤ Ts. T2 has to be large enough to avoid a network
congestion, which would increase h2m, and small enough to
increase the observer performance. However, note that any
0 < T2 ≤ Ts can be chosen provided that the observer gain
is computed from (13).

VII. APPLICATION TO A MOBILE ROBOT

This study is illustrated on the model of a mobile robot
(Slave S) which can move in one direction. The identification
phase gives the following dynamics:

A =
[

0 1
0 −11, 32

]

, B =
[

0
11, 32

]

, C [ 1 0 ] .

(21)
The characteristics of transmission delays combined with

the sampling and computation effects lead to the values (see
(7)) δ1 = δ2 = 0.37s, and µ1 = µ2 = 0.11s. This values
correspond to the sampling periods T0 = 5ms, T1 = 100ms
and T2 = 100ms and to transmission delays h1 and h2 which
lay in [0.16, 0.38] (thus, Ts = 100ms.). Theorem 1 applied to
(9) guarantees that the error dynamics converge exponentially
with α = 1.01 (obtained for ε = 3.00) if the gain L is chosen
as:

L =
[

−0.9119
−0.0726

]

. (22)

Theorem 2 applied to (14) ensures the control law will
exponentially stabilize the reduced system with α = 1.01,
obtained for ε = 3.43 and:

K = [ −0.9125 −0.0801 ] . (23)

With these values, the global stability of the remote system
(18) is also exponentially stable with a decay rate α = 1.01.

Figure 5 shows a simulation result that was obtained for
some particular delay variation law. On Figure 5a and 5b,
the continuous model of the observer x̂ corresponds to the
continuous curves, while the sampling instants correspond to
the dashed lines. The output is driven to its set value. Figure
6 represents the sampled control send to S. Note that the
following results were obtained using Matlab/Simulink. The
concrete development is still in progress and will be done for
the final version of this article.
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Fig. 5. Simulation results
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IX. CONCLUDING REMARKS

To finish with, let us recall the two main ideas in this
control strategy: (1) the Master observer works in continuous
time, whereas the Slave measurement is in discrete time. By
this way, the observer reconstructs intermediate values of the
Slave state. (2) All the perturbations generated by the network
(delays, sampling, packet losses) are modeled in the form of
time delays. Thanks to recent results on variable and non-small
delays (i.e. delays which lower bound is non zero), the robust
performance can be achieve with reduced assumptions.
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