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CENTRAL LIMIT THEOREM FOR THE HEAT KERNEL MEASURE ON THE

UNITARY GROUP

THIERRY LÉVY, MYLÈNE MAÏDA

Abstract. We prove that for a finite collection of real-valued functions f1, . . . , fn on the group
of complex numbers of modulus 1 which are derivable with Lipschitz continuous derivative, the
distribution of (trf1, . . . , trfn) under the properly scaled heat kernel measure at a given time on the
unitary group U(N) has Gaussian fluctuations as N tends to infinity, with a covariance for which
we give a formula and which is of order N−1. In the limit where the time tends to infinity, we
prove that this covariance converges to that obtained by P. Diaconis and S. Evans in a previous
work on uniformly distributed unitary matrices. Finally, we discuss some combinatorial aspects of
our results.
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1. Introduction

In [7], P. Diaconis and S. Evans studied the fluctuations of the trace of functions of a unitary
matrix picked uniformly at random. Let us recall briefly their main result. If U is a unitary matrix
of size N ≥ 1 and f a real-valued function on the set U of complex numbers of modulus 1, then the

eigenvalues λ1, . . . , λN of U belong to U and trf(U) = 1
N

∑N
i=1 f(λi), where tr is the normalized

trace (so that tr(IN ) = 1) and the matrix f(U) is obtained from U and f by functional calculus.
By rotational invariance of the Haar measure, it is easy to see that if f : U → R is defined almost
everywhere, integrable and has zero mean on U then trf(U) is defined for almost every U and, seen
as a random variable under the Haar measure, also has zero mean.

The function f being fixed, trf can be seen as a random variable on the unitary group U(N),
endowed with the Haar measure, for all N ≥ 1. Thus, the single function f gives rise to a sequence
of random variables indexed by the integer N, which is their main object of study. In order to
understand the behavior of this sequence, a fundamental fact, which has been proved and used
extensively in this context in [7], is the following: for all p, q ∈ Z, one has E[tr(Up)tr(U q)] =
δp,qN

−2 min(p,N). Using this, one can easily check that, if f is square-integrable on U, then the
variance of trf converges to 0 as N tends to infinity. Moreover, if f belongs to the Sobolev space

H
1
2 (U) (see Definition 8.1 below), then the series of the variances of trf on U(N) converges, which

gives a strong law of large numbers.
The main result of [7] is that the fluctuations of trf under the Haar measure are asymptotically

Gaussian. More precisely, they have proved that if f belongs to H
1
2 (U) and has zero mean on U,

then Ntrf converges in distribution to a centered Gaussian random variable with variance equal

to the square of the H
1
2 -norm of f (see Theorem 8.2 below for a precise statement).

In this paper, we consider the fluctuations of trf when the unitary matrix is picked not under the
Haar measure, but rather under the heat kernel measure at a certain time. The heat kernel measure
at time T is the distribution of UN (T ), where (UN (t))t≥0 is the Brownian motion on U(N) issued
from the identity matrix, that is, the Markov process whose generator is the Laplace-Beltrami
operator associated to a certain Riemannian metric on U(N). The choice of a Riemannian metric
that we make is explicited at the beginning of Section 2. Apart from being one of the most natural
stochastic processes with values in the unitary group, the Brownian motion arises for example in
the context of two-dimensional U(N) Yang-Mills theory ([16, 10, 9]).

Let f : U → R be a function, as above. Once a time T ≥ 0 is fixed, trf is a random variable
on U(N) for each N ≥ 1, the unitary group being endowed with the heat kernel measure at time
T . With our choice of Riemannian metric, it is known since the work of P. Biane [2] that if f is
continuous, then trf converges almost surely towards the integral of f against a probability measure
νT on U, which is characterized by the formula (4) below. By this almost sure convergence, we
mean that the expectations of these variables and the series of their variances converge. For all
T > 0, the measure νT is absolutely continuous with respect to the uniform measure on U, with
a density which unfortunately cannot be expressed in terms of usual functions. Its support is the
full circle only for T ≥ 4. For T ∈ (0, 4), its support is an arc of circle containing 1, symmetric
with respect to the horizontal axis, which grows continuously with T , and for the width of which
a simple explicit formula exists. In fact, as N tends to infinity, not only the distribution of the
eigenvalues of UN (T ) but the Brownian motion itself as a stochastic process converges in a certain
sense towards a limiting object called the free multiplicative Brownian motion, which is defined in
the language of free probability. The measure νT is the non-commutative distribution of this free
process at time T and can be considered as a multiplicative analogue of the Wigner semi-circle law.
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The main result of this paper is that for any function f : U → R with Lipschitz continuous
derivative, the fluctuations of Ntrf are asymptotically Gaussian with variance σT (f, f), where
σT is the quadratic form defined in Definition 2.4. This definition of σT (f, f) involves three free
multiplicative Brownian motions which are mutually free and the functional calculus associated to
f ′. It makes sense for functions of class C1, or at best for absolutely continuous functions. An
alternative definition of σT (f, f) is given by Definition 8.10 in terms of the Fourier coefficients of f
and the solution of an infinite triangular differential system (see Lemma 8.7). We prove that, when

T is large enough, this second definition makes sense for functions in the Sobolev space H
1
2 (U),

which are not even necessarily continuous.
Moreover, we prove that, as T tends to infinity, σT (f, f) converges towards the square of the

H
1
2 -norm of f . This convergence is consistent, at a heuristic level, with the result of P. Diaconis

and S. Evans, since the Haar measure is the invariant measure of the Brownian motion, and its
limiting distribution as time tends to infinity.

For small values of T , the analysis seems much harder to perform. We have no expression of the
covariance other than Definition 2.4 and it seems plausible, considering the limiting support of the
distribution of the eigenvalues of UN (T ) and some puzzling numerical simulations (see Figure 1 in
Section 8), that the largest space of functions f for which Ntrf has Gaussian fluctuations might
depend on T , say for T ≤ 4. Unfortunately, we have no precise conjecture to offer in this respect.

The understanding of global fluctuations of random matrices has been widely developed in the
literature using various techniques. By combinatorial methods applied to the computation of
moments, Ya. Sinai and A. Soshnikov [25] derived a central limit theorem (CLT) for moments of

Wigner matrices growing as o(N2/3). An important breakthrough is the work of K. Johansson [15]
where he got, using techniques of orthogonal polynomials on the explicit joint density of eigenvalues,
a CLT for Hermitian or real symmetric matrices whose entries have joint density eNtrV (M), for a
large class of potentials V . Recently, M. Shcherbina [24] has been able to lower, in the symmetric
case, the regularity of those functions for which the CLT holds. The study of Stieltjes transform
for this purpose, initiated by L. Pastur and others [22, 23], has recently given some striking results,
among which one can cite the works of G. W. Anderson and O. Zeitouni [1] or W. Hachem, P.
Loubaton and J. Najim [13]. Recently S. Chaterjee [5] proposed “a soft approach” based on second
order Poincaré inequalities.

Some tools of free probability will play a key role in our analysis. In this framework, a notion
of second order freeness was developed in [21, 20, 6]. In particular, the second paper [20] of the
series deals with unitary matrices and the results that it contains might be relevant to the problem
under consideration.

The technique of proof that we have chosen is rather of the flavour of the one introduced in
[4]. Therein, T. Cabanal-Duvillard proposed an approach based on matricial stochastic calculus
to get a CLT for Hermitian and Wishart Brownian motions but also for several Gaussian Wigner
matrices. In this direction we can also mention a CLT for band matrices obtained by A. Guionnet
[11].

The paper is organized as follows : Section 2 is devoted to defining the Brownian motion on the
unitary group, recall from [2] its asymptotics, define the proper covariance functional and state our
main result (Theorem 2.6). In Section 3, we present the structure of the proof of our main theorem
by introducing a family of martingales (see Equation (6)) that will be the main object of study.
The proof will in fact boil down to proving the convergence of the bracket of these martingales
(Section 5) and to controlling the variance of this bracket (Section 6), relying on some technical
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results on the functional calculus on U(N) gathered in Section 4. In Section 7, we extend our result
to other Brownian motions on the unitary group and to the Brownian motion on the special unitary
group. Section 8 is devoted to the study of the covariance for large time, in connexion with the
CLT for Haar unitaries [7]. Finally, in Section 9, we discuss a combinatorial approach to some of
our previous results.

2. The Brownian motion on the unitary group

2.1. The stochastic differential equation. Let N ≥ 1 be an integer. We denote by U(N) the
group of unitary N ×N matrices and by u(N) its Lie algebra, which is the space of anti-Hermitian
N × N matrices. We denote by IN the identity matrix. We will use systematically the following
convention for traces: we denote the usual trace by Tr and the normalized trace by tr, so that
Tr(IN ) = N and tr(IN ) = 1.

Let us endow u(N) with the real scalar product 〈X,Y 〉
u(N) = NTr(X∗Y ) = −NTr(XY ). We

denote by ‖ · ‖
u(N) the corresponding norm.

The scalar product 〈 · , · 〉
u(N) determines a Brownian motion with values in u(N), namely the

unique Gaussian process (KN (t))t≥0 with values in u(N) such that

∀s, t ≥ 0,∀A,B ∈ u(N), E[〈A,KN (s)〉
u(N)〈B,KN (t)〉

u(N)] = min(s, t)〈A,B〉
u(N).

Equivalently, let (Bkl, Ckl,Dk)k,l≥1 be independent standard real Brownian motions. Then KN (t)
has the same distribution as the anti-Hermitian matrix whose upper-diagonal coefficients are the

1√
2N

(Bkl(t) + iCkl(t)) and whose diagonal coefficients are the i√
N

Dk(t).

The linear stochastic differential equation

dUN (t) = UN (t)dKN (t) − 1

2
UN (t)dt (1)

admits a strong solution which is a process with values in MN (C). This process satisfies the identity
d(UNU∗

N )(t) = 0, as one can check by using Itô’s formula. Hence, this equation defines a Markov
process on the unitary group U(N), which we call the unitary Brownian motion. The generator
of this Markov process can be described as follows. Let (X1, . . . ,XN2) be an orthonormal basis
of u(N). Each element X of u(N) can be identified with the left-invariant first-order differential
operator LX on U(N) by setting, for all differentiable function F : U(N) → R and all U ∈ U(N),

(LXF )(U) =
d

dt |t=0
F (UetX). (2)

The generator of the unitary Brownian motion is the second-order differential operator

1

2
∆ =

1

2

N2∑

k=1

L2
Xk

.

This operator does not depend on the choice of the orthonormal basis of u(N). We denote the
associated semi-group by (Pt)t≥0. From now on, we will always consider the Brownian motion
issued from the identity matrix, so that UN (0) = IN .

The stochastic differential equation satisfied by UN can be translated into an Itô formula, as
follows.
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Proposition 2.1. Let F : R × U(N) → R be a function of class C2. Then for all t ≥ 0,

F (t, UN (t)) = F (0, IN ) +
N2∑

k=1

∫ t

0
(LXk

F )(s, UN (s)) d〈Xk,KN 〉
u(N)(s)

+

∫ t

0

(
1

2
∆F + ∂tF

)
(s, UN (s)) ds, (3)

and the processes {〈Xk,KN 〉
u(N) : k ∈ {1, . . . , N2}} are independent standard real Brownian mo-

tions.

This result is classical in the framework of stochastic analysis on manifolds (see for example
[14]), but since our whole analysis relies on this formula and for the convenience of the reader, we
offer a sketch of proof in this particular setting.

Proof. For all a, b ∈ {1, . . . , N}, let εab : MN (C) → C denote the coordinate mapping which to a
matrix M associates the entry Mab. Let also ∂ab denote the partial derivation with respect to the
ab-entry. The definition of LX given by (2) makes sense for any matrix X. One can check the
following identities:

∀X ∈ MN (C), LX =
N∑

a,b,c=1

εacXcb∂ab and L2
X − LX2 =

N∑

a,b,c,a′,b′,c′=1

εacXcbεa′c′Xc′b′∂ab∂a′b′ ,

∆ = LC +

N2∑

k=1

N∑

a,b,c,a′,b′,c′=1

εac(Xk)cbεa′c′(Xk)c′b′∂ab∂a′b′ ,

where C =
∑N2

i=1 X2
i . Moreover, C = −IN , regardless of the choice of the orthonormal basis

(X1, . . . ,XN2).
Any smooth function F : R×U(N) is the restriction of a smooth function defined on R×MN (C).

Applying the usual Itô formula to this extended function and using the identities above leads im-
mediately to (3).

2.2. The free multiplicative Brownian motion. We are interested in the large N behaviour
of the stochastic process UN issued from IN . Philippe Biane has described in [2] the limiting
distribution of this process seen as a collection of elements of the non-commutative probability
space (L∞ ⊗MN (C), E⊗ tr). We start by describing the limiting object. As a general reference on
non-commutative probability and freeness, we recommend [26].

Definition 2.2. Let (A, τ) be a (non-commutative) ∗-probability space. A collection of unitaries
(ut)t≥0 in A is called a free multiplicative Brownian motion if the following properties hold.

1. For all 0 ≤ t1 ≤ . . . ≤ tn, the elements ut1 , ut2u
∗
t1 , . . . , utnu∗

tn−1
are free.

2. For all 0 ≤ s ≤ t, the element utu
∗
s has the same distribution as ut−s.

3. For all t ≥ 0, the distribution of ut is the probability measure νt on U = {z ∈ C : |z| = 1}
characterized by the identity

∫

U

1

1 − z
z+1etze

t
2 ξ

dνt(ξ) = 1 + z, (4)

valid for z in a neighbourhood of 0.

The following result has been proved by P. Biane. The second assertion follows from the first by
a general result of D. Voiculescu.
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Theorem 2.3. The collection (UN (t))t≥0 of non-commutative random variables converges in dis-
tribution, as N tends to +∞, towards a free multiplicative Brownian motion.

Moreover, if U
(1)
N , U

(2)
N , . . . , U

(n)
N are n independent sequences of unitary Brownian motions, the

family ((U
(1)
N (t))t≥0, (U

(2)
N (t))t≥0, . . . , (U

(n)
N (t))t≥0) converges in non-commutative distribution, as

N tends to infinity, towards ((u
(1)
t )t≥0, (u

(2)
t )t≥0, . . . , (u

(n)
t )t≥0) where u(1), . . . , u(n) are n free mul-

tiplicative Brownian motions which are mutually free.

2.3. Statement of the Central Limit Theorem. Recall that U denotes the group of complex
numbers of modulus 1. Let f : U → R be a function. Then, by the functional calculus, f induces a
function, still denoted by f , from U(N) to MN (C). Moreover, for all unitary matrix U , the matrix
f(U) is Hermitian.

We endow U with the usual length distance, that is, the distance such that d(eiα, eiβ) = |α − β|
for all α, β ∈ R such that |α − β| ≤ π. Accordingly, we define the Lipschitz norm of a function
f : U → R as follows:

‖f‖Lip = sup
z,w∈U,z 6=w

|f(z) − f(w)|
d(z,w)

.

Note that, if f is Lipschitz continuous and z,w belong to U, then the following inequalities hold:
|f(z) − f(w)| ≤ ‖f‖Lipd(z,w) ≤ π

2 ‖f‖Lip|z − w|.
By the derivative of a differentiable function f : U → R, we mean the function f ′ : U → R

defined by

∀z ∈ U, f ′(z) = lim
h→0

f(zeih) − f(z)

h
.

We denote by L1(U) the space of integrable functions on U, with respect to the Lebesgue measure.
We denote by C1(U) the space of continuously differentiable functions and by C1,1(U) the subspace
of C1(U) consisting of those functions whose derivative is Lipschitz continuous. We define a family
of bilinear forms on C1(U) as follows.

Definition 2.4. Let (A, τ) be a C∗-probability space which carries three free multiplicative Brownian
motions u, v,w which are mutually free. Let T ≥ 0 be a real number. Let f, g : U → R be two
functions of C1(U). For all s ∈ [0, T ], we set σT,s(f, g) = τ(f ′(usvT−s)g

′(uswT−s)). Then, we
define

σT (f, g) =

∫ T

0
σT,s(f, g) ds =

∫ T

0
τ(f ′(usvT−s)g

′(uswT−s)) ds.

Lemma 2.5. For all T ≥ 0, σT is a symmetric non-negative bilinear form on C1(U).

Proof. The symmetry of σT comes from the fact that the triples (u, v,w) and (u,w, v) have the
same distribution. In order to prove the non-negativity, let us realize (u, v,w) on the free product
of three non-commutative probability spaces. So, let (Au, τu), (Av, τv) and (Aw, τw) be three non-
commutative probability spaces which carry respectively u, v and w. We consider their free product,
so we define A = Au ∗ Av ∗ Aw and τ = τu ∗ τv ∗ τw. We also use the notation τu, τv, τw for the
partial traces on A. Then

σT (f, f) =

∫ T

0
τu(τv(f

′(usvT−s))τw(f ′(uswT−s))) ds =

∫ T

0
τu(τv(f

′(usvT−s))
2) ds ≥ 0,

the positivity coming from the fact that f ′(usvT−s) is self-adjoint.

We will use the notation σT (f) = σT (f, f). Let us state our main result.
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Theorem 2.6. Let T ≥ 0 be a real number. Let n ≥ 1 be an integer. Let f1, . . . , fn : U → R

be n functions of C1,1(U). Let us define a n × n real non-negative symmetric matrix by setting
ΣT (f1, . . . , fn) = (σT (fi, fj))i,j∈{1,...,n}. Then, as N tends to infinity, the following convergence of
random vectors in R

n holds in distribution:

N (trfi(UN (T )) − E [trfi(UN (T ))])i∈{1,...,n}
(d)−→

N→∞
N (0,ΣT (f1, . . . , fn)). (5)

3. Structure of the proof

For T = 0, the result is straightforward. Let us choose once for all a real T > 0. In order to
study the left-hand side of (14), we write each component of this random vector as the difference
between the final and the initial value of a martingale. To do this, let (FN,t)t≥0 denote the filtration
generated by the unitary Brownian motion UN . To each function f of L1(U) we associate a real-

valued martingale (Mf
N (t))t∈[0,T ] by setting

Mf
N (t) = E[trf(UN (T ))|FN,t]. (6)

The left-hand side of (14) is simply N
(
Mfi

N (T ) − Mfi

N (0)
)

i∈{1,...,n}
and we are going to study the

quadratic variations and covariations of the martingales Mfi

N . In order to state the main technical
results, let us introduce some notation.

Recall that the gradient of a differentiable function F : U(N) → C is the vector field on U(N)

defined by ∇F =
∑N2

k=1(LXk
F )Xk, where (X1, . . . ,XN2) is an orthonormal basis of u(N). To each

pair of functions f, g ∈ L1(U) we associate a function Ef,g
N on [0, T ) × U(N) by setting

Ef,g
N (s, U) = N2〈∇(PT−s(trf))(U),∇(PT−s(trg))(U)〉

u(N).

Let us check that this function is well-defined. By the Weyl integration formula, the fact that f
is integrable on U implies that trf is an integrable function on U(N). Hence, for all s ∈ [0, T ),

PT−s(trf) is a function of class C∞ on U(N) and Ef,g
N is well defined.

Proposition 3.1. Consider f, g ∈ L1(U). With the notation introduced above, the following prop-
erties hold.

1. For all t ∈ [0, T ], the quadratic covariation of the martingales NMf
N and NMg

N is given by

〈NMf
N , NMg

N 〉t =

∫ t

0
Ef,g

N (s, UN (s)) ds.

2. Assume that f and g are Lipschitz continuous. Then for all s ∈ [0, T ) and all U ∈ U(N),

|Ef,g
N (s, U)| ≤ (‖f‖Lip + ‖g‖Lip)2. Moreover, if f and g belong to C1(U), then the following

convergence holds:

E[Ef,g
N (s, UN (s))] −→

N→∞
σT,s(f, g).

3. Assume that f and g belong to C1,1(U). Then the following estimate holds:

sup
s∈[0,T )

Var(Ef,g
N (s, UN (s))) = O(N−2).

Let us show that these results imply Theorem 2.6.
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Proof of Theorem 2.6. For all N ≥ 1, define a R
n-valued martingale QN = (Q1

N , . . . , Qn
N ) by setting

QN (t) = N
(
M

fj

N (t) − M
fj

N (0)
)

j∈{1,...,n}
. It is a martingale indexed by [0, T ], issued from 0 and

with the same bracket as N
(
M

fj

N

)
j∈{1,...,n}

. For all ξ = (ξ1, . . . , ξn) ∈ R
n and all t ∈ [0, T ], set

RN (t) = exp


i

n∑

j=1

ξjQ
j
N (t) +

1

2

n∑

j,k=1

ξjξk

∫ t

0
σT,s(fj , fk) ds


 .

Itô’s formula yields

E[RN (t)] = 1 +
1

2

n∑

j,k=1

ξjξkE

∫ t

0
RN (s)

(
σT,s(fj , fk) − E

fj ,fk

N (s, UN (s))
)

ds.

Thus,

|E[RN (t) − 1]| ≤ n‖ξ‖2

2
e

nT‖ξ‖2

2
max

j=1...n
‖f ′

j‖2
∞

max
j,k=1...n

E

∫ t

0

∣∣∣σT,s(fj, fk) − E
fj ,fk

N (s, UN (s))
∣∣∣ ds.

For fixed j and k, the last integral is smaller than
∫ t

0

∣∣∣σT,s(fj , fk) − E

[
E

fj ,fk

N (s, UN )(s)
]∣∣∣ ds + E

∫ t

0

∣∣∣Efj ,fk

N (s, UN )(s) − E

[
E

fj ,fk

N (s, UN )(s)
]∣∣∣ ds.

By the second part of Proposition 3.1, and by the dominated convergence theorem, the first
integral tends to 0 as N tends to infinity. The square of the second integral is smaller than

t
∫ t
0 Var(E

fj ,fk

N (s, UN (s))) ds, which, thanks to the third part of Proposition 3.1 and by dominated
convergence again, tends also to 0. Finally, we have proved that

∀ξ ∈ R
n, lim

N→∞
E

[
ei

Pn
j=1 ξjQj

N
(t)
]

= exp


−1

2

n∑

j,k=1

ξjξk

∫ t

0
σT,s(fj , fk) ds


 ,

which, for t = T , yields the expected result.

In Section 4, we collect some technical results that we use in Sections 5 and 6 to prove Proposition
3.1.

4. Regularity of the functional calculus

In this section, we relate the regularity of a function f : U → R to the regularity of the functional
calculus mapping f : U(N) → MN (C) and the function trf : U(N) → R. We start with a result
which, logically speaking, is not necessary for our exposition, but which is the simplest instance of
a crucial phenomenon.

4.1. Lipschitz norms. The group U(N) becomes a metric space when it is endowed with the
Riemannian distance, denoted by d, associated to the Riemannian metric induced by the scalar
product 〈·, ·〉

u(N) on u(N). We denote by ‖F‖Lip the corresponding Lipschitz norm of a function
F : U(N) → R, that is,

‖F‖Lip = sup

{ |F (U) − F (V )|
d(U, V )

: U, V ∈ U(N), U 6= V

}
.
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Proposition 4.1. Let f : U → R be a Lipschitz continuous function. Then trf : U(N) → R is also
Lipschitz continuous and

‖trf‖Lip =
1

N
‖f‖Lip.

Note that this result can be compared to Lemma 1.2 in [12], where it was a key point towards the
concentration results for Wigner and Wishart random matrices. In order to prove this proposition,
we use the following lemma.

Lemma 4.2. Let U and V be two elements of U(N). Then there exists A,B ∈ U(N) such that
AUA−1 and BV B−1 are diagonal and d(AUA−1, BV B−1) ≤ d(U, V ).

Proof. Let O be the conjugacy class of V . It is a compact submanifold of U(N). Let V ′ be a point
of O which minimizes the distance to U . Let γ : [0, 1] → U(N) be a minimizing geodesic path from
V ′ to U parametrized at constant speed. It is thus of the form γ(t) = V ′etZ for some Z ∈ u(N).
Since V ′ minimizes the distance to U , the vector γ̇(0) is necessarily orthogonal to the tangent space
TV ′O. This space TV ′O, identified with a subspace of u(N) by a left translation, is the range of the
linear mapping Ad(V ′−1)− Id. Hence, Z belongs to the kernel of the adjoint linear mapping, that
is, to the kernel of Ad(V ′) − Id. In other words, V ′ZV ′−1 = Z. It follows that Z and V ′ can be
simultaneously diagonalized, in an orthonormal basis, and the same is true for V ′ and V ′eZ = U .
Finally, V ′ and U are conjugated by a same unitary matrix to two diagonal unitary matrices. The
result follows easily.

Proof of Proposition 4.1. Let f : U → R be Lipschitz continuous. Consider U and V in U(N).
Thanks to Lemma 4.2, let us choose U ′ and V ′ which are both diagonal, conjugated respectively
to U and V , and such that d(U ′, V ′) ≤ d(U, V ). Let us write U ′ = diag(eiα1 , . . . , eiαN ) and
V ′ = diag(eiβ1 , . . . , eiβN ) in such a way that |βj − αj | ≤ π for all j ∈ {1, . . . , N}. Let us compute
d(U ′, V ′). It is equal to d(IN , U ′−1V ′), hence to

d(IN , eidiag(β1−α1,...,βN−αN )) = ‖idiag(β1 − α1, . . . , βN − αN )‖
u(N) =

√√√√N

N∑

j=1

(βj − αj)2.

It follows that d(U, V ) ≥∑N
j=1 |βj − αj |. On the other hand,

|trf(V ) − trf(U)| ≤ 1

N

N∑

j=1

|f(eiβj ) − f(eiαj )| ≤ 1

N
‖f‖Lip

N∑

j=1

|βj − αj | ≤
1

N
‖f‖Lipd(U, V ).

This proves the inequality ‖trf‖Lip ≤ 1
N ‖f‖Lip. By choosing α, β such that |f(eiβ)−f(eiα)| is close

to ‖f‖Lip|β−α| and by considering U = eiαIN , V = eiβIN , one verifies that the opposite inequality
holds.

Let us make a short heuristic comment on this result. The scalar product which we have chosen on
u(N) corresponds to a metric structure on U(N) which gives this group the diameter d(IN ,−IN ) =
‖idiag(π, . . . , π)‖

u(N) = Nπ, of the order of N . The function f : U → R being fixed, the variations
of the function trf : U(N) → R are of the same order of magnitude as those of f but occur on a
space N times as large. This makes the equality that we have juste proved plausible.

In the same order of ideas, note that the distance to the origin at time T of a linear Brownian
motion in a Euclidean space of large dimension d is, by the law of large numbers, of the order of√

dT . Assuming that the Brownian motion on the unitary group behaves in a comparable way, and
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considering the fact that the dimension of U(N) is N2, this indicates that the Brownian motion

UN (T ) might be at a distance of order N
√

T of IN , thus a fraction of the diameter of U(N) which
does not depend on N . This gives an intuitive justification for the choice of the normalization.

4.2. First derivatives. We are now going to prove that the functional calculus induced by f is
differentiable when f is differentiable, and to compute its differential. For this, we introduce some
notation. Let f : U → C be a differentiable function. Let us define a function Df : U × U → C by
setting

∀z,w ∈ U, Df(z,w) =

{
f(z)−f(w)

z−w if z 6= w,

− i
z f ′(z) if z = w.

The function Df is symmetric and, if f is C1(U), it is continuous and bounded by π
2‖f ′‖∞. Note

that Df takes its values in C even if f is real-valued.
If the function f is only Lipschitz continuous, then it is differentiable with bounded differential

outside a negligible subset of U, and the definition of Df still makes sense outside the corresponding
negligible subset of the diagonal of U×U. Moreover, outside this subset, the inequality |Df(z,w)| ≤
π
2 ‖f ′‖∞ holds.

If U is a unitary matrix, we denote by LU and RU the linear operators on MN (C) of left and
right multiplication by U respectively. These operators commute and they are normal with respect
to the scalar product 〈A,B〉 = NTr(A∗B) on MN (C). In fact, L∗

U = LU−1 and R∗
U = RU−1. Hence,

if g is a function on U× U, then g(LU , RU ) is a well-defined endomorphism of MN (C). Even when
f is only Lipschitz continuous, Df(LU , RU ) is well-defined for almost all U ∈ U(N).

Let us define a special orthonormal basis of u(N). We use the notation (Ejk)j,k∈{1,...,N} for

the canonical basis of MN (C). For all j, k with 1 ≤ j < k ≤ N , set Xjk = 1√
2N

(Ejk − Ekj)

and Yjk = i√
2N

(Ejk + Ekj). For all j ∈ {1, . . . , N}, set Hj = i√
N

Ejj. These matrices form an

orthonormal basis of u(N).

Proposition 4.3. Let f : U → C be a differentiable function. Let U be an element of U(N). Let
X be an element of u(N). Then

d

dt |t=0
f(UetX) = (Df(LU , RU )) (UX). (7)

In particular, when U is a diagonal matrix with diagonal coefficients (u1, . . . , uN ), the following
equalities hold.

1. For all j ∈ {1, . . . , N}, d
dt |t=0

f
(
UetHj

)
= Df(uj, uj)UHj .

2. For all j, k ∈ {1, . . . , N} with j < k, d
dt |t=0

f
(
UetXjk

)
= Df(uj, uk)UXjk.

3. For all j, k ∈ {1, . . . , N} with j < k, d
dt |t=0

f
(
UetYjk

)
= Df(uj, uk)UYjk.

If f is only Lipschitz continuous, then the same conclusions hold for almost all U ∈ U(N).

Proof. We will give the proof under the assumption that f is differentiable. The extension to the
Lipschitz continuous case is straightforward. Let us start by proving the part of the statement
which concerns a diagonal matrix U .

1. Since UetHj is diagonal, this assertion is proved by an easy direct computation.
2. This case is less trivial. Let us assume that uj 6= uk. Then for small t, there is a unique

pair of continuous functions (uj(t), uk(t)) such that the spectrum of UetXjk is deduced from that
of U by replacing uj and uk respectively by uj(t) and uk(t). The functions uj and uk are in fact
smooth and they satisfy u′

j(0) = u′
k(0) = 0, an equality which can be phrased by saying that the

right multiplication by etXjk does not affect the spectrum of U at the first order.
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Let D(t) be the diagonal matrix obtained from U by replacing uj and uk by uj(t) and uk(t)
respectively. By diagonalizing UetXjk for small t, one can find a unitary matrix P (t) which depends
smoothly on t, such that P (0) = IN , such that the only non-zero off-diagonal terms of P (t) are
P (t)jk and P (t)kj, and finally such that

UetXjk = P (t)D(t)P (t)−1. (8)

By differentiating with respect to t at t = 0, one finds

UXjk = [P ′(0), U ],

from which one deduces that P ′(0)jk = 1√
2N

uj

uk−uj
and P ′(0)kj = 1√

2N

uk

uk−uj
. By applying f to

both sides of (8) and then differentiating again with respect to t at t = 0, we find

d

dt |t=0
f
(
UetXjk

)
= [P ′(0), f(U)].

Knowing the off-diagonal terms of P ′(0) is enough to compute this bracket and we find the expected
result. The case where uj = uk is left to the reader, as well as the third assertion.

Let us now turn to the first part of the statement, where no assumption is made on U . Let us
first prove that (7) is true when U is a diagonal matrix with diagonal coefficients (u1, . . . , uN ).

In this case, for all j, k ∈ {1, . . . , N}, the matrix Ejk is an eigenvector for LU and RU , with the
eigenvalues uj and uk respectively. Hence, by definition of Df , Ejk is an eigenvector of Df(LU , RU )
with the eigenvalue Df(uj, uk). The validity of (7) in this case follows, because UHj (resp. UXjk,
UYjk) has the same vanishing entries as Hj (resp. Xjk, Yjk).

Let us now prove that (7) holds for any unitary matrix. Consider U ∈ U(N). Choose P,D ∈ U(N)
such that D is diagonal and U = PDP−1. Set Y = P−1XP . Then UetX = PDetY P−1. The result
follows now easily.

Before we apply the last result in order to compute the differential of trf , let us state a classical
yet very useful lemma.

Lemma 4.4. Let (Xk)k∈{1,...,N2} be a orthonormal basis of u(N). Let A,B be elements of MN (C).
Then the following equalities hold:

N2∑

k=1

tr(AXk)tr(BXk) = − 1

N2
tr(AB), (9)

N2∑

k=1

tr(AXkBXk) = −tr(A)tr(B). (10)

Proof. 1. For A,B ∈ u(N), this equality multiplied by N4 is indeed simply

N2∑

k=1

〈A,Xk〉u(N)〈B,Xk〉u(N) = 〈A,B〉
u(N).

The general case follows thanks to the equality MN (C) = u(N) ⊕ iu(N) and the fact that the
relations are C-bilinear in (A,B).

2. Choose i, j, l,m ∈ {1, . . . , N2}. By taking A = Eji and B = Eml in the first relation, we find

N2∑

k=1

(Xk)ij(Xk)lm = − 1

N
δi,mδj,l.
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The second relation follows by developing the trace.

Proposition 4.5. Let f : U → R be a differentiable function. Then trf is differentiable and, for
all U ∈ U(N) and all Y ∈ u(N), we have

(LY (trf))(U) = −itr(f ′(U)Y ). (11)

In particular, ∀U ∈ U(N), ‖∇(trf)(U)‖2 = 1
N2 tr(f ′(U)2).

Proof. Since trf is invariant by conjugation, we have for all U, V ∈ U(N) and all Y ∈ u(N) the
equality (LY (trf))(U) = (LV Y V −1(trf))(V UV −1). Hence, it suffices to check (11) for all Y when U
is diagonal. In this case, the result is a direct consequence of Proposition 4.3. The second assertion
follows from the definition of the gradient and the identity (9).

4.3. Lipschitz norms again. At the end of the proof of Proposition 3.1 (see Section 6.2), we
will need to estimate the Lipschitz norm of a function of a unitary matrix of a special form. We
state and prove this estimation below, although the reader might want to skip it now and jump to
Section 5.

Proposition 4.6. Let f be an element of C1,1(U). Let V,W be two elements of U(N). Define a
function FV,W : U(N) → C by setting

FV,W (U) = tr
(
f ′(UV )f ′(UW )

)
.

Then F is Lipschitz continuous and we have the estimate

‖FV,W ‖Lip ≤ π

N
‖f ′‖L∞‖f ′′‖L∞ .

Proof. We prove that FV,W is differentiable almost everywhere on U(N) and estimate the L∞ norm
of its differential. According to Proposition 4.3, we have, for all X ∈ u(N) and almost all U ∈ U(N),
the equality

(LXFV,W )(U) =tr
(
V −1

Df ′(LV U , RV U )(V UX)V f ′(UW )
)
+

tr
(
f ′(UV )W−1

Df ′(LWU , RWU )(WUX)W
)
.

We have used the fact that d
dt |t=0

f ′(UetXV ) = V −1 d
dt |t=0

f ′(V UetX)V . Let us focus on the first

term of the right-hand side, the second being similar. By the Cauchy-Schwarz inequality,
∣∣tr
(
V −1

Df ′(LV U , RV U )(V UX)V f ′(UW )
)∣∣2 ≤ tr(M∗M)tr

(
f ′(UW )∗f ′(UW )

)
,

where we have set M = Df ′(LV U , RV U )(V UX).
Recall that MN (C) is endowed with the scalar product 〈A,B〉 = NTr(A∗B). We claim that

the operator norm of the endomorphism Df ′(LV U , RV U ) of MN (C) with respect to this norm is
bounded above by π

2 ‖f ′′‖L∞ . Indeed, this operator is normal with respect to this scalar product,
so that its operator norm equals its spectral radius, which is smaller than the L∞ norm of Df ′.
Hence, we find

tr(M∗M)
1
2 ≤ π

2
‖f ′′‖L∞tr(X∗X)

1
2 .

It follows that

‖LXFV,W ‖L∞ ≤ 2
π

2
‖f ′′‖L∞

‖X‖
u(N)

N
‖f ′‖L∞ ,

from which the result follows easily.
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5. Convergence of the bracket

In this section, we prove the first two assertions of Proposition 3.1. Let us first prove a funda-
mental property of the generator of the Brownian motion on U(N). The action of U(N) on u(N)
by conjugation is an isometric action. Hence, for all V ∈ U(N), the processes UN and V UNV −1

satisfy two stochastic differential equations (see (1)) driven by two processes in u(N) with the same
distribution, so that they have the same distribution.

Lemma 5.1. Let F : U(N) → R be a Lipschitz continuous function. Let Y be an element of u(N).
Let t ≥ 0 be a real number. Then LY (PtF ) = Pt(LY F ).

Proof. Since F is Lipschitz continuous, LY F is well-defined as an element of L∞(U(N)). The result
amounts simply to the interversion of an integration and a derivation: for all U ∈ U(N),

LY (PtF )(U) =
d

ds |s=0
E
[
F (UesY UN (t))

]
=

d

ds |s=0
E
[
F (UUN (t)esY )

]

= E

[
d

ds |s=0
F (UUN (t)esY )

]
= Pt(LY F )(U).

We have used the fact that UN (t) has the same distribution as e−sY UN (t)esY .

5.1. Itô formula. The following result summarizes the applications of Itô formula that we will
use. The third assertion below implies, by polarization, the first assertion of Proposition 3.1.

Proposition 5.2. Let F : U(N) → R be an integrable function. Define a real-valued martingale
LF indexed by [0, T ] by setting, for all t ∈ [0, T ], LF (t) = E[F (UN (T ))|FN,t]. Let (Xk)k∈{1,...,N2}
be a orthonormal basis of u(N). Then the following equalities hold for all t ∈ [0, T ].

1. LF (t) = (PT−tF )(UN (t)).

2. LF (t) = LF (0) +

∫ t

0

N2∑

k=1

LXk
(PT−sF )(UN (s)) d〈Xk,KN 〉

u(N)(s).

3. 〈LF 〉(t) =

∫ t

0
‖(∇(PT−sF ))(UN (s))‖2 ds.

4. If F is Lipschitz continuous, then 〈LF 〉(t) =

∫ t

0

N2∑

k=1

[PT−s(LXk
F )(UN (s))]2 ds.

Proof. 1. Choose t ∈ [0, T ]. Since the unitary Brownian motion has independent multiplicative
increments, LF (t) can be rewritten as

LF (t) = E[F (UN (T ))|FN,t] = E[F (UN (t)U∗
N (t)UN (T ))|FN,t] = E[F (UN (t)VN (T − t))|FN,t],

where VN is a Brownian motion on U(N) with the same distribution as UN and independent of
UN . The result follows.

2. Let us apply (3) to the function G : [0, T ] × U(N) → R defined by G(t, U) = (PT−tF )(U). It
follows from the definition of the semigroup (Pt)t≥0 that G satisfies the time-reversed heat equation
1
2∆G + ∂tG = 0. Hence, Itô’s formula reads

LF (t) = LF (0) +

N2∑

k=1

∫ t

0
(LXk

(PT−sF ))(UN (s))d〈Xk,KN 〉
u(N)(s).

3. The equality follows immediately from the equality 2 and the fact that the processes {〈Xk,KN 〉
u(N) :

k ∈ {1, . . . , N2}} are independent standard real Brownian motions.
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4. This equality follows from the previous one by applying Lemma 5.1.

5.2. Expectation of the bracket. We can now prove the second assertion of Proposition 3.1.

Recall that we use the notation Ef,g
N (s, U) = N2〈∇(PT−s(trf))(U),∇(PT−s(trg))(U)〉

u(N). We will
use the fact, which is a consequence of Jensen’s inequality, that for any square-integrable function
G : U(N) → R, and for all t ≥ 0, (PtG)2 ≤ Pt(G

2).

Proof of the second assertion of Proposition 3.1. Let f : U → R be Lipschitz continuous. By defi-
nition and by Lemma 5.1

Ef,f
N (s, U) = N2

N2∑

k=1

(PT−s(LXk
(trf)))(U)2

≤ N2
N2∑

k=1

PT−s((LXk
trf)2)(U)

= N2PT−s(‖∇(trf)‖2)(U).

By Proposition 4.5 and the fact that PT−s does not increase the uniform norm, this implies that

|Ef,f
N (s, U)| ≤ ‖f ′‖2

L∞ .

By polarization, the estimation of |Ef,g
N (s, U)| follows.

Now, let us consider two independent copies VN and WN of the unitary Brownian motion UN .
Then, denoting by EVN ,WN

the expectation with respect to VN and WN only, we have

Ef,f
N (s, UN (s)) = N2

N2∑

k=1

(PT−s(LXk
(trf)))(UN (s))2

= N2
N2∑

k=1

EVN ,WN
[(LXk

trf)(UN (s)VN (T − s))(LXk
trf)(UN (s)WN (T − s))].

Using successively Lemma 4.5 and Lemma 4.4, we find

Ef,f
N (s, UN (s)) = EVN ,WN

[
tr
(
f ′(UN (s)VN (T − s))f ′(UN (s)WN (T − s))

)]
.

Taking the expectation with respect to UN , we find finally

E[Ef,f
N (s, UN (s))] = E

[
tr
(
f ′(UN (s)VN (T − s))f ′(UN (s)WN (T − s))

)]
.

Let (A, τ) be a C∗-probability space which carries three free mutliplicative brownian motions
u, v,w which are mutually free. According to Theorem 2.3, the family (UN (s), VN (t),WN (u))s,t,u≥0,
seen as a collection of non-commutative random variables in the non-commutative probability space
(L∞ ⊗ MN (C), E ⊗ tr), converges in distribution to (us, vt, wu)s,t,u≥0 as N tends to infinity. This
implies in particular that for all non-commutative polynomial p in three variables and their adjoints,
and for all s, t, u ≥ 0

E[tr p(UN (s), VN (t),WN (u))] −→
N→∞

τ(p(us, vt, wu)).

Let us fix s ∈ [0, T ). Since A is a C∗-algebra, there is a continuous functional calculus on normal
elements, hence on unitary elements, and f ′(usvT−s)f

′(uswT−s) is a well-defined element of A. On
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the other hand, choose ε > 0 and let q(z,w) be a polynomial function in z,w and their adjoints
such that supz,w∈U |f ′(z)f ′(w) − q(z,w)| < ε. Then
∣∣E
[
tr
(
f ′(UN (s)VN (T − s))f ′(UN (s)WN (T − s))

)]
− τ(f ′(usvT−s)f

′(uswT−s))
∣∣ ≤

∣∣E
[
tr
(
f ′(UN (s)VN (T − s))f ′(UN (s)WN (T − s))

)
− tr q(UN (s)VN (T − s), UN (s)WN (T − s))

]∣∣
+ |E [tr q(UN (s)VN (T − s), UN (s)WN (T − s))] − τ(q(usvT−s, uswT−s))|
+
∣∣τ(q(usvT−s, uswT−s)) − τ(f ′(usvT−s)f

′(uswT−s))
∣∣ .

The first and the third term are smaller than the uniform distance between q(·, ·) and f ′(·)f ′(·),
hence smaller than ε. The middle term tends to 0 as N tends to infinity. Altogether, this proves
that

E[Ef,f
N (s, UN (s))] −→

N→∞
τ(f ′(usvT−s)f

′(uswT−s)),

from which the expected result follows by polarization.

6. Convergence of the variance of the bracket

This section is devoted to the proof of the third assertion of Proposition 3.1.

6.1. A weak concentration inequality. Consider a function F : U(N) → R. If F is Lipschitz
continuous, then the equality ‖F‖Lip = ‖∇F‖L∞ holds. The goal of this paragraph is to prove the
following inequality.

Proposition 6.1. Let F : U(N) → R be a Lipschitz continuous function. For all T ≥ 0, one has
the following inequality:

Var[F (UN (T ))] ≤ T‖F‖2
Lip.

Note that this inequality is preserved by rescaling of the Riemannian metric on U(N), that is,
by rescaling of the scalar product on u(N). Indeed, let λ be a positive real and let us consider the
scalar product 〈·, ·〉e

u
= λ〈·, ·〉u on u(N). Then, putting a tilda to the quantities associated with

this new scalar product, we have on one hand d̃ = λ
1
2 d and ‖F‖

gLip
= λ− 1

2 ‖F‖Lip, and on the other

hand ∆̃ = λ−1∆ and ŨN (T ) has the distribution of UN (λ−1T ).

Proof. Recall the definition of the martingale LF (see Proposition 5.2). The left-hand side is equal
to E[〈LF 〉(T )], thus, by the third assertion of Proposition 5.2, to

E

∫ T

0
‖(∇(PT−sF ))(UN (s))‖2 ds ≤ T sup

s∈[0,T )
‖∇(PT−sF )‖2

L∞ = T sup
s∈[0,T )

‖PT−sF‖2
Lip.

On the other hand, since F is Lipschitz continuous, for all t ≥ 0, ‖PtF‖Lip ≤ ‖F‖Lip. The result
follows.

6.2. An estimate of a Lipschitz norm. With Proposition 6.1 in mind, we are going to study

the Lipschitz norm of U 7→ Ef,f
N (s, U) in order to estimate the variance of Ef,f

N (s, UN (s)).

Proposition 6.2. Assume that f is of class C1,1(U). Then

sup
s∈[0,T ]

‖Ef,f
N (s, ·)‖Lip = O(N−1).
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Proof. The proof relies on the identity

Ef,f
N (s, UN (s)) = EVN ,WN

[
tr
(
f ′(UN (s)VN (T − s))f ′(UN (s)WN (T − s))

)]
.

By Proposition 4.6, the expression between the brackets is a Lipschitz continuous function of
UN (s) for all values of VN (T − s) and WN (T − s), with a Lipschitz norm which does not depend
on VN (T −s) and WN (T −s) and is O(N−1). Hence, the same estimate holds for the expectation.

Proof of the third assertion of Proposition 3.1. It suffices to combine Proposition 6.2 and Proposi-

tion 6.1 to find that that sups∈[0,T ) Var[Ef,f
N (s, UN (s))] = O(N−2). The same result for Ef,g

N follows
easily.

7. Other Brownian motions, on unitary and special unitary groups

In this section, we explain how Theorem 2.6 can be extended to other Brownian motions on the
unitary group and to Brownian motion on the special unitary groups.

In this paper so far, we have considered the Brownian motian UN on U(N) associated to the scalar
product on u(N) given by 〈X,Y 〉

u(N) = NTr(X∗Y ), for any X,Y ∈ u(N). The crucial property
of this scalar product is its invariance under the action of U(N) on u(N) by conjugation. There
is in fact a two-parameter family of such scalar products, namely a

(
Tr(X∗Y ) + b

N Tr(X∗)Tr(Y )
)

with a > 0 and b > −1. Changing the coefficient a would simply affect the Brownian motion by a
global rescaling of time, and we stick to a = N in order to have correct asymptotics as N tends to
infinity. However, varying b yields really different Brownian motions. We start by considering the
limiting case b = −1, which corresponds to the Brownian motion on SU(N).

Let us denote by su(N) the hyperplane of u(N) consisting of traceless matrices, which is also the
Lie algebra of the special unitary group SU(N) and K0

N be the linear Brownian motion on su(N)
corresponding to the scalar product induced by 〈·, ·〉

u(N). Let VN be the solution of the stochastic
differential equation

dVN (t) = VN (t)dK0
N (t) − 1

2

(
1 − 1

N2

)
VN (t)dt. (12)

One can check that if the initial condition is in the special unitary group, then the process VN stays
in it. We call it the Brownian motion on SU(N).

If (Y1, . . . , YN2−1) an orthonormal basis of su(N), the generator of VN is given by

1

2
∆(0) =

1

2

N2−1∑

k=1

L2
Yi

.

We can modify the definition of VN in order to get Brownian motions with values in U(N) : for
all α ≥ 0, we set

V
(α)
N (t) = e

iαBt
N VN (t),

where (Bt)t≥0 is a standard real Brownian motion independent of VN . For all α ≥ 0, the generator

of V
(α)
N is given by

1

2
∆(α) =

1

2

(
∆(0) + αL2

i
N

IN

)
,

and we call V
(α)
N an α-Brownian motion on U(N).
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In fact, for each α ≥ 0, the process V
(α)
N is naturally associated with the scalar product

〈X,Y 〉(α)
u(N) = NTr(X∗Y ) +

1 − α2

α2
Tr(X∗)Tr(Y )

on u(N). Indeed, let K
(α)
N be the linear Brownian motion on u(N) corresponding to this scalar

product. Note that it can be expressed as K
(α)
N = K0

N + iα
N B. Then the process V

(α)
N satisfies the

stochastic differential equation

dV
(α)
N (t) = V

(α)
N (t)dK

(α)
N (t) − 1

2

(
1 +

α2 − 1

N2

)
V

(α)
N (t)dt. (13)

Equivalently, one can say that e
α2−1
N2 tV

(α)
N (t) satisfies the equation (1) in which KN has been replaced

by K
(α)
N . In particular, in the case when α = 1, V

(1)
N has the same distribution as UN .

The main feature of the Brownian motion on U(N) that we have used extensively in the proof
of Theorem 2.6 is that its generator commutes with all Lie derivatives. It is also the case for VN

and for all the processes V
(α)
N .

With this definition, and following [2], one can check that for all α ≥ 0, the process V
(α)
N converges

as N tends to infinity to a free multiplicative Brownian motion.
Let us now define a modified version of the covariance σT .

Definition 7.1. With all the notation of Definition 2.4, we define, for all α ≥ 0,

σ
(α)
T (f, g) =

∫ T

0
τ(f ′(usvT−s)g

′(uswT−s)) + (α2 − 1)τ(f ′(usvT−s))τ(g′(uswT−s)) ds.

Following step by step the proof of Theorem 2.6, one finds the following result.

Theorem 7.2. Let T ≥ 0 be a real number. Let n ≥ 1 be an integer. Let f1, . . . , fn : U → R

be n functions of C1,1(U). Let us define a n × n real non-negative symmetric matrix by setting

Σ
(α)
T (f1, . . . , fn) = (σ

(α)
T (fi, fj))i,j∈{1,...,n}. Then, as N tends to infinity, the following convergence

of random vectors in R
n holds in distribution:

N
(
trfi(V

(α)
N (T )) − E

[
trfi(V

(α)
N (T ))

])
i∈{1,...,n}

(d)−→
N→∞

N (0,Σ
(α)
T (f1, . . . , fn)). (14)

We leave the details to the reader, since every step can be adapted in a straightforward way.
The only substantial change is in Lemma 4.4, which now will take the following form.

Lemma 7.3. Let (Xk)k∈{1,...,N2} be an orthonormal basis of (u(N), 〈·, ·〉(α)
u(N)). Let A,B be elements

of MN (C). Then the following equality holds:

N2∑

k=1

tr(AXk)tr(BXk) = − 1

N2

(
tr(AB) + (α2 − 1)tr(A)tr(B)

)
. (15)

Assume that (X1, . . . ,XN2−1) form an orthonormal basis of su(N) endowed with the scalar product
induced by 〈·, ·〉

u(N). Then

N2−1∑

k=1

tr(AXk)tr(BXk) = − 1

N2
(tr(AB) − tr(A)tr(B)) . (16)

It is this modification which gives rise to the new covariance introduced in Definition 7.1.
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8. Behaviour of the covariance for large time

For any fixed N , the Markov process (UN (T ))T≥0 converges in distribution, as T goes to infinity,
to its invariant measure, which is the Haar measure on U(N). In [7], P. Diaconis and S. Evans have
established a central limit theorem for Haar distributed unitary random matrices. In this section,
we relate our result to theirs by comparing the limit as T tends to infinity of the covariance σT

with the covariance which they have found.

8.1. Statement of the result of convergence. In order to state the result of Diaconis and
Evans, we need to introduce some notation.

Definition 8.1. Let H
1
2 (U) denote the space of functions that are square-integrable on U and such

that

‖f‖2
1
2

:=
1

16π2

∫

[0,2π]2

∣∣f(eiϕ) − f(eiθ)
∣∣2

sin2
(

ϕ−θ
2

) dϕdθ < ∞.

We denote by 〈·, ·〉 1
2

the inner product associated to this Hilbertian norm.

For all f : U → C which is square-integrable and all j ∈ Z, we denote by aj(f) = 1
2π

∫
U

f(t)e−ijtdt

the j-th Fourier coefficient of f . One can check that f ∈ H
1
2 (U) if and only if

∑
j∈Z

|j||aj(f)|2 is
finite and that, in this case,

‖f‖2
1
2

=
∑

j∈Z

|j||aj(f)|2.

The result of Diaconis and Evans states as follows.

Theorem 8.2. (5.1 in [7]) For all N ∈ N, let MN be a N ×N unitary matrix distributed according

to the Haar measure on U(N). Let n ≥ 1 be an integer. For all f1, . . . , fn ∈ H
1
2 (U), let Σ(f1, . . . , fn)

be the n×n real non-negative symmetric matrix defined by Σ(f1, . . . , fn) =
(
〈fi, fj〉 1

2

)

i,j=1,...,n
. As

N goes to infinity, the following convergence of random vectors in R
n holds in distribution:

N (trfi(MN ) − E [trfi(MN )])i∈{1,...,n}
(d)−→

N→∞
N (0,Σ(f1, . . . , fn)).

In view of this result, it is natural to expect the covariance that we have introduced in Definition

2.4 to converge, as T tends to infinity, to the covariance given by the H
1
2 -scalar product. This is

what the following result expresses.

Theorem 8.3. For all n ≥ 1 and all f1, . . . , fn ∈ H
1
2 (U),

ΣT (f1, . . . , fn) −→
T→∞

Σ(f1, . . . , fn).

Let us emphasize that ΣT (f1, . . . , fn) has only been defined so far for functions in C1,1(U). From

this point on, we focus on extending the definition of the covariance to functions of the space H
1
2 (U)

and proving Theorem 8.3.

8.2. The main estimate. In the sequel, (ut)t≥0, (vt)t≥0 and (wt)t≥0 will be three multiplicative
free Brownian motions, that are mutually free. For all T ≥ 0 and all k ∈ Z, let us denote by
µk(T ) = τ(uk

T ) the k-th moment of uT . Recall that, since uT has the same law as u∗
T , one has, for

all k ∈ Z, the equality µk(T ) = µ−k(T ). For each k ≥ 1, according to [2], µk(T ) is given by

µk(T ) = e−
kT
2

k−1∑

l=0

(−T )l

l!

(
k

l + 1

)
kl−1. (17)
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Lemma 8.4. For all ε > 0, all T ≥ T0(ε) = 2
ε log(1 + 2

ε ) and all k ∈ Z, one has

|µk(T )| ≤ e−|k|T(1
2
−ε).

Proof. If k = 0 or ε ≥ 1
2 , the inequality is trivial. Moreover, since µk(T ) = µ−k(T ), it suffices to

prove the inequality for k > 0. So, let us assume that ε ≤ 1
2 and k ∈ N

∗. It is easy to check that
the expression (17) of µk(T ) is equivalent to the following:

µk(T ) =
e−

kT
2

2ikπ

∮
e−kTz

(
1 +

1

z

)k

dz,

where we integrate over a closed path of index 1 around the origin. If we choose as our contour the
circle of radius ε

2 centered at the origin, we get

µk(T ) =
e−

kT
2

2ikπ

∫ 2π

0
e−kT ε

2
eiθ

(
1 +

2

εeiθ

)k

i
ε

2
eiθdθ,

so that

|µk(T )| ≤ ε

2k
e−

kT
2 ekT ε

2

(
1 +

2

ε

)k

≤ e−kT( 1
2
−ε),

as expected.

We will denote by T0 a real large enough such that for all T ≥ T0 and all k ∈ Z, the inequality

|µk(T )| ≤ e−|k|T
3 holds. One can check that 31 is large enough but we choose T0 = 32 for reasons

which will soon become apparent.
For all j, k ∈ Z and T > 0, we define

τj,k(T ) =

∫ T

0
τ
(
(usvT−s)

j(uswT−s)
k
)

ds. (18)

Proposition 8.5. Set T0 = 32. For all T ≥ T0 and all (j, k) 6= (0, 0), the following inequality
holds:

|τj,k(T )| ≤ 4
e−

|j+k|
4

T

|j| + |k| + (|j| + |k|)T0e
− |j|+|k|

4
(T−T0). (19)

Moreover, if j 6= 0, then

∣∣∣∣τj,−j(T ) − 1

|j|

∣∣∣∣ ≤
e−

T
4

|j| + 2|j|T0e
− |j|

2
(T−T0). (20)

In particular, for all (j, k) 6= (0, 0), the following convergence holds :

lim
T→∞

τj,k(T ) = δj+k
1

|j| .

The proof of these estimates relies on a differential system satisfied by the functions τj,k. This
differential system is a consequence of the free Itô calculus for free multiplicative Brownian motions.
We state the form that we use, which is of interest on its own.

Proposition 8.6. Let (ut)t≥0 be a free multiplicative Brownian motion on some non-commutative
∗-probability space (A, τ). Let a1, . . . , an ∈ A be random variables such that the two families
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{ut : t ≥ 0} and {a1, . . . , an} are free. Finally, choose ε1, . . . , εn ∈ {1,−1}. Then

d

dt
τ(uε1

t a1 . . . uεn
t an) = − n

2
τ(uε1

t a1 . . . uεn
t an)

−
∑

1≤i<j≤n

1εi=εj
τ(ai . . . aj−1u

εj

t )τ(aj . . . ai−1u
εi
t )

+
∑

1≤i<j≤n

1εi 6=εj
τ(ai . . . aj−1)τ(aj . . . ai−1),

where for all 1 ≤ i < j ≤ n, we have used the shorthands ai . . . aj−1 for aiu
εi+1
t ai+1 . . . u

εj−1

t aj−1

and aj . . . ai−1 for aju
εj+1

t aj+1 . . . uεn
t anuε1

t a1 . . . u
εi−1

t ai−1.

Proof. In [2], P. Biane showed that the free multiplicative Brownian motion (ut)t≥0 satisfies the free
stochastic differential equation dut = iutdxt − 1

2utdt, where (xt)t≥0 is a free additive (Hermitian)
Brownian motion. The identity above follows from this fact by free stochastic calculus, which has
been developed by P. Biane and R. Speicher and is exposed in [3].

Lemma 8.7. The family (τj,k)(j,k)∈Z2 satisfies the following system of differential equations :

τ̇j,k(T ) = µj+k(T ) − |j| + |k|
2

τj,k(T ) −
|j|−1∑

l=1

(|j| − l)µl(T )τsgn(j)(|j|−l),k(T )

−
|k|−1∑

m=1

(|k| − m)µm(T )τj,sgn(k)(|k|−m)(T ),

where τ̇j,k is the derivative of the function T 7→ τj,k(T ).

Proof. This differential system follows easily from an application of Proposition 8.6 to the expres-
sion (18).

Before we turn to the proof of Proposition 8.5, let us state some elementary properties of the

functions τj,k. For all k ≥ 0, define the polynomial Pk by the relation µk(T ) = e−
kT
2 Pk(T ). For

k < 0, define Pk = P−k.

Lemma 8.8. For all j, k ∈ Z, the function τj,k is real-valued and satisfies τj,k = τk,j = τ−j,−k.
Moreover, there exists a family of polynomials (Rj,k)j,k∈Z with rational coefficients such that the
following equality holds :

∀j, k ∈ Z , τj,k(T ) =
1j 6=0

|j| δj+k,0 + e−
|j|+|k|

2
T Rj,k(T ). (21)

These polynomials are characterized by the fact that for all j, k ∈ Z, Rj,k(0) = 0 and

Ṙj,k = 1jk≥0Pj+k −
|j|−1∑

l=1

(|j| − l)PlRsgn(j)(|j|−l),k −
|k|−1∑

m=1

(|k| − m)PmRj,sgn(k)(|k|−m). (22)

Proof. The equalities τj,k = τ−j,−k = τk,j follow from the definition of τj,k, using the unitarity of
u, v,w, the traciality of τ , and the fact that the families (u, v,w) and (u,w, v) have the same joint
distribution. The fact that τj,k is real-valued can be proved by induction using the differential sys-
tem stated in Lemma 8.7, or directly using the definition and the fact that (u, v,w) and (u∗, v∗, w∗)
have the same distribution.
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The functions Rj,k defined by (21) are easily checked to satisfy the differential system (22) and,
by induction, to be polynomials.

Proof of Proposition 8.5. Since the differential equation for τj,k expressed by Lemma 8.7 involves
only indices (j′, k′) such that |j′| + |k′| ≤ |j| + |k|, we will prove the conjunction of (19) and (20)
by induction on |j| + |k|. It is understood that k = −j in (20).

The symmetry properties of τj,k allow us to restrict ourselves to the two cases where j, k ≥ 0
and j > 0, k < 0. We may also assume that j + k ≥ 0.

The smallest possible value of |j| + |k| is 1. So, we start with τ1,0(T ) = Tµ1(T ) = Te−
T
2 , which

is smaller than e−
T
4 for T larger than T0. Hence, if |j| + |k| = 1 and T ≥ T0, then |τj,k(T )| ≤ e−

T
4 .

This proves the result when |j| + |k| = 1.
Let us consider now j and k and assume that (19) and (20) have been proved for all j′, k′ such

that |j′| + |k′| < |j| + |k|. Let us first assume that j + k 6= 0. In this case, define

ρj,k(T ) = e
|j|+|k|

2
T τj,k(T ).

Then Lemmas 8.4 and 8.7 and the induction hypothesis imply the inequality

|ρ̇j,k(T )| ≤ e
|j|+|k|

2
T e−

|j+k|
3

T + 4e
|j|+|k|

2
T

|j|−1∑

l=1

(|j| − l)e−l T
3

e−|sgn(j)(|j|−l)+k|T
4

|j| − l + |k|

+ (|j| + |k| − 1)T0e
|j|+|k|

4
(T+T0)

|j|−1∑

l=1

(|j| − 1)e−l T
3 el

T−T0
4

+ 4e
|j|+|k|

2
T

|k|−1∑

m=1

(|k| − m)e−mT
3

e−|j+sgn(k)(|k|−m)|T
4

|j| + |k| − m

+ (|j| + |k| − 1)T0e
|j|+|k|

4
(T+T0)

|k|−1∑

m=1

(|k| − 1)e−mT
3 em

T−T0
4 .

Since |j| − l ≤ |j| − l + |k|, |k| − m ≤ |j| + |k| − m and e−l
T0
4 ≤ 1, we find

|ρ̇j,k(T )| ≤ e
|j|+|k|

2
T e−

|j+k|
3

T + 4e
|j|+|k|

2
T

|j|−1∑

l=1

e−l T
3 e−|sgn(j)(|j|−l)+k|T

4

+ 4e
|j|+|k|

2
T

|k|−1∑

m=1

e−mT
3 e−|j+sgn(k)(|k|−m)|T

4

+ 2(|j| + |k| − 1)2T0e
|j|+|k|

4
(T+T0)

∞∑

l=1

e−l T
12 . (23)

If we are in the case where j, k ≥ 0, then we obtain immediately the estimate

|ρ̇j,k(T )| ≤ e
|j|+|k|

2
T

(
e−

|j+k|
3

T +
e−

T
12

1 − e−
T
12

(
8e−

|j+k|
4

T + 2(|j| + |k| − 1)2T0e
− |j|+|k|

4
(T−T0)

))
. (24)

In the case where j > 0 and k < 0, the computation is slightly more complicated. In this case, let
us also assume that j + k > 0, as we have indicated that it is possible to do. Then the estimation
of the sum over m in (23) is the same as before, since j + sgn(k)(|k| − m) is positive for all values
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of m. However, the sign of sgn(j)(|j| − l)+ k now depends on l. Thus, we bound the first sum over
l by

e−
|j+k|

4
T

j+k∑

l=1

e−l T
12 +

+∞∑

l=j+k+1

e−l T
3 e−(l−(j+k))T

4 .

In the first term, we could actually have e−l T
3 instead of e−l T

12 but we are not seeking any optimality.
In the second term, we write

e−(l−(j+k))T
4 = e−(2l−(j+k))T

4 el T
4 ≤ e−(j+k)T

4 el T
4 ,

and we find that the first sum over l in (23) is bounded by 2e−
|j+k|

4
T e−

T
12

1−e−
T
12

. Finally, we have

established that, when j > 0, k < 0 and j + k > 0,

|ρ̇j,k(T )| ≤ e
|j|+|k|

2
T

(
e−

|j+k|
3

T +
e−

T
12

1 − e−
T
12

(
12 e−

|j+k|
4

T + 2(|j| + |k| − 1)2T0e
− |j|+|k|

4
(T−T0)

))
.

In view of (24), the last estimate holds for all values of j and k. Our choice of T0 guarantees that
for T ≥ T0, the inequalities

e−
T
12 + 12

e−
T
12

1 − e−
T
12

≤ 1 and
e−

T
12

1 − e−
T
12

≤ 1

8

hold. Hence, we find

|ρ̇j,k(T )| ≤ e
|j|+|k|

2
T

(
e−

|j+k|
4

T +
1

4
(|j| + |k| − 1)2T0e

− |j|+|k|
4

(T−T0)

)
.

Integrating the last inequality from T0 on and using the fact that |j|+|k|
2 − |j+k|

4 ≥ |j|+|k|
4 , we find

|ρj,k(T )| ≤ T0e
|j|+|k|

2
T0 + e

|j|+|k|
2

T

(
4

e−
|j+k|

4
T

|j| + |k| + (|j| + |k| − 1)T0e
− |j|+|k|

4
(T−T0)

)
,

from which it follows immediately that

|τj,k(T )| ≤ 4
e−

|j+k|
4

T

|j| + |k| + (|j| + |k|)T0e
− |j|+|k|

4
(T−T0),

which is the expected equality.
Let us now treat the case where k = −j. As before, we can assume that j > 0. Setting

ρj(T ) = e|j|T
(
τj,−j(T ) − 1

|j|

)
, we find, using the same estimates as before, that

|ρ̇j(T )| ≤ 8e|j|T
∞∑

l=1

1

2
e−l 7T

12 + 2(2|j| − 1)2e
|j|
2

(T+T0)T0

∞∑

l=1

e−l T
12 .

It follows that

|ρj(T )| ≤ T0e
|j|T0 + e|j|T

e−
T
2

2
(
|j| − 1

2

) + (2|j| − 1)T0e
|j|
2

(T+T0),

so that ∣∣∣∣τj,−j(T ) − 1

|j|

∣∣∣∣ ≤
e−

T
2

|j| + 2|j|T0e
− |j|

2
(T−T0),

which is the expected inequality. This concludes the proof.
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8.3. Extension of the definition of the covariance.

Proposition 8.9. Let f ∈ H
1
2 (U) be real-valued. The following properties hold.

1. For all T > T0,
∑

j,k∈Z

|jkaj(f)ak(f)τj,k(T )| < ∞.

2. lim
T→∞

∑

j,k∈Z

jkaj(f)ak(f)τj,k(T ) = −‖f‖2
1
2
.

Proof. Choose an integer n ≥ 1. Then for all T ≥ T0, Proposition 8.5 implies
∑

|j|,|k|≤n

|jkaj(f)ak(f)τj,k(T )| ≤
∑

|j|,|k|≤n

4|jk|
|j| + |k| |aj(f)ak(f)|e−

|j+k|
4

T

+ T0

∑

|j|,|k|≤n

|jk|(|j| + |k|)|aj(f)ak(f)|e−
|j|+|k|

4
(T−T0)

≤ 2
∑

|j|,|k|≤n

√
|jk||aj(f)ak(f)|e−

|j+k|
4

T + 2
∑

|j|,|k|≤n

|j|2|aj(f)|e−
|j|
4

(T−T0)|k|2|ak(f)|e−
|k|
4

(T−T0)

≤ 2
∑

l∈Z

e−|l|T
4

∑

|j|,|k|≤n,j+k=l

√
|jk||aj(f)ak(f)| + 2



∑

|j|≤n

|j|2|aj(f)|e−
|j|
4

(T−T0)




2

≤ ‖f‖2
1
2


2
∑

l∈Z

e−|l|T
4 + 2

∑

j∈Z

|j|3e−
|j|
2

(T−T0)


 .

The first assertion follows. The second is a consequence of the second statement in Proposition 8.5
and the theorem of dominated convergence.

Proposition 8.9 above allows us to give a new definition of the covariance σT when T is large
enough.

Definition 8.10. For all T > T0 and all f ∈ H
1
2 (U), we define

σT (f, f) = −
∑

j,k∈Z

jkaj(f)ak(f)τj,k(T ).

Lemma 8.11. Let f be a function of C1,1(U). For all T > T0, the two definitions (Definition 2.4
and Definition 8.10) of σT (f, f) coincide.

Proof. The series
∑

j∈Z
|aj(f

′)| is convergent, so that Sn(f ′) =
∑

|j|≤n jaj(f)eijt converges uni-

formly to f ′ on U as n tends to infinity. Therefore, starting from Definition 2.4,

σT (f, f) = −
∫ T

0
τ



∑

j,k∈Z

jkaj(f)ak(f)(usvT−s)
j(uswT−s)

k


 ds.

As the processes are unitary and
∑

j∈Z
|j||aj(f)| < ∞, we get by dominated convergence that, for

all T ≥ 0,

σT (f, f) = −
∑

j,k∈Z

jkaj(f)ak(f)τj,k(T ),

as expected.
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Theorem 8.3 is now a straightforward consequence of the polarisation of Definition 8.10 and
Proposition 8.9.

Remark 8.12. Let us emphasize that Proposition 8.5 implies that, for all ε > 0 and all T > T0,
the following series converges:

∑

j,k∈Z

(|j| + |k|)1−ε|τj,k(T )|2 < +∞.

Hence, for all T > T0, the equality

KT (eiθ, eiϕ) =
∑

(j,k)∈Z2\{(0,0)}
eijθeikϕτj,k(T )

defines KT as a square-integrable real-valued function on U
2 and, for all f, g ∈ H1(U), one has the

equality

σT (f, g) =

∫

[0,2π]2
f ′(eiθ)KT (eiθ, eiϕ)g′(eiϕ)

dθdϕ

4π2
.

We conclude this study of the covariance by showing some puzzling numerical experiments (see
Figure 1). It is striking on these pictures that the behaviour of the covariance σT (f, g) is complicated
and interesting for small T , and much simpler for large T . It is thus not surprising that we have
been only able to analyse σT for large T .

Figure 1. For all k ≥ 1, let us define sk(e
iθ) = sin(kθ) and ck(e

iθ) = cos(kθ). The
pictures above are the graphs of the following functions of T for T ∈ [0, 6]. Top left :
σT (sk, sk) and σT (ck, ck) for k ∈ {1, . . . , 8}. Bottom left : µk(T ) for k ∈ {1, . . . , 6}.
Top center : σT (sk, sk+1) for k ∈ {1, . . . , 15}. Bottom center : σT (ck, ck+1) for
k ∈ {1, . . . , 15}. Top right : σT (sk, sk+3) for k ∈ {1, 4, 7, 10, 13}. Bottom right :
σT (sk, sk+2) for odd k ∈ {1, . . . , 13}.
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9. Combinatorial approaches

9.1. The differential system satisfied by the τj,k. The differential system satisfied by the
functions τj,k (Lemma 8.7) can be interpreted, at least when j and k have the same sign, in terms
of enumeration of walks on the symmetric group, in the same vein as the computations made by
one of us in [17]. This is what we explain in this section.

Fix j ≥ 1. We consider the Cayley graph on the symmetric group Sj generated by all transposi-
tions. The vertices of this graph are the elements of Sj and two permutations σ1 and σ2 are joined

by an edge if and only if σ1σ
−1
2 is a transposition. A finite sequence (σ0, . . . , σn) of permutations

such that σi and σi+1 are joined by an edge for all i ∈ {0, . . . , n−1} is called a path of length n. The
distance between two permutations is the length of the shortest path that joins them. We call defect
of a path the number of steps in the path which increase the distance to identity. Heuristically, one
can understand the defect as follows : each time we compose a permutation with a transposition,
either we cut a cycle into two pieces and this is a step which decreases the distance to identity, or
we coalesce two cycles into a bigger one and this is a step which increases the distance to identity.
The defect counts the number of steps of the second kind.

For any σ ∈ Sj , and two integers n, d ≥ 0, we denote by S(σ, n, d) the number of paths in the
Cayley graph of Sj starting from σ, of length n and with defect d. The interested reader can find
more details about those combinatorial objects in [17].

Let j, k ≥ 1. If σ ∈ Sj and τ ∈ Sk, we denote by σ × τ the concatenation of σ and τ, that is
the permutation in Sj+k such that σ × τ(i) = σ(i) if 1 ≤ i ≤ j and σ × τ(i) = τ(i − j) + j if
j + 1 ≤ i ≤ j + k.

From Theorem 3.3 in [17], it follows that for all T ≥ 0,

E

[
tr(UN (T )j)tr(UN (T )k)

]
− E

[
tr(UN (T )j)

]
E

[
tr(UN (T )k)

]

= e−(j+k)T
2




∞∑

n,d=0

(−T )n

n!N2d
S((1 . . . j) × (1 . . . k), n, d)

−
∞∑

n1,n2,d1,d2=0

(−T )n1+n2

n1!n2!N2(d1+d2)
S((1 . . . j), n1, d1)S((1 . . . k), n2, d2)


 . (25)

Moreover, for all T ′ ≥ 0, we recall that all the expansions involved converge uniformly on (N,T ) ∈
N × [0, T ′].

Using this equality, it is for example easy to check that

lim
N→∞

(
E

[
tr(UN (T )jtr(UN (T )k)

]
− E

[
tr(UN (T )j)

]
E

[
tr(UN (T )k)

])
=

e−(j+k)T
2

∞∑

n=0

(−T )n

n!

(
S((1 . . . j) × (1 . . . k), n, 0)

−
n∑

n1=0

(
n

n1

)
S((1 . . . j), n1, 0)S((1 . . . k), n − n1, 0)

)
= 0,

where the last equality comes from Proposition 5.3 of [17]. Each term of the sum is indeed zero
and heuristically, it means that a path without defect starting from (1 . . . j) × (1 . . . k) is simply
obtained by “shuffling” two paths without defect from each of the two cycles in their respective
symmetric group.



26 T. LÉVY, M. MAÏDA

More interesting for us is the fact we can also deduce from (25) that

κj,k(T )
(def)
= lim

N→∞
N2
(

E

[
tr(UN (T )jtr(UN (T )k)

]
− E

[
tr(UN (T )j)

]
E

[
tr(UN (T )k)

])
=

e−(j+k)T
2

∞∑

n=0

(−T )n

n!
S′((1 . . . j) × (1 . . . k), n, 1), (26)

where, σ ∈ Sj, τ ∈ Sk and n ≥ 1 being given, we use the notation

S′(σ×τ, n, 1) = S(σ×τ, n, 1)−
n∑

n1=0

(
n

n1

)(
S(σ, n1, 1)S(τ, n−n1, 0)+S(σ, n1, 0)S(τ, n−n1, 1)

)
.

Thus defined, S′(σ × τ, n, 1) is the number of paths of length n starting from σ × τ such that the
unique step which increases the distance to the identity is the multiplication by a transposition
which exchanges an element of {1, . . . , j} with an element of {j +1, . . . , j + k}. Thus, heuristically,
the unique step which is a coalescence is a coalescence between σ and τ .

Our goal is now to show the following combinatorial identity

Proposition 9.1. For any integers j, k ≥ 1, and n ≥ 0, we have

S′((1 . . . j) × (1 . . . k), n + 1, 1) = jk S((1 . . . j + k), n, 0)

+j

j−1∑

l=1

n∑

p=0

(
n

p

)
S((1 . . . l), p, 0)S′((1 . . . j − l) × (1 . . . k), n − p, 1)

+k
k−1∑

m=1

n∑

q=0

(
n

q

)
S((1 . . . m), q, 0)S′((1 . . . j) × (1 . . . k − m), n − q, 1).

The combinatorial interpretation of this identity is the following : let us consider a path of
length n + 1 from (1 . . . j) × (1 . . . k) whose unique step increasing the distance to identity is a
true coalescence between the two cycles. The first step of such a path can be of three kinds,
corresponding respectively to the three terms of the right hand-side :

– either it coalesces the cycles, creating a (j + k)-cycle, and this can be done by choosing an
element in each cycle. Then the path can be completed by any path of length n without
defect from a (j + k)-cycle.

– either it cuts the cycle (1 . . . j) into two cycles, one of length l that will then be cut p times
without being affected by the coalescence and another of length j − l which contains the
element which will be exchanged with an element of {j + 1, . . . , j + k} during the coalescing
step.

– either, symmetrically, it cuts the cycle (1 . . . k).

We will hereafter propose a rigorous proof of this identity through the free stochastic calculus
tools introduced above in the paper.

Proof. Let the integers j, k ≥ 1 and the real T ≥ 0 be fixed. If we consider the quantities κj,k(T )
as defined in (26), if we denote, for any r ∈ Z, by fr : U → C the function given by fr(z) = zr,
then, from Definition 2.4 and Theorem 2.6, we get κj,k(T ) = σT (fj , fk) and from (18), it can be
reexpressed as κj,k(T ) = −jk τj,k(T ). Now, from Lemma 8.7, we get immediately

κ̇j,k(T ) = −jk µj+k(T ) − j + k

2
κj,k(T ) − j

j−1∑

l=1

µl(T )σj−l,k(T ) − k

k−1∑

m=1

µm(T )κj,k−m(T ),



CENTRAL LIMIT THEOREM FOR THE HEAT KERNEL MEASURE ON THE UNITARY GROUP 27

so that we get immediately the anounced result, as we know from [17] that, for any r ∈ N
∗,

µr(T ) = e−r T
2

∞∑

n=0

(−T )n

n!
S((1 . . . r), n, 0)

and from (26) that

κ̇j,k(T ) = −j + k

2
κj,k(T ) − e−(j+k)T

2

∞∑

n=0

(−T )n

n!
S′((1 . . . j) × (1 . . . k), n + 1, 1).

9.2. Mixed moments of special unitary matrices. In principle, any computation involving
functions invariant by conjugation on the unitary group can be performed by using harmonic
analysis, that is, the representation theory of the unitary group. In this section, we use this
approach to prove the following formula, which yields for each N ≥ 3 an explicit expression for the
covariance of traces of powers of the Brownian motion on SU(N). With the help of Section 7, it is
easy to deduce the analogous result for the Brownian motion on U(N).

Proposition 9.2. Let N ≥ 3 be an integer. Consider, on SU(N), the Brownian motion (VN (t))t≥0

associated with the scalar product 〈X,Y 〉
su(N) = NTr(X∗Y ) on su(N). Let n and m be positive

integers. Assume that N ≥ n + m + 1. Then

E

[
Tr(VN (t)n)Tr(VN (t)m)

]
= nδn,m + (−1)n+me−(n+m) t

2
−n(n−1)+m(m−1)

N
t
2
− (n−m)2

N2
t
2

n−1∑

r1=0

m−1∑

r2=0

[
(−1)r1+r2e−nr1

t
2

(
n − 1

r1

)(
N + r1

n

)
e−nr2

t
2

(
m − 1

r2

)(
N + r2

m

)

(N + r1 + r2 + 1)(N − n − m + r1 + r2 + 1)

(N − n + r1 + r2 + 1)(N − m + r1 + r2 + 1)

]
.

The basic strategy for the proof is to expand the heat kernel and the traces in the basis of Schur
functions, and then to use the multiplication rules for Schur functions and their orthogonality
properties. The multiplication rules are expressed by the Littlewood-Richardson formula and they
are rather complicated. Fortunately, in the present situation, the Young diagrams which occur are
simple enough for the computation to be tractable.

Let us recall the fundamental facts about Schur functions. Details can be found in [8]. A Young
diagram is a non-increasing sequence of non-negative integers. If λ = (λ1 ≥ . . . . . . λk > 0) is such
a sequence, we call k the length of λ and denote it by ℓ(λ). The set of Young diagrams of length at
most k is denoted by N

k
↓. We draw Young diagrams downwards in rows, according to the convention

illustrated by the left part of Figure 2.
The Schur function sλ is a symmetric function which, when evaluated on strictly less than ℓ(λ)

variables, yields 0. Whenever ℓ(λ) ≤ N , the function sλ is well defined and non-zero on SU(N). Its
value sλ(IN ) at the identity matrix in particular is a positive integer, which is the dimension of the
irreducible representation of SU(N) of which sλ is the character. Another number attached to λ will
play an important role for us, which is the non-negative real number c(λ) such that ∆sλ = −c(λ)sλ.

It happens that distinct Young diagrams yield the same function on SU(N) : if λ and µ are
Young diagrams such that ℓ(λ), ℓ(µ) ≤ N , then sλ = sµ if and only if there exists l ∈ Z such that

λ = µ + (l, . . . , l) = µ + lN . In fact, if ρλ and ρµ are the representations of U(N) corresponding to

λ and µ, then ρλ = ρµ ⊗ det⊗l and the restrictions of these representations to SU(N) are equal.
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Figure 2. The Young diagram on the left is (7, 6, 3, 3, 1), which we also denote by
7 6 32 1. The diagram on the right is ηn,r = (n − 1) 1r.

Finally, we need to use the decomposition of the heat kernel and the function U 7→ Tr(Un) in
terms of Schur functions. For the latter, we introduce a class of Young diagrams called hooks. For
all n ≥ 1 and all r ∈ {0, . . . , n − 1}, we define

ηn,r = (n − r, 1, . . . , 1︸ ︷︷ ︸
r

) = (n − r) 1r,

which is depicted on the right part of Figure 2.
The heat kernel at time t on SU(N) is the density, denoted by Qt : SU(N) → R, of the distribution

of VN (t) with respect to the Haar measure.

Proposition 9.3. Choose N ≥ 1 and U ∈ SU(N). Then the following equalities hold.

1. For all n ≥ 1, Tr(Un) =

n−1∑

r=0

(−1)rsηn,r(U).

2. For all t ≥ 0, Qt(U) =
∑

λ∈N
N−1
↓

e−
c(λ)
2

tsλ(IN )sλ(U).

The proof of the first equality can be found in [19], the proof of the second in [18]. The expectation
that we want to compute in order to prove Proposition 9.2 is thus equal to

E

[
Tr(VN (t)n)Tr(VN (t)m)

]
=

∑

λ∈N
N−1
↓

e−
c(λ)

2
tsλ(IN )

n−1∑

r1=0

m−1∑

r2=0

(−1)r1+r2

∫

SU(N)
sλ(U)sηn,r1

(U)sηm,r2
(U) dU.

The multiplication of Schur functions is governed by the Littlewood-Richardson formula, which
describes a non-negative integer Nγ

α,β for each triple of Young diagrams α, β, γ, in such a way that

sαsβ =
∑

γ

Nγ
α,βsγ .

Using these coefficients, the integral above can be rewritten as
∫

SU(N)
sλ(U)sηn,r1

(U)sηm,r2
(U) dU =

∑

γ

Nγ
λ,ηn,r1

∫

SU(N)
sγ(U)sηm,r2

(U) dU

=
∑

γ

Nγ
λ,ηn,r1

∑

l≥0

1γ=ηm,r2+lN

=
∑

l≥0

N
ηm,r2+lN

λ,ηn,r1
.
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Thus, we need to compute
n−1∑

r1=0

m−1∑

r2=0

(−1)r1+r2
∑

l≥0

N
ηm,r2+lN

λ,ηn,r1
. (27)

It turns out that a slightly more general computation is simpler to perform : we compute the

Littlewood-Richardson coefficient Nβ
α,ηn,r for all α, β and all n, r. Let us introduce some notation.

Let α = (α1, . . .) and β = (β1, . . .) be two Young diagrams. Set |α| =
∑

i αi and |β| =
∑

i βi.
We assume that α ⊂ β, that is, αi ≤ βi for all i. Then we denote by β/α the set of boxes of
the graphical representation of β which are not contained in α. We say that a subset of β/α is
connected if one can go from any box to any other inside this subset by a path which jumps from
a box to another only when they share an edge.

We denote by k(β/α) the number of connected components of β/α. Also, we define v(β/α) as the
number of boxes of β/α which are such that the box located immediately above also belongs to β/α.
Alternatively, this is the number of distinct occurrences of the motif formed by two consecutive
boxes one above the other in β/α.

Our main combinatorial result is the following.

Proposition 9.4. Let α and β be two Young diagrams. Let ηn,r be a hook. Then Nβ
α,ηn,r is non-

zero if and only if the following conditions are satisfied : α ⊂ β, |β| = |α| + n, β/α contains no

2 × 2 square, and v(β/α) ≤ r ≤ v(β/α) + k(β/α) − 1. In this case, Nβ
α,ηn,r =

(k(β/α)−1
r−v(β/α)

)
.

Proof. According to the Littlewood-Richardson rule, Nβ
α,ηn,r is the number of strict expansions of

α by ηn,r which yield β, that is, the number of fillings of β/α with the boxes of ηn,r such that the
following conditions are satisfied:
1. for all s ≥ 1, the union of α and the boxes of β/α filled by the first s rows of ηn,r is a Young
diagram,
2. no two boxes of the first row of ηn,r are put in the same column of β/α,
3. if one goes through the boxes of β/α from right to left and from top to bottom, writing for
each box the number of the row of ηn,r from which is issued the box which has been used to fill
it, one obtains a sequence which starts with 1, and in which all other numbers 2, . . . , r appear, not
necessarily consecutively, in this order.

It is important to notice that, according to the third rule, a strict expansion of α by a hook
which yields β is completely characterised by the set of boxes of β/α which are filled by boxes
issued from the first row of the hook. We say for short that these boxes of β/α are filled by the
first row.

The first two conditions α ⊂ β and |β| = |α|+n are obviously implied by this rule. A less trivial
implication is that there cannot exist a strict expansion if β/α contains a 2 × 2 square. Indeed,
by the first two rules, the bottom-left box of the square cannot be filled by the first row and the
bottom-right box must then be filled with a boxed issued from a strictly lower (in the graphical
representation) row of ηn,r. This contradicts the third rule.

Let us assume that β/α contains no 2 × 2 square. Then each connected component of β/α is a
“snake” (see Figure 3).

Any box of such a snake which has a box on its right must be filled by the first row. These boxes
are the white boxes in Figure 3. Any box located below a white box cannot be filled by the first
row. These boxes are the grey boxes in Figure 3. Only one box is not in one of these two cases,
the top-right box of the snake. In the topmost connected component of β/α the third rule implies
that this box must be filled by the first row.

Finally, if the first three conditions are satisfied, then β/α contains one box in each connected
component, except the topmost one, which can either be filled by the first row or not. The minimal
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Figure 3. White boxes must be filled by boxes issued from the first row of ηn,r.
Grey boxes cannot. The black box may or may not, except if this snake is the
topmost connected component of β/α, in which case it must also be filled by a box
issued from the first row of ηn,r.

number of boxes which are not filled by the first row is the number of grey boxes, which we have
denoted by v(β/α). This is the minimal value of r for which there exists a strict expansion of α by
ηn,r which yields β. Moreover, for this value of r, the expansion is unique, since the boxes filled by
the first row are completely determined. Similarly, the maximal value of r is v(β/α) + k(β/α)− 1.
For r between these two bounds, there are exactly as many expansions as there are choices of which

snakes have their top-right box filled by the first row. There are thus
(k(β/α)−1
r−v(β/α)

)
such expansions.

Corollary 9.5. Let α and β be two Young diagrams. Choose n ≥ 1. Then

n−1∑

r=0

(−1)rNβ
α,ηn,r

= (−1)v(β/α)

if α ⊂ β, |β| = |α|+ n, β/α contains no 2× 2 square and is connected. Otherwise, it is equal to 0.

Proof. If the first three conditions are not satisfied, then Nβ
α,ηn,r = 0 for all r = 0 . . . n − 1. Let us

assume that they are satisfied. Then, by the previous proposition, the sum above is equal to

v(β/α)+k(β/α)−1∑

r=v(β/α)

(−1)r
(

k(β/α) − 1

r − v(β/α)

)
,

which is equal to 0 unless k(β/α) = 1. In this case, only one term of the sum is non-zero, for
r = v(β/α).

We apply now this result when β is of the sum of a hook and a rectangle.

Lemma 9.6. Consider n ≥ m ≥ 1, r2 ∈ {0, . . . ,m−1}, and N ≥ m+n. For all r1 ∈ {0, . . . , n−1},
define

λN
m,r2,n,r1

= (n − r1 + m − r2) (n − r1 + 1)r2 (n − r1)
N−r1−r2−2 (n − r1 − 1)r1 .

Then, for all λ ∈ N
N−1
↓ and all l ≥ 1,

n−1∑

r1=0

(−1)r1N
ηm,r2+lN

λ,ηn,r1
=

{
(−1)n−l if l ∈ {1, . . . , n} and λ = λN

m,r2,n,n−l,

0 otherwise.

Moreover, when l ∈ {1, . . . , n}, the only non-zero term of the sum is the term corresponding to
r1 = n − l.

Finally, if n = m, then N
ηm,r2
λ,ηn,r1

= 1 if r1 = r2 and λ is the empty diagram, and 0 otherwise.
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Figure 4. The diagram λN
m,r2,n,r1

.

Proof. Let us first consider the case n > m. In this case, according to Corollary 9.5, in order for the
sum to be non-zero, λ must be a Young diagram of length at most N − 1, contained in ηm,r2 + lN ,
such that (ηm,r2 + lN)/λ contains no 2×2 square and is connected. Since n > m, l must be positive,

so that the diagram ηm,r2 + lN has length N whereas λ has length at most N − 1. Thus, the N -th
row of (ηm,r2 + lN )/λ is not empty, it has actually length l. In particular, |ηm,r2 + lN | − |λ| ≥ l.
If l > n, all the Littlewood-Richardson coefficients appearing in the sum are zero. Otherwise, if
l ≤ n, there is exactly one way to choose λ a subdiagram of ηm,r2 + lN such that all conditions are
satisfied : it is λ = λN

m,r2,n,n−l.
When n = m, nothing changes for l ≥ 1. However, the sum may be non-zero even for l = 0. The

diagram λ must be the empty diagram and it is easy to check that N
ηm,r2
∅,ηn,r1

= δn,mδr1,r2.

We can now go on to compute (27). We find the following result.

Proposition 9.7. Let N , n and m be three positive integers. Assume that n ≥ m and N ≥ n+m+1.
Then

E

[
Tr(VN (t)n)Tr(VN (t)m)

]
= nδn,m +

n−1∑

r1=0

m−1∑

r2=0

(−1)r1+r2e−
c(λN

m,r2,n,r1
)

2
tsλN

m,r2,n,r1
(IN ).

Proof. We have

n−1∑

r1=0

m−1∑

r2=0

(−1)r1+r2
∑

l≥0

N
ηm,r2+lN

λ,ηn,r1
= nδm,n1λ=∅ +

m−1∑

r2=0

(−1)r2

n∑

l=1

(−1)n−l1λ=λN
m,r2,n,n−l

= nδm,n1λ=∅ +
n−1∑

r1=0

m−1∑

r2=0

(−1)r1+r21λ=λN
m,r2,n,r1

.

The claimed equality follows easily.

In order to prove Proposition 9.2, there remains to compute c(λN
m,r2,n,r1

) and sλN
m,r2,n,r1

(IN ). This

is by no means complicated but slightly tedious. We recall the general formulae, give the results in
this particular case and invite the reader to check them if s/he feels inclined to do so.
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Lemma 9.8. Consider n,m ≥ 1, r1 ∈ {0, . . . , n − 1} and r2 ∈ {0, . . . ,m − 1}. Then the following
identities hold.

c(λN
m,r2,n,r1

) = n +
n(n − 2r1 − 1)

N
+ m +

m(m − 2r2 − 1)

N
− (n − m)2

N2
,

sλN
m,r2,n,r1

(IN ) =
(N − r1 − r2 − 1)(N + n + m − r1 − r2 − 1)

(N + n − r1 − r2 − 1)(N + m − r1 − r2 − 1)
×

(
n − 1

r1

)(
N + n − r1 − 1

n

)(
m − 1

r2

)(
N + m − r2 − 1

m

)
.

Proof. The general formulae are the following : for all α ∈ N
N
↓ , one has

c(α) =
1

N




N∑

i=1

α2
i +

∑

1≤i<j≤N

(αi − αj)


− 1

N2

(
N∑

i=1

αi

)2

on one hand and, using the notation ∆(λ) =
∏

1≤i<j≤N (λi − λj) and δ = (N − 1, N − 2, . . . , 1, 0),

sα(IN ) =
∆(α + δ)

∆(α)

on the other hand.

Proposition 9.2 now follows easily from Proposition 9.7 and Lemma 9.8.

References

[1] Anderson, G. W., and Zeitouni, O. A CLT for a band matrix model. Probab. Theory Related Fields 134, 2
(2006), 283–338.

[2] Biane, P. Free Brownian motion, free stochastic calculus and random matrices. In Free probability theory
(Waterloo, ON, 1995), vol. 12 of Fields Inst. Commun. Amer. Math. Soc., Providence, RI, 1997, pp. 1–19.

[3] Biane, P., and Speicher, R. Stochastic calculus with respect to free Brownian motion and analysis on Wigner
space. Probab. Theory Related Fields 112, 3 (1998), 373–409.

[4] Cabanal-Duvillard, T. Fluctuations de la loi empirique de grandes matrices aléatoires. Ann. Inst. H. Poincaré
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[18] Liao, M. Lévy processes in Lie groups, vol. 162 of Cambridge Tracts in Mathematics. Cambridge University
Press, Cambridge, 2004.

[19] Macdonald, I. G. Symmetric functions and Hall polynomials, second ed. Oxford Mathematical Monographs.
The Clarendon Press Oxford University Press, New York, 1995. With contributions by A. Zelevinsky, Oxford
Science Publications.
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