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A sliding mode observer for linear systems with unknown time varying delay

Alexandre Seuret, Thierry Floquet, Jean-Pierre Richard and Sarah K. Spurgeon ∗†‡

Abstract

The design of observers for linear systems with unknown,

time-varying, bounded delays (on the state and on the in-

put) still constitutes an open problem. In this paper, we

show how to solve it for a class of systems by combining the

sliding mode observer approach with an adequate choice

of a Lyapunov-Krasovskii functional. This result provides

workable conditions in terms of rank assumptions and LMI

conditions. The dynamic properties of the observer are also

analyzed. A 4th-order example is proposed to study the fea-

sibility.

Sliding Mode Observer, Time-Delay Systems, Un-

known Delay, Linear Matrix Inequalities.

1. Introduction

State observation is an important issue for both linear

and nonlinear systems. This work considers the observa-

tion problem in the case of linear systems with unknown

delay. Several authors proposed observers for delay sys-

tems (see, e.g., [21, 20]). Most of them, as it is pointed

out in [20], consider that the value of the delay (mainly

constant) can be involved in the observer realization. Con-

cretely, this means that the delay is known or measured.

Likewise, what is defined as “observers without internal de-

lay” [4, 5, 11] involves the output knowledge at the present

and delayed instants. Besides, in [16] was designed a

finite-dimensional observer (thus, without delay) since it

was constructed just for the finite set of unstable or poorly

damped modes of the delay system. However, the deter-

mination of these modes, here again, requires the delay

knowledge.

Yet, in concrete applications (for instance teleopera-

tion, or networked systems), the delay invariance and de-

lay knowledge remain assumptions coming more from the
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identification and analysis limits than from technical facts.

There are presently only few results in which the observer

does not assume the delay knowledge [2, 3, 7, 14, 26].

These interesting approaches consider linear systems and

guarantee an H∞ performance for the filtering error. Those

approaches are based on i.o.d stability techniques (indepen-

dent of the delay). So it should be interesting to reduce the

probable conservatism of such results by taking into ac-

count the information on a delay upper-bound.

In this paper, we propose a method to solve the problem

of the observation of linear systems with unknown time de-

lays by combining some results on sliding mode observers

(see, e.g., [1, 8, 9, 12, 19]) with an adequate choice of a

Lyapunov-Krasovskii functional. The observer dynamical

properties will also be discussed. For the sake of simplic-

ity, the unknown time delay h(t) is assumed to be the same

for the state and the input. In order to reduce the conser-

vatism of the worked out conditions, it is supposed to have

a known upper bound hm so that:

0 ≤ h(t) ≤ hm, ∀t ∈ IR +.

Throughout the article, the notation P > 0 for P ∈ IR n×n

means that P is a symmetric and positive definite matrix.

[A1|A2|...|An] is the concatenated matrix with matrices Ai.

In represents the n× n identity matrix. Finally, Sym{P} =
(P+PT ).

2. Problem statement

Let us consider the linear time-invariant system with

state and input delay:















ẋ(t) = Ax(t)+Ahx(t −h(t))
+Bu(t)+Bhu(t −h(t))+Dζ (t)

y(t) = Cx(t)
x(s) = φ(s), ∀ s ∈ [−hm,0]

(1)

where x ∈ IR n, u ∈ IR m and y ∈ IR q are the state vector, the

input vector and the measurement vector, respectively. ζ ∈
IR r is an unknown and bounded perturbation that satisfies:

‖ζ (t)‖ ≤ α1(t,y,u), (2)

where α1 is a known scalar function. φ ∈C0([−hm,0], IR n)
is the vector of initial conditions. It is assumed that



A, Ah, B, Bh, C and D are constant known matrices of

appropriate dimensions. The following structural assump-

tions are required for the design of the observer:

A1. rank(C[Ah|Bh|D]) = rank([Ah|Bh|D]) , p,

A2. p < q ≤ n,

A3. The invariant zeros of (A, [Ah|Bh|D],C) lie in C
−.

Under those assumptions and using the same linear

change of coordinates as in [10], Chapter 6, the system can

be transformed into:






















ẋ1(t) = A11x1(t)+A12x2(t)+B1u(t),
ẋ2(t) = A21x1(t)+A22x2(t)+B2u(t)

+G1x1(t −h(t))+G2x2(t −h(t))
+Guu(t −h(t))+D1ζ (t),

y(t) = T x2(t),

(3)

where x1 ∈ IR n−q, x2 ∈ IR q and where G1, G2, Gu, D1 and

A21 are defined by:

G1 =

[

0

Ḡ1

]

,G2 =

[

0

Ḡ2

]

,Gu =

[

0

Ḡu

]

,

D1 =

[

0

D̄1

]

, A21 =

[

A211

A212

]

,

with Ḡ1 ∈ IR p×(n−q), Ḡ2 ∈ IR p×q, Ḡu ∈ IR p×m, D̄1 ∈ IR p×r,

A211 ∈ IR (q−p)×(n−q) , A212 ∈ IR p×(n−q) and T an orthog-

onal matrix involved in the change of coordinates given in

[10].

Under conditions A, the system can be decomposed in

two subsystems. A1 implies that the unmeasurable state x1

is not affected by the delayed terms and the perturbations.

A3 ensures that the pair (A11,A211) is at least detectable.

In this article, the following lemma will be used:

Lemma 1 [15] For any matrices A, P0 > 0 and P1 > 0, the

inequality

AT P1A−P0 < 0,

is equivalent to the existence of a matrix Y such that:
[

−P0 ATY T

YA −Y −Y T +P1

]

< 0.

3. Observer design

Let us define the following sliding mode observer:






































˙̂x1(t) = A11x̂1(t)+A12x2(t)+B1u(t)
+

(

LT T GlT −A11L
)

(x2(t)− x̂2(t))+LT T ν(t)
˙̂x2(t) = A21x̂1(t)+A22x2(t)+B2u(t)

−
(

A21L+T T GlT
)

(x2(t)− x̂2(t))

+G1x̂1(t − ĥ)+G2x2(t − ĥ)+Guu(t − ĥ)

−G1L
(

x2(t − ĥ)− x̂2(t − ĥ)
)

−T T ν(t)
ŷ(t) = T x̂2(t)

(4)

where the linear gain Gl is an Hurwitz matrix and L has

the form
[

L̄ 0
]

with L̄ ∈ IR (n−q)×(q−p). The computed

delay ĥ ≤ hm is an implemented value that can be chosen

according to the parameters of the system. It could also be

time-varying. For instance ĥ could be equal to some ex-

pected nominal estimation of the time-varying delay. The

discontinuous injection term ν is given by:

ν(t) =

{

−ρ(t,y,u)
Py(y(t)−ŷ(t))

‖Py(y(t)−ŷ(t))‖ if y(t)− ŷ(t) 6= 0,

0 otherwise.

(5)

where Py > 0, Py ∈ IR p×p and where ρ is a nonlinear pos-

itive gain yet to be defined. Note that the non delayed

terms depending on x2 are known because x2(t) = T T y(t).
Defining the state estimation errors as e1 = x1(t)− x̂1(t)
and e2 = x2(t)− x̂2(t), one obtains:























ė1(t) = A11e1(t)−L
(

T T GlTe2(t)+T T ν(t)
)

+A11Le2(t),
ė2(t) = A21e1(t)+G1e1(t −h(t))+D1ζ (t)

+T T ν(t)+ξ0(t)+(T T GlT +A21L)e2(t)

+G1Le2(t − ĥ),
(6)

where ξ0 : IR 7−→ IR p is given by:

ξ0(t) = G1(x̂1(t −h(t))− x̂1(t − ĥ))

+G2(x2(t −h(t))− x2(t − ĥ))

+Gu(u(t −h(t))−u(t − ĥ)).

Let us introduce the change of coordinates

[

ē1

ē2

]

=

TL

[

e1

e2

]

with TL =

[

In−q L

0 T

]

. Using the fact that

LG1 = LG2 = LGu = LD1 = 0, one obtains:







˙̄e1(t) = (A11 +LA21)ē1(t),
˙̄e2(t) = TA21ē1(t)+T G1ē1(t −h(t))

+Gl ē2(t)+ν(t)+T ξ (t)+T D1ζ (t),
(7)

with

ξ (t) = G1(x̂1(t −h(t))− x̂1(t − ĥ))

+G2(x2(t −h(t))− x2(t − ĥ))

−G1L(e2(t −h(t))− e2(t − ĥ))

+Gu(u(t −h(t))−u(t − ĥ)),

that can be rewritten as:

ξ (t) =
[

G1 G2 −G1L Gu

]

∫ t−h(t)

t−ĥ









˙̂x1(s)
ẋ2(s)
ė2(s)
u̇(s)









ds.

(8)



The function ξ only depends on the known variables x̂1,

x2, e2 and u and on the unknown delay h(t). One can then

assume that there exists a known scalar function α2 such

that:

‖ξ (t)‖ ≤ α2(t, x̂1,x2,e2,u). (9)

Remark 1 Note that the nearest the available estimation

ĥ of h(t), the smallest the bound α2 (indeed ĥ = h(t) im-

plies ξ = 0). This means that an available information on

the delay size order allows for reducing the observer gain.

Furthermore, as it will be seen hereafter, a value hm of the

upper-bound of the admissible time delays will be available

via an LMI formulation.

It is now possible to define more precisely the “discon-

tinuous gain” ρ , using the same technique for the design of

the sliding mode control law in [13]:

ρ(t,y,u) = ‖D1‖α1(t,y,u)+α2(t, x̂1,x2,e2,u)+ γ, (10)

with γ a positive real number. Then the following result

holds:

Theorem 1 Under the conditions A and (9) and for any
Hurwitz matrix Gl , the system (7) is asymptotically stable
for all delay h(t)≤ hm if there exist symmetric positive defi-

nite matrices P1 and R1 ∈ IR (n−q)×(n−q), P2 ∈ IR q×q, a sym-

metric matrix Z2 ∈ IR q×q and a matrix W ∈ IR (n−q)×(q−p)

such that the following LMI conditions are satisfied:




ψ0 AT
11P1 +AT

211W T (A21 +G1)
T T T P2

−2P1 +hmR1 0

∗ GT
l P2 +P2Gl +hmZ2



 < 0, (11)

[

R1 (T G1)
T P2

P2T G1 Z2

]

≥ 0, (12)

where ψ0 = AT
11P1 +P1A11 +AT

211W T +WA211.

The observer gain L̄ is then given by L̄ = P−1
1 W.

Consider the candidate for a Lyapunov-Krasovskii func-

tional:

V (t) = ēT
1 (t)P1ē1(t)+ ēT

2 (t)P2ē2(t)

+
∫ 0
−hm

∫ t
t+θ

˙̄eT
1 (s)R1 ˙̄e1(s)dsdθ .

(13)

Using the following transformation:

ē1(t −h(t)) = ē1(t)−

∫ t

t−h(t)

˙̄e1(s)ds, (14)

and differentiating (13) along the trajectories of (7), one

gets:

V̇ (t) = ēT
1 (t)[Sym{(A11 +LA21)

T P1}]ē1(t)
+ēT

2 (t)[GT
l P2 +P2Gl ]ē2(t)

+Sym
{

ēT
2 (t)P2T (A21 +G1)ē1(t)

}

−2ρ(t,y,u)‖P2ē2(t)‖+hm ˙̄eT
1 (t)R1 ˙̄e1(t)

+η1(t)+η2(t)−
∫ t

t−hm
˙̄eT
1 (s)R1 ˙̄e1(s)ds,

(15)

where

η1(t) = −2ēT
2 (t)P2T G1

∫ t
t−h(t)

˙̄e1(s)ds,

η2(t) = 2ēT
2 (t)P2T [D1ζ (t)+ξ (t)] .

The LMI condition (12) implies that for any vector X :

XT

[

R1 (T G1)
T P2

P2T G1 Z2

]

X ≥ 0,

Developing this relation for X =

[

˙̄e1(s)
ē2(t)

]

, one has:

−2ē2(t)P2G1 ˙̄e1(s) ≤ ē2(t)
T Z2ē2(t)+ ˙̄eT

1 (s)R1 ˙̄e1(s).

By integrating this inequality with respect to the s variable,
one can upperbound η1(t):

η1(t) ≤
∫ t

t−h(t) ēT
2 (t)Z2ē2(t)ds+

∫ t
t−h(t)

˙̄eT
1 (s)R1 ˙̄e1(s)ds,

η1(t) ≤ hmēT
2 (t)Z2ē2(t)+

∫ t
t−hm

˙̄eT
1 (s)R1 ˙̄e1(s)ds.

(16)

Under the definition (10) of ρ and since T is an orthogonal

matrix:

η2(t)−2ρ(t,y,u)‖P2ē2(t)‖ ≤ −2γ‖P2ē2(t)‖. (17)

Taking into account (16), (17) and that ˙̄e1(t) = (A11 +
L̄A211)ē1(t), V̇ can be upperbounded as follows:

V̇ (t) ≤ Sym
{

ēT
1 (t)P1(A11 + L̄A211)ē1(t)

+ēT
2 (t)P2(A21 +G1)ē1(t) +ēT

2 (t)P2Gl ]ē2(t)
}

+hmēT
1 (t)(A11 +LA21)

T R1(A11 +LA21)ē1(t)
+hmēT

2 (t)Z2ē2(t)−2γ‖P2e2(t)‖,

This can be rewritten as:

V̇ (t) ≤

[

ē1(t)
ē2(t)

]T

Ψ

[

ē1(t)
ē2(t)

]

−2γ‖P2ē2(t)‖, (18)

with

Ψ =

[

ψ1 (A21 +G1)
T T T P2

P2T (A21 +G1) GT
l P2 +P2Gl +hmZ2

]

(19)

and

ψ1 = (A11 + L̄A211)
T P1 +P1(A11 + L̄A211)

+hm(A11 + L̄A211)
T R1(A11 + L̄A211)

One can note that (19) is not a LMI condition since there
are some nonlinear terms in the first row and the first col-
umn. Nevertheless, this problem can be transformed into
an LMI condition using Lemma 1:





ψ0 (A11 + L̄A211)
TY T (A21 +G1)

T T T P2

∗ −Y −Y T +hmR1 0

∗ ∗ GT
l P2 +P2Gl +hmZ2



 < 0.

(20)

Let us set Y = P1 and define W = P1L̄. The LMI conditions

of Theorem 1 appear. Thus, if (11) and (12) are satisfied,

(20) is also satisfied. This implies that the observation error

is asymptotically stable.



4. Dynamic properties of the observer

4.1. Finite time convergence on the sliding mani-

fold

Corollary 1 Under the observer design of Theorem 1, an

ideal sliding motion takes place on S0 = {ē2 = 0} in finite

time.

Consider the Lyapunov function:

V2(t) = ēT
2 (t)Pyē2(t) (21)

Differentiating along the trajectories of (7), one obtains:

V̇2(t) = ēT
2 (t)(GT

l Py +PyGl)ē2(t)+2ēT
2 (t)PyT

[

T T ν
+A21ē1(t)+G1ē1(t −h(t))+D1ζ (t)+ξ (t)] .

Using the fact that Gl is Hurwitz and (5), one can write the

following upper bound for V̇2(t):

V̇2(t) ≤ 2‖Pyē2(t)‖ [‖A21ē1(t)+G1ē1(t −h(t))‖− γ] .

From Theorem 1, the error e1 is asymptotically stable.

Thus, there exist an instant t0 and a positive scalar δ such

that : ∀t ≥ t0, ‖A21ē1(t)+G1ē1(t −h(t))‖ ≤ γ −δ
This leads to

∀t ≥ t0, V̇2(t) ≤−2δ‖Pyē2(t)‖

≤ −2δ
√

λmin(Py)
√

V2(t).

where λmin(Py) is the smallest eigenvalue of Py. Integrat-

ing the last differential inequation, it follows that an ideal

sliding motion takes place on S0 in finite time.

4.2. Exponential stability

In this part, the observer convergence is improved by

giving a criteria of exponential convergence. Exponential

stability properties could be an interesting way to character-

ize the convergence rate of the observers. As in [18, 22], for

some given rate α > 0, a system (7) is said to be α−stable,

or “exponentially stable with the rate α”, if there exists a

scalar β ≥ 1 such that the solution e(t; t0,φ) of (7), with

any initial function φ , satisfies:

|e(t, t0,φ)| ≤ β |φ |e−α(t−t0). (22)

In spite of the unknown and variable delay, the following

Theorem ensures that the observer dynamics is α−stable.

Theorem 2 Under conditions A and (9), the system (7) is
α−stable for any delay h(t) ≤ hm if there exist symmetric

positive definite matrices P1, R1 and R2 ∈ IR (n−q)×(n−q),
P2 ∈ IR q×q, a symmetric matrix Z2 ∈ IR q×q and a matrix

W ∈ IR (n−q)×(q−p) such that the following LMI conditions
are satisfied:











ψα
1 AT

11P1 +AT
211W T +αP1 (A21 +b0G1)

T T T P2

−2P1 +2hmR1 0

∗ Y T +Y +2αP2 +hmZ2

∗ ∗
∗ ∗

0 0

0 0

bmP2T G1 hmbmP2T G1

−R1 0

−hmR2











< 0,

(23)

[

R1 b0(T G1)
T P2

b0P2T G1 Z2

]

≥ 0. (24)

where

ψα
1 = AT

11P1 +P1A11 +2αP1

+AT
211W T +WA211 +R2

b0 = (1+ eαhm)/2, bm = (−1+ eαhm)/2

The observer gains are given by L̄ = P−1
1 W et Gl =

P−1
2 Y .

Let us introduce the new variable ēα
i (t) = eαt ēi(t) in(7).

Then, the asymptotic convergence of ēα implies that ē is
α−stable. Equation (7) becomes:







˙̄eα
1 (t) = (A11 +LA21 +αIn−p)ē

α
1 (t),

˙̄eα
2 (t) = TA21ēα

1 (t)+(ν +T ξ (t)+T D1ζ (t))eαt

+eαh(t)T G1ēα
1 (t −h(t))+(Gl +αIp)ē

α
2 (t),

(25)

Note that eαh(t) = b0 + ∆(t)bm, where ∆(t) is an unknown

scalar function satisfying ‖∆(t)‖ ≤ 1. Consider the follow-

ing candidate for a Lyapunov-Krasovskii functional:

V α(t) = ēαT
1 (t)P1ēα

1 (t)+ ēαT
2 (t)P2ēα

2 (t)

+2
∫ 0
−hm

∫ t
t+θ

˙̄eαT
1 (s)R1 ˙̄eα

1 (s)dsdθ .
(26)

Differentiating (26) along (25), one gets:

V̇ α (t) = ēαT
1 (t)[Sym{P1(A11 + L̄A211 +αIn−p)}]ē

α
1 (t)

+2ēαT
2 (t)P2T (A21 +b0G1)ē

α
2 (t)

+ηα
1 (t)+ηα

2 (t)+ηα
3 (t)+ηα

4 (t)
+ēαT

2 (t)[P2(Gl +αIp)+(Gl +αIp)
T P2]ē

α
2 (t)

+2hmėαT
1 R1ėα

1 (t)−2
∫ t

t−h(t) ėαT
1 (s)R1ėα

1 (s)ds,

(27)

ηα
1 (t) = 2ēαT

2 (t)P2b0T G1

∫ t
t−h(t) ėα

1 (s)ds,

ηα
2 (t) = 2ēαT

2 (t)P2bm∆(t)T G1eα
1 (t),

ηα
3 (t) = 2ēαT

2 (t)P2bm∆(t)T G1

∫ t
t−h(t) ėα

1 (s)ds,

ηα
4 (t) = 2ēαT

2 (t)P2 (ν +T ξ (t)+T D1ζ (t))eαt .

Following the lines of Theorem 1, (24) gives a majoration

of η1:

ηα
1 (t)≤ hmēαT

2 (t)Z2ēα
2 (t)+

∫ t

t−hm

˙̄eαT
1 (s)R1 ˙̄eα

1 (s)ds. (28)



For any n× n matrix R > 0 and for any vectors a ∈ Rn

and b ∈ Rn:

±2aT b ≤ aT R−1a+bT Rb (29)

Let us apply (29) for ηα
2 (t) with:

aT = ēαT
2 (t)P2bmT G1∆(t)

b = eα
1 (t)

R = R2

One gets:

ηα
2 (t) ≤ ēαT

2 (t)bmP2T G1R−1
2 bm(T G1)

T PT
2 ēα

2 (t)
+ēαT

1 (t)R2ēα
1 (t).

(30)

Using again (29) for ηα
3 (t) with:

aT = ēαT
2 (t)P2bmT G1∆(t)

b = ėα
1 (s)

R = R1

one has:

ηα
3 (t) ≤ hmēαT

2 (t)bmP2T G1R−1
1 bm(T G1)

T PT
2 ēα

2 (t)
+

∫ t
t−hm

ēαT
1 (s)R1ēα

1 (s)ds.
(31)

With the discontinuous output injection ν defined in (5) and

(10), one has:

ηα
4 (t) ≤−2γ‖P2ē2(t)‖. (32)

Then, combining (28-32) with (27) leads to:

V̇ α(t) ≤

[

ē1(t)
ē2(t)

]T

Ψα

[

ē1(t)
ē2(t)

]

−2γ‖P2ē2(t)‖, (33)

with:

Ψα =

[

ψα
11 (A21 +G1)

T T T P2

∗ ψα
22

]

,

ψα
11 = Sym{P1(A11 + L̄A211 +αIn−p)}+(A11

+L̄A211 +αIn−p)
T R1(A11 + L̄A211 +αIn−p),

ψα
22 = GT

l P2 +P2Gl +2αP2 +hmZ2

+hmbmP2T G1R−1
2 (T G1)

T P2bm

+bmP2T G1R−1
1 (T G1)

T P2bm.

Again, applying Lemma 1 as in Theorem 1 yields:





ψα
1 AT

11P1 +AT
211W T +αP1 (A21 +G1)

T T T P2

−2P1 +2hmR1 0

∗ ψα
22



 < 0,

(34)

Set Y = P2Gl . Then using the Schur complement, one finds

the LMI condition (23). Thus, if (23) and (24) are satisfied,

the time derivative of (26) is negative definite.

4.3. Optimization Problem

This paragraph focusses on the optimization of the ex-

ponential decay rate α . The greater α is, faster the error

dynamics converge to the solution e(t) = 0. The optimiza-

tion consists in finding the greatest α (guaranteed speed

performance of the application) such that the closed-loop

system is α-stable. This corresponds to the problem

maxα
subject to (23) and (24) for a given hm.

Because α does not appear in a linear form in (23) and

(24), this problem is solved by iteratively increasing α until

the LMI conditions become unfeasible.

5. Example

Consider the system with time-varying delay (3) with:

A11 =

[

0 0

0 −1

]

, A12 =

[

−1 0

0 0.1

]

,

A21 =

[

2 3

2 −1

]

,A22 =

[

−1 0

0 −1

]

,

G1 =

[

0 0

0.1 0.21

]

, G2 =

[

0 0

0.2 1

]

,

T =

[

1 0

0 1

]

,Gu =

[

0

1

]

, D1 = B1 = B2 =

[

0

0

]

,

The delay is chosen as h(t) = hm
2

(1+ sin(ω1t)), with hm =

0.3s an frequency ω1 = 0.5s−1. The control law is

u(t) = u0sin(ω2t)

with u0 = 2 and ω2 = 3.

Since the system (3) is open loop stable, its dynamics

are bounded. Thus the function α2(t, x̂1,x2,e2,u) could be

chosen as a constant K = 0,7.

The simulation results are given in the following figures.

In Figures 1 and 2 are reported the observation errors of the

system for α = 0 and α = 2.

Figures 3 and 4 show the comparison between the real

and observed states, for α = 2.

It can be noticed that the greater α is, the faster the error

convergence is. Using Theorem 2, the following observer

gains for α = 2 are obtained:

L̄ =

[

−3.8658

1.0722

]

, Gl =

[

−8.8160 −6.0190

−5.8154 −32.0670

]

6. Conclusion

The problem of designing observers for linear systems

with unknown variable delay on both input and state has
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Figure 1. Observation errors for α = 0 and hm = 0.3
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Figure 2. Observation errors for α = 2 and hm = 0.3

been solved in this article. Delay-dependent LMI con-

ditions have been found to guarantee asymptotic stability

of the dynamical error system. In addition, the dynamics

properties of the proposed observer can be characterized

through finite time and exponential convergence properties.
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