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It is well known that for linear, uncertain systems, a static output feedback sliding mode controller can only be determined if a particular triple associated with the reduced order dynamics in the sliding mode is stabilisable. This paper shows that the static output feedback sliding mode control design problem can be solved for a broader class of systems if a known delay term is deliberately introduced into the switching function. Effectively the reduced order sliding mode dynamics are stabilized by the introduction of this artificial delay.

 [START_REF]Descriptor discretized Lyapunov functional method : Analysis and design[END_REF], [START_REF]A further refiniment of discretized Lyapunov functional method for the stability of time-delay systems[END_REF], the authors show that for some systems, the presence of delay can have a stabilizing effect. This affords the possibility of taking a system which is not stabilizable by static output feedback without delay and finding a constant delay τ strictly greater than 0 such that the system is stable. In this case, a stabilizing delay is introduced into the dynamics to effect output feedback stability. This design concept is not new. Several authors have considered this possibility. For example in [START_REF] Michiels | Using delays and time-varying gains to improve the static output feedback stabilizability of linear systems : a comparison[END_REF], [START_REF] Niculescu | Delay effects on static output feedback stabilization[END_REF], [START_REF] Niculescu | Some remarks on the delay stabilizing effect in SISO systems[END_REF] it has been shown that introducing a delay in an output feedback controller can stabilize a system which cannot be stabilized without delay. This property has already been noted in the production of proteins in a cell [START_REF] Jacobsen | Structural robustness of biochemical network models-with application to the oscillatory metabolism of activated neutrophils[END_REF]. When researchers try to model this production without delay, the solutions oscillate and do not correspond to the known physical behaviour. By introducing a delay corresponding to the intracellular transport by convection, the solutions correspond more closely to the known behavior.

The novelty in this paper is in overcoming the output feedback stabilizability assumption [START_REF] Edwards | Sliding mode stabilization of uncertain systems using only output information[END_REF] in the design of sliding mode controllers by static output feedback. The authors propose a new switching function which contains an additional term which is linear in the delayed output. This is shown to be constructive in stabilizing the reduced order sliding mode dynamics. It is then shown that a sliding motion can be reached in finite time.

The article is organized as follows. The second section presents the problem formulation. Section three formulates the definition of a new sliding function which contains an artificial delay. In section four, the problem of exponential stability of the reduced order sliding motion with constant delay using discretized Lyapunov-Krasovskii functionals is solved. Section five deals with the exponential stabilization of non-delayed systems by a sliding mode controller including delay. In the last section, a numerical example demonstrates the design of the gains and the effect of the choice of the delay in the sliding mode controller.

Throughout the article, the notation P > 0 for P ∈ R n×n means that P is a symmetric and positive definite matrix. [A 1 |A 2 |...|A n ] is the concatenated matrix formed from the matrices A i . The symbol I n represents the n × n identity matrix. The notations |.| and . refer to the Euclidean vector norm and its induced matrix norm, respectively. For any function

φ from C 1 ([-τ ; 0], R n ), we denote |φ| τ = sup s∈[-τ, 0] (|φ(s)|).

II. PRELIMINARIES AND PROBLEM

FORMULATION

Consider the linear uncertain system without delay

ẋ(t) = Ax(t) + B(u(t) + ψ(y(t))) y(t) = Cx(t) (1) 
where x(t) ∈ R n , u(t) ∈ R m and y(t) ∈ R p with m < p < n, corresponds to the state, control and output variables respectively. The function ψ ∈ R m represents the matched disturbances and is assumed to satisfy:

ψ(t) ≤ Ψ 2 (y(t)) (2) 
where Ψ 2 is a known function.

The matrices A ∈ R n×n , B ∈ R n×m , C ∈ R p×n are assumed to be known. It is also assumed that the pair (A, B) is controllable and the input and the output matrices B and C are full rank. In addition, it is assumed rank(CB) = m. Then from [START_REF] Edwards | Sliding mode stabilization of uncertain systems using only output information[END_REF], [START_REF]Sliding mode control: Theory and applications[END_REF], there exists a change of variables such that the system has the following representation:

ẋ(t) = A 11 A 12 A 21 A 22 x(t) + 0 B 2 (u(t) + ψ(y(t))) y(t) = [ 0 T ]x(t) (3 
) where A 11 ∈ R (n-m)×(n-m) , B 2 ∈ R m×m is nonsingular and T ∈ R p×p is an orthogonal matrix. In [START_REF] Edwards | Sliding mode stabilization of uncertain systems using only output information[END_REF] a sliding surface

S = {x ∈ R n : F Cx(t) = 0} (4) 
is proposed, where

F = F 2 [K I m ]T T , K ∈ R m×(p-m) and F 2 ∈ R m×m is a nonsingular matrix.
The sliding motion is governed by the choice of K.

If a further coordinate change is introduced based on the nonsingular transformation z = T x with T defined by:

T = I n-m 0 KC 1 I m (5) 
where

C 1 = [0 (p-m)×(n-p) I (p-m) ],
then, as argued in [START_REF] Edwards | Sliding mode stabilization of uncertain systems using only output information[END_REF], the dynamics of the reduced order sliding motion is governed by

ẋ1 = (A 11 -A 12 KC 1 )x 1 (t) (6) 
The fictitious system (A 

A 11 = 0 -2 1 0.1 , A 12 = -1 0 , C 1 = 0 1
which is from [START_REF] Bag | Output feedback sliding mode design for linear uncertain systems[END_REF], [START_REF] Edwards | Sliding mode stabilization of uncertain systems using only output information[END_REF]. In this case, the output feedback stabilization problem becomes the problem of finding a scalar k such that the matrix 0 -2 -k 1 0.1 has strictly negative eigenvalues, which is clearly not possible. In this situation, some authors [START_REF] Bag | Output feedback sliding mode design for linear uncertain systems[END_REF], [START_REF]Compensator based output feedback sliding mode control design[END_REF], [START_REF] Edwards | On the design of sliding mode output feedback controllers[END_REF] have employed a compensator in order to stabilize the system. However, these methods increase the order of the controller and have an associated computational overhead both in terms of design and implementation. The proposed method seeks to introduce an artificial delay in the system such that the system can be stabilized by static output feedback without the need to introduce a compensator.

III. DESIGN OF A NEW SLIDING MODE SURFACE

In this section, the design of a new type of sliding surface will be discussed. The objective is to define a sliding surface of the form of (4) but which introduces a delay in the reduced order dynamics. Consider [START_REF]Descriptor discretized Lyapunov functional method : Analysis and design[END_REF] where as before the matrix F = F 2 [K I m ]T T and where

S ′ = {x ∈ R n : F Cx(t) + F τ Cx(t -τ ) = 0}
F τ = F 2 [K τ 0 m ]T T , K τ ∈ R m×(p-m) .
Here, without loss of generality, the matrices F 2 and T are chosen as I m . In [START_REF]Descriptor discretized Lyapunov functional method : Analysis and design[END_REF], τ is an artificial, fixed and known delay which has to be chosen to stabilize the reduced order dynamics in the sliding mode and represents a design parameter. The existence of such a delay and constructive methods to choose it will be discussed in a latter section. Instead of (5), consider the coordinate change x → T τ x:

x1 (t) = x 1 (t) x2 (t) = x 2 (t) + KC 1 x 1 (t) + K τ C 1 x 1 (t -τ )
By construction the switching function associated with S ′ is s(t) = x2 (t). This leads to:

ẋ1 (t) = (A 11 -A 12 KC 1 )x 1 (t) -A 12 K τ C 1 x1 (t -τ ) + A 12 x2 (t) (8) 
ẋ2 (t) = (A 21 + KC 1 A 11 )x 1 (t) +K τ C 1 A 11 x1 (t -τ ) + (A 22 + KC 1 A 12 )x 2 (t) +K τ C 1 A 12 x2 (t -τ ) + B 2 (u(t) + ψ(t)) -(A 22 + KC 1 A 12 )KC 1 x1 (t) -(KC 1 A 12 K τ +A 22 K τ + K τ C 1 A 12 K)C 1 x1 (t -τ ) -K τ C 1 A 12 K τ C 1 x1 (t -2τ ) (9 
) Remark 1: It is important to note that the system (8) is a particular delay system. Since the delay is artificially introduced in the sliding manifold, the delay τ is known and can be chosen to improve the stability of the closed-loop system.

Remark 2: The sliding mode dynamics are given by equation ( 8) with x2 (t) = 0. This is a retarded system, where the delay is known and can be selected to stabilise, or enhance the stability of, the reduced order sliding motion.

Remark 3: Note that the range space dynamics given in (9) contain several delayed terms and two different delays, τ and 2τ . However τ is a design parameter in the particular formulation presented here, and thus τ is perfectly known to the controller.

The last two lines of equation ( 9) only depend on the known output information, x2 and C 1 x1 , where

T T y = [C 1 x1 , x2 ],
and thus the following output feedback control law can be defined:

u(t) = -(B 2 ) -1 {(A 22 + KC 1 A 12 )x 2 (t) +K τ C 1 A 12 x2 (t -τ ) -(A 22 + KC 1 A 12 )K(C 1 x1 (t)) -K τ C 1 A 12 K τ (C 1 x1 (t -2τ )) -G l x2 (t) + ν(t) -(KC 1 A 12 K τ +A 22 K τ + K τ C 1 A 12 K)(C 1 x1 (t -τ ))} (10) 
where xi (t) = 0, t < 0, i = 1, 2 and G l is a Hurwitz matrix. The term ν is the discontinuous injection defined by

ν(t) = ρ(t, y) Q 2 x2 (t) Q 2 x2 (t) if x2 (t) = 0 0 otherwise (11)
where Q 2 is a symmetric positive definite matrix in R m×m and

ρ = B 2 Ψ 2 (y(t)) + δ ( 12 
)
where δ is a positive scalar gain. The closed loop system satisfies the following equations

ẋ1 (t) = (A 11 -A 12 KC 1 )x 1 (t) -A 12 K τ C 1 x1 (t -τ ) + A 12 x2 (t) ẋ2 (t) = (A 21 + KC 1 A 11 )x 1 (t) + G l x2 (t) +K τ C 1 A 11 x1 (t -τ ) -ν(t) + B 2 ψ(y(t)) (13 
) Remark 4: Note that the control law [START_REF] Gu | Discretized LMI set in the stability problem of linear uncertain time-delay systems[END_REF] does not have a heavy computational overhead.

IV. EXPONENTIAL STABILITY OF THE CLOSED LOOP SYSTEM

A. Exponential stability of the reduced order system Consider the linear system with constant delay:

ẋ1 (t) = A 0 x1 (t) + A 1 x1 (t -τ ) (14) 
where x1 ∈ R (n-m) is the state and where A 0 = A 11 -A 12 KC 1 and A 1 = -A 12 K τ C 1 are constant matrices with appropriate dimensions. System [START_REF] Kharitonov | Exponential estimates for neutral time-delay systems: an LMI approach[END_REF] represents the dynamics of the reduced order system (8) when x2 (t) = 0. Therefore, the sliding surface [START_REF]Descriptor discretized Lyapunov functional method : Analysis and design[END_REF] underpins the stabilization of the sliding mode dynamics by using the delayed term

A 12 K τ C 1 x 1 (t- τ ).
System ( 14) is said to be exponentially stable [START_REF] Kharitonov | Exponential estimates for neutral time-delay systems: an LMI approach[END_REF], [START_REF] Mondié | Exponential estimates for retarded time-delay systems: an LMI approach[END_REF] with a decay rate α > 0 and an exponential gain β ≥ 1 if the following exponential bound holds:

|x 1 (t; t 0 , φ)| < β|φ| τ 2 e -α(t-t 0 ) , (15) 
where x1 (t; t 0 , φ) is the solution of ( 14), starting at time t 0 from the initial function φ ∈ C 1 . Note that both α and β must be independent of φ.

Consider the change of variable x α (t) = e αt x1 (t) as in [START_REF] Seuret | Robust exponential stabilization for systems with time-varying delays, 5th Workshop on Time Delay Systems[END_REF], [START_REF] Xu | New exponential estimates for time-delay systems[END_REF]. Effectively, asymptotic convergence of the x α states implies exponential convergence of x1 at a prescribed rate. Then it is easy to see that in the case of constant delay, equation [START_REF] Kharitonov | Exponential estimates for neutral time-delay systems: an LMI approach[END_REF] becomes

ẋα (t) = (A 0 + αI n )x α (t) + e ατ A 1 x α (t -τ ) (16)
Consider the following theorem based on the N discretized Lyapunov-Krasovskii functional proposed in [START_REF]A further refiniment of discretized Lyapunov functional method for the stability of time-delay systems[END_REF].

Theorem 1: System ( 14) is exponentially stable with the decay rate α if there exist (n-m)×(n-m) matrices P 1 > 0, P 2 , P 3 , S p = S T p , Q p , R pq = R T qp , p, q = 0, ..., N , which satisfy the LMI conditions ( 17) and [START_REF] Niculescu | Some remarks on the delay stabilizing effect in SISO systems[END_REF] 

with h = τ /N Π α = Ξ α D s D a * -R d -S d 0 * * -3S d < 0 (17) 
and

P 1 Q * R + S > 0 ( 18 
)
where the matrix Ξ α is given by

Ψ α P T 0n e ατ A 1 -Q N 0n * -S N (19) 
and where Ψ α is given by

P T 0n In A 0 + αIn -In + 0n In A 0 + αIn -In T P + Q 0 + Q T 0 + S 0 0n 0 n 0 n where Q = [Q 0 Q 1 . . . Q N ], S = diag{1/hS 0 , 1/hS 1 , . . . , 1/hS N }, R =   R 00 R 01 . . . R 0N R 01 R 11 . . . R 1N . . . . . . . . . . . . R N 0 R N 1 . . . R N N   . P = P 1 0n P 2 P 3
and where for i, j = 1, .., N

S d = diag{S 0 -S 1 , S 1 -S 2 , ..., S N -1 -S N }, R dij = h(R (i-1)(j-1) -R ij ), R d =   R d11 R d12 . . . R d1N R d21 R d22 . . . R d2N . . . . . . . . . . . . R dN 1 R dN 2 . . . R dN N   , D s = [D s 1 D s 2 . . . D s N ], D s i = (R 0(i-1) + R 0i ) -(Q i-1 -Q i ) h/2(Q i-1 + Q i ) -h/2(R N (i-1) + R N i ) , D a = [D a 1 D a 2 . . . D a N ], D a i = -h/2(R 0(i-1) -R 0i ) -h/2(Q i-1 -Q i ) h/2(R N (i-1) -R N i )
, Proof: Consider the following Lyapunov-Krasovskii functional:

V 1α (t) = x T α (t)P 1 x α (t) +2x T α (t) 0 -τ Q(ξ)x α (t + ξ)dξ + 0 -τ x T α (t + ξ)S(ξ)x α (t + ξ)dξ + 0 -τ 0 -τ x T α (t + s)R(s, ξ)dsx α (t + ξ)dξ (20) where P 1 > 0, Q(ξ) ∈ R (n-m)×(n-m) , R(s, ξ) = R T (ξ, s) ∈ R (n-m)×(n-m) , S(ξ) ∈ R (n-m)×(n-m)
, and Q, R, S are continuous matrix functions. From [START_REF] Gu | Stability of time-delay systems[END_REF] (p. 185) V 1α is positive definite if the LMI (18) holds. Then the proof follows along the lines of [START_REF]Descriptor discretized Lyapunov functional method : Analysis and design[END_REF] using a descriptor representation [START_REF] Fridman | A descriptor system approach to H ∞ control of linear time-delay systems[END_REF] and Gu-discretization [START_REF]A further refiniment of discretized Lyapunov functional method for the stability of time-delay systems[END_REF]. It follows that x α converges asymptotically to the solution x α = 0 and consequently, the variable x converges exponentially to the solution x = 0 with the decay rate α. See the Appendix for more details.

Remark 5: Note that Theorem 1 is an extension of Theorem 2.1 from [START_REF]Descriptor discretized Lyapunov functional method : Analysis and design[END_REF] to the exponential stability case. However the exponential stability considerations allow the performance and the convergence of the solutions to be characterized, which will be efficient for the design of the output feedback controller.

Remark 6: In the definition of the delayed sliding manifold [START_REF]Descriptor discretized Lyapunov functional method : Analysis and design[END_REF], the delay is chosen to be constant. If for some reason the chosen delay needs to be time-varying, then a time-varying gain 1 -τ (t) will appear in the control law and the change of variables 'x → x α ' will affect system [START_REF] Mondié | Exponential estimates for retarded time-delay systems: an LMI approach[END_REF] as the exponential gain will also be time-varying. However this situation can also be dealt with: see for example [START_REF] Seuret | Robust exponential stabilization for systems with time-varying delays, 5th Workshop on Time Delay Systems[END_REF] or [START_REF] Seuret | Sampled-data exponential stabilization of neutral systems with input and state delays[END_REF].

B. Illustrative example

Consider system (14) [START_REF]Stability of systems with uncertain delays: a new "complete" Lyapunov-Krasovskii functional[END_REF], [START_REF] Gu | Discretized LMI set in the stability problem of linear uncertain time-delay systems[END_REF] with

A 0 = 0 1 -2 0.1 , A 1 = 0 0 1 0
As in [START_REF]Stability of systems with uncertain delays: a new "complete" Lyapunov-Krasovskii functional[END_REF], Theorem 1 cannot guarantee that this system is asymptotically stable, i.e. for α = 0, if the delay is less than τ min = 0.11s. The relationship between the delay τ and the maximum admissible decay rate α is given in Figure 1. The maximal decay rate α results from the following optimization problem (see the Appendix, section B for more details): [START_REF] Niculescu | Delay effects on static output feedback stabilization[END_REF] and ( 18 Figure 1 shows that the conservatism of the condition from Theorem 1 reduces when the number of discretizations N is increased. This is due to the fact that when N increases, the degree of freedom to define the Lyapunov-Krasovskii functional also increases. Note that for all the discretizations, there exists a optimal delay which corresponds to the maximal decay rate. In a system where the delay can be chosen, as in system (13) presented in Section III, this form of graph can help to determine the optimal delay. Compared to the asymptotic result proposed in [START_REF]Stability of systems with uncertain delays: a new "complete" Lyapunov-Krasovskii functional[END_REF], Theorem 1 allows the existence of an optimal delay to be shown. This delay corresponds to the best performance in terms of stability.

α max = max α τ ∈ [0, 2] such that
Remark 7: Note that the 'optimal delay' is relative to the number N of discretizations used in Theorem 1. In Figure 1 the optimal delay when N = 1 is different from the one when N = 2. In the sequel the statement 'optimal delay' will be used to express the delay which corresponds to the fastest decay rate α with respect to a certain level of discretization.

C. Stabilization of the closed loop system

This section focusses on the stability of the whole system [START_REF] Jacobsen | Structural robustness of biochemical network models-with application to the oscillatory metabolism of activated neutrophils[END_REF]. In particular, it needs to be established that x2 = 0 in finite time, i.e. a sliding motion is achieved.

Theorem 2: System ( 13) is exponentially stable for given output feedback gains K and K τ with decay rate α if there exist P 1 > 0, P 2 , P 3 , S p = S T p , Q p , R pq = R T qp , p, q = 0, ..., N in R (n-m)×(n-m) and Q 2 > 0 ∈ R m×m which satisfy the LMI condition ( 21) and [START_REF] Niculescu | Some remarks on the delay stabilizing effect in SISO systems[END_REF] 

with h = τ /N     Π α   (A 21 + KC 1 A 11 ) T Q 2 + P 1 A 12 0 (n-m)×m e ατ (Kτ C 1 A 11 ) T Q 2 0 N (n-m)×m 0 N (n-m)×m   * Q 2 G l + G T l Q 2 + 2αQ 2     < 0 (21)
where the matrix Π α is given by ( 19) and where

A 0 = A 11 -A 12 KC 1 and A 1 = -A 12 KC 1 .
Proof: Consider new variables x1α (t) = x1 (t)e αt and x2α (t) = x2 (t)e αt . The new closedloop system satisfies the following equations:

ẋ1α (t) = (A 11 -A 12 KC 1 + αI n-m )x 1α (t) -e ατ A 12 K τ C 1 x1α (t -τ ) + A 12 x2α (t) ẋ2α (t) = (A 21 + KC 1 A 11 )x 1α (t) +e ατ K τ C 1 A 11 x1α (t -τ ) +(G l + αI m )x 2α (t) -e αt (ν(t) -B 2 ψ(y(t))) (22) Consider the Lyapunov-Krasovskii functional V α (t) = V 1α (t) + V 2α (t)
where V 1α is defined in [START_REF] Seuret | Sampled-data exponential stabilization of neutral systems with input and state delays[END_REF] and where

V 2α (t) = x T 2α (t)Q 2 x 2α (t)
From [START_REF]Descriptor discretized Lyapunov functional method : Analysis and design[END_REF] and following the line of the proof proposed in the appendix, differentiating V 1α along the trajectory of (22a) leads to the following inequality:

V1α ≤ ξ T (t)Ξ α ξ(t) - 1 0 φ T (β)S d φ(β)dβ - 1 0 1 0 φ T (β)R d φ(γ)dβdγ +2ξ T (t) 1 0 [D s + (1 -2β)D a ] φ(β)dβ +x T 1α (t)P 1 A 12 x2α (t) (23 
) where Ξ α is defined in [START_REF] Seuret | Robust exponential stabilization for systems with time-varying delays, 5th Workshop on Time Delay Systems[END_REF] and the functions ξ and φ are defined in the appendix.

Differentiating V 2α along the trajectory of (22a) leads to:

V2α ≤ xT 2α (t)(G T l Q 2 + Q 2 G l + 2αI m )x 2α (t) +x T 2α (t)Q 2 [(A 21 + KC 1 A 11 )x 1α (t) +e ατ K τ C 1 A 11 x1α (t -τ ) -e αt (ν(t) +B 2 ψ(y(t)))]
(24) Then by combining ( 23) and ( 24) and by defining ξ ′ (t) = col{x 1α (t), ẋ1α (t), x1α (t -τ ), x2α (t)}, the following inequality holds:

Vα ≤ ξ ′T (t)Θ α ξ ′ (t) - 1 0 φ T (β)S d φ(β)dβ - 1 0 1 0 φ T (β)R d φ(γ)dβdγ +2ξ T (t) 1 0 [D s + (1 -2β)D a ] φ(β)dβ -x T 2α (t)Q 2 e αt (ν(t) -B 2 ψ(y(t))) (25 
) where Θ α is given by:

    Ξ α   (A 21 + KC 1 A 11 ) T Q 2 + P 1 A 12 0 (n-m)×m e ατ (K τ C 1 A 11 ) T Q 2   * G T l Q 2 + Q 2 G l     From (12), note that -x T 2α (t)Q 2 e αt (ν(t) - B 2 ψ(y(t))) ≤ -δe αt Q 2 y(t)
. The last term is thus negative. Applying Proposition 5.21 from [START_REF] Gu | Stability of time-delay systems[END_REF] to (25) it can be concluded that V (t) < 0 if LMI ( 21) holds.

D. Reachability of the sliding manifold in finite time

Corollary 1: An ideal sliding motion takes place on the surface s(t) = 0 in the domain

Ω = {(x 1 , x2 ) ∈ [t -τ, t] → R n-m × R m : ( (A 21 + KC 1 A 11 ) + K τ C 1 A 11 )|x 1 | τ < δ -η}
where η is a small scalar satisfying 0 < η < δ.

Proof: Consider the following Lyapunov function V s (t) = xT 2 (t)Q 2 x2 (t). By differentiating V s along the trajectories of (13b), it follows that:

Vs (t) = xT 2 (t)(Q 2 G l + G T l Q 2 )x 2 (t) +2x T 2 (t)Q 2 [(A 21 -KC 1 A 11 )x 1 (t) -K τ C 1 A 11 x1 (t -τ ) -ν(t) + B 2 ψ(y(t))] Since the matrix G l is Hurwitz, Q 2 can be chosen such that Q 2 G l + G T l Q 2 < 0.
By taking an upper bound on the second and third term, the following inequality holds:

Vs (t) ≤ 2 x2 Q 2 [( (A 21 + KC 1 A 11 ) + K τ C 1 A 11 )|x 1 | τ + B 2 |ψ(y(t))|] -x2 Q 2 ρ(t, y)
If the system satisfies the conditions from Theorem 2, the state x1 converges to the solution x1 = 0 with an exponential decay rate. It follows that the domain Ω is reached in finite time. Since the gain ρ of the sliding function is defined as ρ(t, y) = Ψ 2 (y(t))+δ, the following inequality holds:

Vs (t) ≤ -η V s (t)
This concludes the proof.

E. Comments on the design of the output feedback gain

As usual, the problem of designing the output feedback gain is not straightforward. Moreover the LMI [START_REF] Xu | New exponential estimates for time-delay systems[END_REF] is not in an appropriate form for synthesis purposes because the gains K and K τ appear in different ways in Ξ α than in

(KC 1 A 11 ) T Q 2 and (K τ C 1 A 11 ) T Q 2 .
Congruence and other 'classical' LMI transformations will probably not facilitate constructive conditions. A constructive method at this time is to test the stability of the closed-loop system for a given set of values of K and K τ is discussed in the appendix.

V. EXTENSION TO UNCERTAIN SYSTEMS

Consider now the case when the system (3) is uncertain and time varying. Instead of the known matrices A kl for k, l = 1, 2, the following representation is introduced:

A t kl = A 0 kl + M i=1 λ i (t)A i kl , B t 2 = B 20 + M i=1 λ i (t)B i 2 (26) 
where A 0 11 ∈ R (n-m)×(n-m) and B 20 ∈ R m×m is non singular. The other matrices in (26) are assumed to have appropriate dimensions. It is assumed that, for all i ∈ {1, .., M }, the pair of matrices (A 0 kl + A i kl , B 20 ) is controllable. The scalar functions λ i are such that:

∀i = 1, .., M, λ i (t) ∈ [0, 1], M i=1 λ i (t) = 1. (27)
As it is possible to remove some uncertainties, the system is rewritten as:

ẋ(t) = A t 11 A t 12 A t 21 A 0 22 x(t) + 0 B 20 (u(t) + ψ 0 (t, y, u)) y(t) = [ 0 T ]x(t) (28) 
where the matched uncertainties are represented by:

ψ 0 (t, y, u) = B -1 20 M i=1 λ i (t)(A i 22 x 2 (t) + B i 2 u(t)) +ψ(t, y)
Since ψ 1 depends on t, y and u only, there exist positive functions Ψ 2 and Ψ 21 such that:

ψ 1 (t, y, u) ≤ B 20 Ψ 2 (t, y, u) + Ψ 21 (t, y, u)
The discontinuous control component ν is still defined by [START_REF]A further refiniment of discretized Lyapunov functional method for the stability of time-delay systems[END_REF] but the gain is now defined by: ρ(t, y, u) = B 20 Ψ 2 (t, y, u)+Ψ 21 (t, y, u)+δ (32) where δ is a positive scalar gain.

Noting that equation ( 31) is polytopic and of the same form as (31), and that Theorem 2 is linear with respect to the matrix definition, the following result holds: Theorem 3: System (31) is exponentially stable for given output feedback gains K and K τ with decay rate α if there exist P 1 > 0, P 2 , P 3 , S p = S T p , Q p , R pq = R T qp , p, q = 0, ..., N in R (n-m)×(n-m) and Q 2 > 0 ∈ R m×m which satisfy the LMI condition ( 21) and ( 18) for all vertices i = 1, .., M with h = τ /N .

Then the following corollary holds: Corollary 2: An ideal sliding motion takes place in the domain Ω given by

{(x 1 , x2 ) ∈ [t -τ, t] → R n-m × R m : max i,j=1,..,N ( (Λ i 21 + KC 1 Λ i 11 ) + K τ C 1 Λ j 11 )|x 1 | τ < δ -η}
where η is a small scalar satisfying 0 < η < δ.

Proof: The proof is similar to the previous one.

VI. EXAMPLE

Consider the non-delayed system (3) with the definitions:

A 11 = 0 -2 1 0.1 , A 12 = -1 0 , A 21 = -0.1 -1 , A 22 = 1 , C =   0 0 1 0 0 1   T , B =   0 0 1   .
As in [START_REF] Edwards | Sliding mode stabilization of uncertain systems using only output information[END_REF], this system is not output stabilizable using traditional static (ie. non delayed output feedback). The objective remains here to design the controller [START_REF] Gu | Discretized LMI set in the stability problem of linear uncertain time-delay systems[END_REF] with appropriate gains K, K τ ∈ R and an artificial delay τ such that the closed-loop system is exponentially stable with decay rate α.

A. Design of the output feedback

This section proposes a method to obtain the optimal controller (K, K τ , τ ). The idea is to test if, for a set of values of K and K τ , the LMIs from Theorem 2 have a solution and if it is possible to find the delay which ensures the greatest exponential decay rate.

After checking the resolution of the LMIs from Theorem 2, a solution can only be found when K lies in the interval [-6; 2] and K τ in [0; 8]. For each value of the gains K and K τ , an optimization process, detailed in Appendix B, is used to obtain the best value of α by tuning τ upwards from zero until the LMIs are not satisfied. The optimal delay will be the one which delivers the largest α, using the same method as in Example 1. For this particular example the optimization problem is reduced to the following one: 18) and ( 21) are satisfied Figure 2 shows the relation between the output feedback gains and the decay rate α using Theorem 2 with N = 1. The size of the set increases when the discretization number N increases. Figure 2 also shows that the graph has a maximum at K = -1.625 and K τ = 2.625. This selection of gains K and K τ ensures the system is exponentially stable with a decay rate α = 0.3. The corresponding optimal delay is τ = 0.3.

α max = max (K, K τ ) ∈ [-6; 2] × [0; 8] max α τ ∈ [0, 1] such that (
For N = 3 the optimized gains are K = -2.23 and K τ = 3.06. The corresponding optimal delay is τ = 0.43. For these parameters the decay rate is α = 0.612. Theorem 2 also ensures for N = 6 that the same gains K = -2.23 and K τ = 3.06 exponentially stabilize the system (3) with a decay rate α = 0.826 with the optimal delay τ = 0.45.

Remark 8: For N = 3, the computation of the conditions from Theorem 2 become very heavy. The optimization problem has not been tested for N ≥ 3.

B. Simulation results

In the results which follow system (3) is controlled using [START_REF] Gu | Discretized LMI set in the stability problem of linear uncertain time-delay systems[END_REF] with K = -2.23, K τ = 3.06 and τ = 0.45. In Figure 4, different delays are used to show robustness to changes in the delay. For too small values, e.g. τ = 0.01, or too large a delay e.g. τ = 0.9, the system is unstable. However when τ = 0.3 or 0.6, which are sufficiently close to the optimal delay τ = 0.45, the system is still stable. This behavior is consistent with the results of Example 1 (see Figure 1). For given K and K τ , exponential stability is ensured for delays sufficiently close to the optimal value of the delay, but the exponential decay rate is lower.

VII. CONCLUSION

A new sliding mode controller has been suggested for systems for which finding a traditional static output feedback sliding mode controller is not possible. The controller introduces a stabilizing delay in the closed loop system. The controller is simple and does not require heavy real-time computation. An example is used to demonstrate a method to design the gains and the delay of the controller. The robustness with respect to the delay has been shown in the example. A straightforward extension ensures robust stabilization with respect to disturbances and to parameter uncertainties.
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  [START_REF]A further refiniment of discretized Lyapunov functional method for the stability of time-delay systems[END_REF] , A 12 , C 1 ) is assumed to be output stabilizable i.e., there exist a matrix K such that the matrix A 11 -A 12 KC 1 is Hurwitz. It is shown in[START_REF] Edwards | Sliding mode stabilization of uncertain systems using only output information[END_REF] that a necessary condition for (A 11 , A 12 , C 1 ) to be stabilizable is that the invariant zeros of (A, B, C) lie in the open left half-plane. However the design of an output feedback gain K such that the matrix A 11 + A 12 KC 1 is Hurwitz is not always straightforward and may be impossible.Consider for instance the system (6) with
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) Note that the last two lines of the previous equation only depend on the output information and thus the following output feedback control law can be defined:

where G l is a Hurwitz matrix. The closed loop system satisfies the following equations:

where

The following is not a new result, but the inclusion of a sketch of the proof of the discretization theorem is included to improve readability. Based on the results of [START_REF]Stability of systems with uncertain delays: a new "complete" Lyapunov-Krasovskii functional[END_REF], the first part of the proof of exponential stability consists of expressing the derivative of the Lyapunov Krasovskii functional appropriately. The next step of the proof focusses on the application of the discretization process of Gu [START_REF] Gu | Discretized LMI set in the stability problem of linear uncertain time-delay systems[END_REF].

Consider system ( 16) in a descriptor representation with the extended state vector xα (t) = col{x α (t), ẋα (t)}. This can be written as:

The first term of the Lyapunov Krasovskii functional V 1α can be rewritten in the form:

where P = P 1 0 n P 2 P 3 .

Differentiating the Lyapunov functional V 1α along the trajectories of ( 16) leads to:

(33) Rewriting the first term of (33) using the descriptor representation [START_REF] Fridman | Stability of linear descriptor systems with delay: A Lyapunov-based approach[END_REF], and integrating by parts in (33), the following equality can be established:

) where ξ(t) = col{x α (t), x α (t -τ )} and Ξ α has the form in [START_REF] Seuret | Robust exponential stabilization for systems with time-varying delays, 5th Workshop on Time Delay Systems[END_REF] with Q(0), Q(-τ ), S(0) and S(-τ ) instead of Q 0 , Q N , S 0 and S N respectively. The Lyapunov functional is now expressed in an appropriate representation to apply the discretization.

The discretization divides the delay interval [-τ, 0] into N segments [θ p , θ p-1 ], p = 1, .., N of equal length h = τ /N . This divides the square

. Each small square is further divided into two triangles.

The continuous matrix functions Q(ξ) and S(ξ) are chosen to be linear within each interval and the continuous matrix functions R(s, ξ) is chosen to be linear within each triangle. The proposed matrix functions are:

Simple definitions of the derivative of the matrix functions can be obtained which are, for appropriate p and q:

Thus, the Lyapunov Krasovskii functional is completely determined by the matrices P 1 , S p , Q p and R pq , p, q = 0, .., N . From [START_REF] Gu | Stability of time-delay systems[END_REF], the condition V 1α ≥ ǫ x α is satisfied if LMI ( 18) is satisfied. Using conditions (35), the following equations hold:

Then equations ( 19), ( 34) and (35) imply [START_REF] Gu | Stability of time-delay systems[END_REF]:

., x(t -N h + βh)}. Applying Proposition 5.21 from [START_REF] Gu | Stability of time-delay systems[END_REF], it can be concluded that V1α (t) < 0 if LMI ( 17) is satisfied.

B. Optimization programs

The following table presents a schematic of the optimization program developed for Theorem 1 and 2. The variables ǫ τ and ǫ K represent the grid size used during the search.