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Inverse spectral results for Schrödinger operators on the unit

interval with partial informations given on the potentials

L. Amour∗, J. Faupin† and T. Raoux‡

Abstract

We pursue the analysis of the Schrödinger operator on the unit interval in inverse spectral theory

initiated in [AR]. Whereas the potentials in [AR] belong to L1 with their difference in Lp (1 ≤ p < ∞)

we consider here potentials in W k,1 spaces having their difference in W k,p where 1 ≤ p ≤ +∞,

k ∈ {0, 1, 2}. It is proved that two potentials in W k,1([0, 1]) being equal on [a, 1] are also equal

on [0, 1] if their difference belongs to W k,p([0, a]) and if the number of their common eigenvalues is

sufficiently high. Naturally, this number decreases as the parameter a decreases and as the parameters

k and p are increasing.
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1 Introduction and statement of the results

In this paper we consider the Schrödinger operator

Aq,h,H = − d2

dx2
+ q (1)

defined on [0, 1] associated with the following boundary conditions,

u′(0) + hu(0) = 0, u′(1) + Hu(1) = 0. (2)

In (2) and throughout the paper we use the abbreviated notation ′ for the derivative with respect to x

and h,H are real numbers. In (1) the potential q is a real-valued function belonging to L1([0, 1]). For

each (q, h,H) ∈ L1([0, 1]) × R
2 it is known that the operator Aq,h,H is self-adjoint in L2([0, 1]) and we

denote by σ(Aq,h,H) the spectrum of this operator. Moreover, σ(Aq,h,H) is an increasing sequence of

eigenvalues (λj(q, h, H))
j∈N∪{0}, each eigenvalue being of multiplicity one. The asymptotic expansion of

the eigenvalues is as follows ([LG]),

λj(q, h, H) = j2π2 + 2(H − h) +

∫ 1

0

q(x)dx + o(1) as j → +∞. (3)

For any sequence α = (αj)j∈N∪{0}, with αj ∈ C, and for any t ≥ 0, let nα(t) denotes

nα(t) = ♯{j ∈ N ∪ {0} | |αj | ≤ t}. (4)

The main result of the paper is the following.

Theorem 1.1. Let k ∈ {0, 1, 2}. Fix q1, q2 ∈ W k,1([0, 1]) and h1, h2, H ∈ R. Consider an infinite set S

S ⊆ σ(Aq1,h1,H) ∩ σ(Aq2,h2,H). (5)

Fix a ∈ (0, 1
2 ] and p ∈ [1, +∞]. Suppose that q1 = q2 on [a, 1] and q1 − q2 ∈ W k,p([0, a]). Assume that

nS(t) ≥ 2anσ(A)(t) −
k

2
+

1

2p
− 1

2
− a, t ∈ σ(A), t large enough, (H)

where the operator A denotes either Aq1,h1,H or Aq2,h2,H . Then h1 = h2 and q1 = q2.

In the case p = +∞ the term 1
p

in the hypothesis (H) is omitted.

Remark 1.2. Theorem 1.1 remains true when replacing the assumption (H) by the hypothesis:

there exists a real number C such that

2anσ(A)(t) + C ≥ nS(t) ≥ 2a nσ(A)(t) −
k

2
+

1

2p
− 2a, t ∈ S, t large enough, (H ′).
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For a = 1
2 the lower bounds in the assumptions (H) and (H ′) are the same. Nevertheless, when a < 1

2

and if the known spectrum is in some sense regularly spaced then (H ′) becomes useful. For example, in

[AR] we show that in the L1 case the even (respectively odd) spectrum determines the potential on [0, 1
4 ]

using (H ′) (with k = 0 and p = 1) whereas it is not possible with (H).

One recovers Theorem 1.1 in [AR] from Theorem 1.1 above with the assumption (H ′) setting k = 0 and

1 ≤ p < +∞. We remark that the case p = +∞ is excluded in [AR] whereas it is allowed here, the reason

being that the details of the two proofs are different.

Let us mention some already known results related to Theorem 1.1. In 1978, [HL] proved that if

σ(Aq1,h,H) = σ(Aq2,h,H) and if q1 = q2 on [ 12 , 1] then q1 = q2 on [0, 1] (for L1 potentials). This is

Theorem 1.1 setting (a, k, p) = ( 1
2 , 0, 1) in the particular case h1 = h2 = h. In 1980 it is derived in [H]

when q1 and q2 are continuous near x = 1
2 that q1 = q2 on [0, 1] and h2 = h1 under the assumptions

σ(Aq1,h1,H) = σ(Aq2,h2,H) excepted for at most one eigenvalue and q1 = q2 on [ 12 , 1] . In 2000, these two

results were largely extended in [GS].

Theorem 1.1 with (k, p) = (0, 1) (which is also Theorem 1.1 in [AR] setting p = 1) is related to Theorem

1.3 in [GS]. See [AR] for comparisons between these two results. In another result it is proved in [GS]

that q1 = q2 on [0, 1] and h1 = h2 if q1 and q2 are C2k near x = a, if q1 = q2 on [a, 1] and assuming

that nS(t) ≥ 2anσ(A)(t) − (k + 1) + 1
2 − a, t ∈ R large enough. Note that instead of t ∈ R, in (H) and

(H ′) it suffices to consider t ∈ σ(A) and S respectively, which can be useful (see the proof of corollary

1.2 in [AR]). In particular (a = 1
2 ), the potential already known on one half of the interval together with

its spectrum except possibly k + 1 eigenvalues determine uniquely the potential on the other half of the

interval when the potential is C2k near the middle of the interval.

We now emphasize that Theorem 1.1 admits the following corollary.

Corollary 1.3. Fix H, h1, h2 ∈ R. Suppose that q1 and q2 belongs to L1([0, 1]) and are equal on
[

1
2 , 1

]

.

If σ(Aq1,h1,H) = σ(Aq2,h2,H) excepted for at most one eigenvalue and if the difference q1 − q2 belongs to

L∞(
[

0, 1
2

]

) then h1 = h2 and q1 = q2.

It is an immediate consequence of Theorem 1.1 in the particular case a = 1
2 , k = 0, p = +∞.

The above corollary is already known ([H]) when q1 and q2 are continuous near x = 1
2 (see above) whereas

the condition here is q1 − q2 ∈ L∞([0, 1
2 ]).

Similarly, Theorem 1.1 implies that if σ(Aq1,h1,H) = σ(Aq2,h2,H) excepted for k + 1 eigenvalues, if q1

and q2 belong to W 2k,1([0, 1]) and are equal on
[

1
2 , 1

]

, if the difference q1 − q2 is in W 2k,∞(
[

0, 1
2

]

), then

h1 = h2 and q1 = q2. This holds here for k = 0, 1 and we believe that it should be valid for all k ∈ N∪{0}.
This type of results (k + 1 eigenvalues missing from the known part of the spectrum) appears in [GS] for

potentials being in C2k near x = 1
2 (see above). More generally (for any a ∈ (0, 1

2 ] and not only for a = 1
2 )
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one also notes that Theorem 1.1 with p = +∞ and the result in [GS] have exactly the same assumption

on nS(t). This common assumption is nS(t) ≥ 2anσ(A)(t) − k − 1
2 − a (t ∈ σ(A) in Theorem 1.1 and

t ∈ R in [GS]). They differ from the hypotheses on the potential: q1, q2 ∈ W 2k,1, q1 − q2 ∈ W 2k,∞ in

Theorem 1.1 and q1, q2 ∈ C2k near x = a in [GS]. Therefore Theorem 1.1 in the particular case p = +∞
and the result in [GS] are close but different.

At this point we note that our proof for Theorem 1.1 is different from the proofs of the results in [GS].

As it is explained in [H], Theorem 1.1 with a = 1
2 and k = 0 is closely related to inverse problem for

the Earth which consists in the determination of the density, the incompressibility and the rigidity in

the lower mantle, the upper mantle and the crust. However it is supposed in [H] that the density, the

incompressibility and the rigidity are twice differentiable. Then one may think that Theorem 1.1 with

a = 1
2 and k = 2 could be used for further analysis of this problem and in particular to remove some

eigenvalues of the torsional spectrum, as it is mentioned in [H].

The starting point of the proof of Theorem 1.1 is related to the proof found in [L] that two spectra

determine the potential, that is to say σ(Aq1,h1,H) = σ(Aq2,h2,H′) and σ(Aq1,h′
1,H) = σ(Aq2,h′

2,H′) imply

q1 = q2, h1 = h2, h′
1 = h′

2 and H = H ′. Let us recall the main steps of the proof of this result. First an

entire function f is introduced having the property to vanish on the known part of the common spectra.

Next it is derived that f is identically vanishing from the maximum modulus principle. Then it is proved

that f ≡ 0 imply that q1 = q2 (see also step 5 in [AR] for a quick proof of this point). Here we start

similarly and introduce the entire function f (see (7)). Then the goal of the paper is to derive that if

f vanishes on S then f is identically vanishing. This is established thanks to some precise estimates on

the growth of f proved in Proposition 3.1. These estimates are related to the Paley-Wiener Theorem. In

other words, the entire function f of a given growth vanishes if it has a sufficiently large number of zeros.

This point is effectuated using Jensen formula.

Note that the case of Dirichlet boundary conditions where formally h and/or H equal ∞ (see [GS])

would demand a separated treatment. Nevertheless, one expect that this method could be applied in

these situations.

This article is organized as follows. In Section 2 we recall elementary results to be used in Section 3.

Section 3 is concerned with the proof of a global estimate of the entire function f . In Section 4 we derive

Theorem 1.1.
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2 Preliminaries

The asymptotic expansion (3) of the eigenvalues for q ∈ L1([0, 1]) gives the spectral invariant
∫ 1

0
q(x)dx+

2(H − h). In particular, since S is an infinite set,

∫ 1

0

q1(x)dx −
∫ 1

0

q2(x)dx = 2(h1 − h2). (6)

Let q ∈ L1([0, 1]) and H, h ∈ R. For z ∈ C, let ψ(·, z, q, h) defined on [0, 1] as the solution to −d2ψ
dx2 +qψ =

z2ψ, ψ(0) = 1, ψ′(0) = −h. It is known that ψ(x, ·, q, h) is an entire function ([LG]).

For all z ∈ C set

f(z) =

∫ a

0

(

ψ(x, z, q1, h1)ψ(x, z, q2, h2) −
1

2

)

(q1(x) − q2(x))dx. (7)

In order to globally estimate the entire function f on C let us define y1(x, z, q) and y2(x, z, q) as the

solutions to

−d2y1

dx2
(x, z, q) + q(x)y1(x, z, q) = z2y1(x, z, q), x ∈ [0, 1]

y1(0, z, q) = 1, y′
1(0, z, q) = 0

and

−d2y2

dx2
(x, z, q) + q(x)y2(x, z, q) = z2y2(x, z, q), x ∈ [0, 1]

y2(0, z, q) = 0, y′
2(0, z, q) = 1

for q ∈ L1([0, 1]), z ∈ C. It is known that yl(·, ·, q) are analytic on [0, 1] × C for l = 1, 2.

In particular, one observes that

ψ(x, z, q, h) = y1(x, z, q) − hy2(x, z, q) (8)

for all (x, z) ∈ [0, 1] × C.

Moreover it is clear that z2 is an eigenvalue of Aq,h,H if and only if ψ′(1, z, q, h) + Hψ(1, z, q, h) = 0.

Furthermore, if z2 is an eigenvalue of Aq,h,H then ψ(·, z, q, h) is up to a normalization coefficient the

corresponding eigenfunction.

It is known (see [PT] for similar computations with potentials in L2([0, 1])) that there exist c
(l)
j (x, z, q)’s

such that

yl(x, z, q) =

+∞
∑

j=0

c
(l)
j (x, z, q)
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for l = 1, 2 and

yl(x, z, q) =

k
∑

j=0

c
(l)
j (x, z, q) + O

(

e|ℑz|x

|z|k+l

)

(9)

for l = 1, 2, k ∈ N and all (x, z, q) ∈ [0, 1] × C × L1([0, 1]). Let us mention that

c
(1)
0 (x, z, q) = c

(1)
0 (x, z) = cos zx, c

(2)
0 (x, z, q) = c

(2)
0 (x, z) =

sin zx

z

and

c
(l)
j (x, z, q) =

∫

0≤t1≤···≤tj+1=x

c
(l)
0 (t1, z)

j
∏

m=1

(

c
(2)
0 (tm+1 − tm, z)q(tm)

)

dt1 . . . dtj .

The coefficients c
(l)
j (x, z, q) above satisfy

|c(1)
0 (x, z)| ≤ e|ℑz|x, |c(2)

0 (x, z)| ≤ e|ℑz|x

and for j ≥ 1

|c(l)
j (x, z, q)| ≤

||q||j
L1([0,1])e

|ℑz|x

j!|z|j+l−1
.

Note that the factor 1
|z|j+l−1 is not explicitly mentioned in [PT] but it will be useful for our purpose.

We shall modify (9) for k = 1, 2 in order to prove Theorem 1.1. Integrating by parts the c
(l)
j (x, z, q) for

l = 1, 2 one deduce (see also section 1 in [PT] ) the expansions of y1 and y2

y1(x, z, q) =

k
∑

j=0

Cj(x, z, q) + O

(

e|ℑz|x

|z|k+1

)

(10)

and

y2(x, z, q) =

k−1
∑

j=0

Dj(x, z, q) + O

(

e|ℑz|x

|z|k+1

)

(11)

uniformly in x ∈ R and z ∈ C under the assumption q ∈ W k,1([0, 1]). The coefficients Cj(x, z, q) and

Dj(x, z, q) are defined below.

Let us first define the following functions Q (resp. R) by

Q(x) =

∫ x

0

q(t) dt, (resp. R(x) = q(x) − q(0) − 1

2
Q2(x)),

for x ∈ [0, 1] provided that the potential q ∈ L1 (resp. q ∈ W 1,1).
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The coefficients Cj(x, z, q) and Dj(x, z, q) for j ≤ k when q ∈ W k,1 (k = 0, 1, 2) are defined by

C0(x, z, q) = C0(x, z) = cos zx

C1(x, z, q) =
sin zx

2z
Q(x)

C2(x, z, q) =
cos zx

4z2
R(x)

(12)

and

D0(x, z, q) = D0(x, z) =
sin zx

z

D1(x, z, q) = −cos zx

2z2
Q(x)

(13)

for x ∈ R and z ∈ C. Using the inequalities

| cos zx| ≤ e|ℑz|x, | sin zx| ≤ e|ℑz|x

for x ∈ R and z ∈ C we verify that

Cj(x, z, q) = O

(

e|ℑz|x

|z|j
)

(14)

for j = 0, 1, 2 and

Dj(x, z, q) = O

(

e|ℑz|x

|z|j+1

)

(15)

for j = 0, 1 and uniformly in x ∈ R and z ∈ C.

The computations (integrations by parts) in order to get useful expressions for the coefficients C3(x, z, q)’s

and D2(x, z, q)’s when q ∈ W 3,1 would be rather complicated. Furthermore the expression for the

corresponding k3 would be even more complicated (see next section for the definitions of k0, k1, k2).

Then we restrict ourselves to the three cases k = 0, 1, 2.

3 Estimation of the entire function f

This section is devoted to the proof of the next proposition which states a global estimate related to the

parameters k, p, a on the function f . Let us recall that throughout this section 1
p

+ 1
p′ = 1 including the
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cases p or p′ being infinite.

Proposition 3.1. Fix k ∈ {0, 1, 2} and let p ∈ [1, +∞]. Fix q1, q2 ∈ W k,1([0, 1]) such that q1 − q2 ∈
W k,p([0, a]) and h1, h2,H ∈ R. In the case k = 2 we assume that σ(Aq1,h1,H) ∩ σ(Aq2,h2,H) is infinite.

Also suppose that q1 = q2 on [a, 1]. There is a real positive number C depending only on p and ||q1 −
q2||W k,p([0,a]) such that for any ε > 0 there exists a real positive number δε depending only on ε, p, a and

||q1 − q2||W k,p([0,a]) verifying

lim
ε→0

δε = 0

and

|f(z)| ≤ C
e2|ℑz|a

|ℑz|k+ 1
p′

(e−ε|ℑz| + δε)

for all z ∈ C and where 1
p

+ 1
p′ = 1.

Let us mention here that the above inequality is also valid when ε = 0 and that the role of ε > 0 will

appear in next section.

The fact that supp (q1 − q2) ⊂ [0, a] appears in the term e2|ℑz|a above. The regularity of the potentials

q1, q2 ∈ W k,1 gives the power k in denominator and the regularity of the difference q1 − q2 ∈ W k,p

provides an additional power 1
p′ . This estimate is in some sense related to the Paley-Wiener theorem.

Nevertheless the factor e2|ℑz|a will not be sufficient for our purpose and an improved estimate is needed.

Therefore the factor e−ε|ℑz| is introduced.
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Set

k0(x, z) = C0(x, z)C0(x, z) − 1

2

k1(x, z, q1, h1, q2, h2) = C0(x, z)C1(x, z, q2) + C1(x, z, q1)C0(x, z)

− h1D0(x, z)C0(x, z) − h2C0(x, z)D0(x, z)

k2(x, z, q1, h1, q2, h2) = C0(x, z)C2(x, z, q2) + C2(x, z, q1)C0(x, z)

+ C1(x, z, q1)C1(x, z, q2)

− h2C0(x, z)D1(x, z, q2) − h2D1(x, z, q1)C0(x, z)

− h2C1(x, z, q1)D0(x, z) − h1D0(x, z)C1(x, z, q2)

+ h1h2D0(x, z)D0(x, z),

(16)

for all (x, z) ∈ [0, 1] × C.

Then we define

Kl(z) =

∫ a

0

kl(x, z)(q1(x) − q2(x))dx

for all z ∈ C.

From (8) together with (10) (11) and (14) (15) (16), one can easily check that

ψ(x, z, q1, h1)ψ(x, z, q2, h2) −
1

2
=

k
∑

l=0

kl(x, z, q1, h1, q2, h2) + O

(

e2|ℑz|x

|z|k+1

)

. (17)

We shall use the result below appearing in the proof of Theorem A.III.1.3 in [L].

Lemma 3.2. Let a ∈ (0, 1]. Suppose that the function u defined on [0, 1]×C satisfy |u(x, z)| = O
(

e2|ℑz|x)

and let v ∈ Lp([0, 1]) with 1 ≤ p ≤ +∞. Set w(z) =
∫ a

0
u(x, z)v(x)dx. There is a real positive number C

depending only on p and ||v||Lp([0,a]) such that for any ε > 0 there is a real positive number δε depending

only on ε, p, a and ||v||Lp([0,a]) verifying

lim
ε→0

δε = 0

9



and

|w(z)| ≤ C
e2|ℑz|a

|ℑz|
1
p′

(e−ε|ℑz| + δε).

This result follows directly from Hölder inequality (including the case p = ∞). Indeed, |w(z)| ≤
C ′ ∫

I
e2|ℑz|x|v(x)|dx+C ′ ∫

J
e2|ℑz|x|v(x)|dx ≤ C ′(||v||Lp([0,a])

e2|ℑz|(a−ε)

|ℑz|
1
p′

+||v||Lp(J)
e2|ℑz|a

|ℑz|
1
p′

) where I = [0, a−
ε] and J = [a− ε, a] with 0 < ε < a. Here C ′ is a real number which may vary from line to line. Thus, if

v is not identically vanishing then δε equals ||v||Lp(J) up to a numerical multiplicative factor.

We easily deduce the following proposition.

Proposition 3.3. Fix a ∈ (0, 1
2 ], k = 0, 1, 2 and suppose that q1, q2 ∈ W k,1([0, 1]). Then there is C

depending only on ||q1 − q2||L1 such that for any ε > 0 there is δε depending only on ε and ||q1 − q2||L1

satisfying limε→0 δε = 0 and
∣

∣

∣

∣

∣

f(z) −
k

∑

l=0

Kl(z)

∣

∣

∣

∣

∣

≤ C
e2|ℑz|a

|ℑz|k+1
(e−ε|ℑz| + δε) (18)

for all z ∈ C.

Proof of Proposition 3.3:

Following the definition of f together with equality (17) we have

f(z) =

∫ a

0

{

k
∑

l=0

kl(x, z, q1, h1, q2, h2) + O

(

e2|ℑz|x

|z|k+1

)

}

{q1(x) − q2(x)} dx

for all z ∈ C. Applying Lemma 3.2 with v = q1 − q2 we finish the proof (Note that Lemma 3.2 is only

used to get a factor e−ε|ℑz|). ¤

Proof of Proposition 3.1. The case k = 0:

Following Proposition 3.3 it remains to check that |K0(z)| ≤ C
e2|ℑz|a

|ℑz|
1
p′

(e−ε|ℑz|+δε) when q1, q2 ∈ L1([0, 1])

and q1 − q2 ∈ Lp([0, a]). This clearly follows from k0(x, z) = cos 2zx
2 , the definition of K0 together with

Lemma 3.2 applied with u(x, z) = cos 2zx and v = q1 − q2. ¤

Proof of Proposition 3.1. The case k = 1:

From Proposition 3.3 it suffices to verify that |Kl(z)| ≤ C
e2|ℑz|a

|ℑz|1+
1
p′

(e−ε|ℑz|+δε) when q1, q2 ∈ W 1,1([0, 1])

and q1 − q2 ∈ W 1,p([0, a]) for l = 0, 1. Since q1 − q2 ∈ W 1,1([0, 1]) we may integrate by parts K0(z) to

obtain

K0(z) =
sin 2zx

4z
(q1(x) − q2(x))|a0 −

∫ a

0

sin 2zx

4z
(q′1(x) − q′2(x))dx.

10



Since q1(a) = q2(a) then the first term in the r.h.s. of the above equality vanishes and one concludes

using Lemma 3.2 with v = q′1 − q′2 ∈ Lp([0, a]) that |K0(z)| ≤ C
e2|ℑz|a

|ℑz|1+
1
p′

(e−ε|ℑz| + δε).

Set Qj(x) =
∫ x

0
qj(t)dt, j = 1, 2. Similarly

K1(z) =

∫ a

0

sin 2zx

4z
(Q1(x) + Q2(x) − 2(h1 + h2))(q1(x) − q2(x))dx

also verify |K1(z)| ≤ C
e2|ℑz|a

|ℑz|1+
1
p′

(e−ε|ℑz|+δε) using again Lemma 3.2 with v = (Q1+Q2−2(h1+h2))(q1−

q2) ∈ Lp being the product of function in L∞ with a function in Lp. ¤

It remains to consider the case k = 2 which is much longer.

We shall first prove the following proposition.

Proposition 3.4. Under the assumptions of Proposition 3.1 (with k = 2) there exists a real number

L(q1, h1, q2, h2) and there is a real positive number C depending only on p and ||q1 − q2||W 2,p([0,a]) such

that for any ε > 0 there exists a real positive number δε depending only on ε, p, a and ||q1 − q2||W 2,p([0,a])

verifying limε→0 δε = 0 and

∣

∣

∣

∣

f(z) − L(q1, h1, q2, h2)

z2

∣

∣

∣

∣

≤ C
e2|ℑz|a

|ℑz|2+
1
p′

(e−ε|ℑz| + δε).

Proposition 3.4 follows from Propositions 3.3, 3.5, 3.7 and 3.9 below.

In order to derive proposition 3.4 let us estimate Kl for l = 0, 1, 2 in the next three propositions.

Proposition 3.5. Let p ∈ [1, +∞]. Fix q1, q2 ∈ W 2,1([0, 1]) with q1−q2 ∈ W 2,p([0, a]) and h1, h2,H ∈ R.

Suppose that q1 = q2 on [a, 1]. Set L0(q1, q2) = −1

8
(q′1(0) − q′2(0)). There is a real positive number C

depending only on p and ||q′′1 − q′′2 ||Lp([0,a]) such that for any ε > 0 there is a real positive number δε

depending only on ε, p, a and ||q′′1 − q′′2 ||Lp([0,a]) satisfying limε→0 δε = 0 and

∣

∣

∣

∣

K0(z) − L0(q1, q2)

z2

∣

∣

∣

∣

≤ C
e2|ℑz|a

|ℑz|2+
1
p′

(e−ε|ℑz| + δε).

Note that since qj ∈ W 2,1([0, 1]) then q′j has a continuous representant for all j = 1, 2. Therefore L0(q1, q2)

is well-defined.

Proof of Proposition 3.5:

Since qj ∈ W 2,1([0, 1]) we may integrate by parts twice K0(z) for each z ∈ C. Using q1(a) = q2(a) and

11



q′1(a) = q′2(a) we remark using two integrations by parts that

K0(z) = −q′1(0) − q′2(0)

8z2
−

∫ a

0

cos 2zx

8z2
(q′′1 (x) − q′′2 (x))dx.

Using Lemma 3.2 and q1 − q2 ∈ W 2,p([0, a]) for each ε > 0 there is δε (δε → 0 as ε → 0) such that the

second term in the r.h.s. of the above equality is now bounded by
e2|ℑz|a

|ℑz|2+
1
p′

(e−ε|ℑz| + δε). ¤.

In the proof of Proposition 3.7 we shall need the following lemma.

Lemma 3.6. Suppose q1, q2 ∈ W 2,1([0, 1]) with their difference q1 − q2 ∈ W 2,p([0, 1]) and assume that

q1(a) = q2(a) (a ∈ [0, 1]). Then (Q1 + Q2)(q1 − q2) ∈ W 1,p([0, 1]).

Here Qj(x) =
∫ x

0
qj(t)dt, j = 1, 2.

Proof of Lemma 3.6:

Since (Q1 + Q2) and (q1 − q2) belongs to W 1,1([0, 1]) then (Q1 + Q2)(q1 − q2) ∈ W 1,1([0, 1]) and

((Q1 + Q2)(q1 − q2))
′ = (q1 + q2)(q1 − q2) + (Q1 + Q2)(q1 − q2)

′.

Using Q1 + Q2 ∈ L∞ and (q1 − q2)
′ ∈ W 1,1 ⊂ Lp we deduce that the second term above is in Lp([0, 1]).

Let us check that the first term also belongs to Lp([0, 1]).

We have for all x ∈ [0, 1],

q2
1(x) − q2

2(x) = 2

∫ x

a

q1(t)q
′
1(t) − q2(t)q

′
2(t)dt (19)

=

∫ x

a

(q1(t) − q2(t))(q
′
1(t) + q′2(t)) + (q1(t) + q2(t))(q

′
1(t) − q′2(t))dt, (20)

since q2
1(a) = q2

2(a).

Since qj ∈ W 2,1 then qj ∈ W 1,∞ for j = 1, 2 and we have

|q2
1(x) − q2

2(x)| ≤ C

∫ x

a

|q1(t) − q2(t)| + |q′1(t) − q′2(t)|dt

for all x ∈ [0, 1].

Here C is a positive real number which may vary from line to line. Then Hölder inequality shows

|q2
1(x) − q2

2(x)| ≤ C(||q1 − q2||Lp([0,1]) + ||q′1 − q′2||Lp([0,1])),

for all x ∈ [0, 1].

12



Thus, a convexity inequality shows that

|q2
1(x) − q2

2(x)|p ≤ C(||q1 − q2||pLp([0,1]) + ||q′1 − q′2||pLp([0,1]))

for all x ∈ [0, 1] and integrate this inequality over [0, 1] to obtain Lemma 3.6. ¤

Proposition 3.7. Let p ∈ [1, +∞]. Fix q1, q2 ∈ W 2,1([0, 1]) with q1−q2 ∈ W 2,p([0, a]) and h1, h2,H ∈ R.

Set L1(q1, q2, h1, h2) = − 1
4 (h1 + h2)(q1(0) − q2(0)). There is a real positive number C depending only on

p and ||q1 − q2||W 1,p([0,a]) such that for any ε > 0 there exists a real positive number δε depending only on

ε, p, a and ||q1 − q2||W 1,p([0,a]) satisfying limε→0 δε = 0 and

∣

∣

∣

∣

K1(z) − L1(q1, q2, h1, h2)

z2

∣

∣

∣

∣

≤ C
e2|ℑz|a

|ℑz|2+
1
p′

(e−ε|ℑz| + δε).

Proof of Proposition 3.7:

Following (12)(13) and (16)

k1(x, z) =
sin 2zx

2z
A(x)

where

A(x) =
Q1(x) + Q2(x)

2
− (h1 + h2),

for all x ∈ [0, 1] and all z ∈ C. From Lemma 3.6 we have A(q1 − q2) ∈ W 1,p. Since A(q1 − q2) ∈ W 1,1 we

may integrate by parts K1(z) for each z ∈ C to obtain,

K1(z) = − 1

4z2
(h1 + h2)(q1(0) − q2(0)) +

∫ a

0

cos 2zx

4z2
(A(x)(q1(x) − q2(x)))′dx,

for all (x, z) ∈ [0, 1] × C.

Since A(q1 − q2) ∈ W 1,p([0, a]) we derive from Lemma 3.2 that for each ε > 0 there is δε going to zero as

ε → 0 such that the second term above is now bounded by
e2|ℑz|a

|ℑz|2+
1
p′

(e−ε|ℑz| + δε). ¤.

Set

B1 = R1 + R2 + 2h1Q1 + 2h2Q2

B2 = Q1Q2 − 2h2Q1 − 2h1Q2 + 4h1h2

B = B1 + B2

(21)

on [0, 1], where

Rj(x) = qj(x) − qj(0) − 1

2
Q2

j (x),

for x ∈ [0, 1] and j = 1, 2.

13



Lemma 3.8. Suppose that q1, q2 ∈ W 2,1([0, 1]) with q1 − q2 ∈ W 2,p([0, 1]). Then we have Bj(q1 − q2) ∈
Lp([0, 1]) for j = 1, 2.

Proof of Lemma 3.8:

Since Q1, Q2 ∈ L∞([0, 1]) it suffice to check that (R1 + R2)(q1 − q2) ∈ Lp([0, 1]).

From

(R1(x) + R2(x))(q1(x) − q2(x)) = q2
1(x) − q2

2(x) − (q1(0) + q2(0))(q1(x) − q2(x))

− 1

2
(Q2

1(x) + Q2
2(x))(q1(x) − q2(x))

and similarly as in the proof of Lemma 3.6 we derive Lemma 3.8. ¤

Proposition 3.9. Let p ∈ [1, +∞]. Fix q1, q2 ∈ W 2,1([0, 1]) with q1−q2 ∈ W 2,p([0, a]) and h1, h2,H ∈ R.

Set L2(q1, q2, h1, h2) =
1

8

∫ a

0

B(x)(q1(x) − q2(x))dx. There is a real positive number C depending only

on p and ||q1 − q2||Lp([0,a]) such that for any ε > 0 there exists a real positive number δε depending only

on ε, p, a and ||q1 − q2||Lp([0,a]) satisfying limε→0 δε = 0 and

∣

∣

∣

∣

K2(z) − L2(q1, q2, h1, h2)

z2

∣

∣

∣

∣

≤ C
e2|ℑz|a

|ℑz|2+
1
p′

(e−ε|ℑz| + δε).

Proof of Proposition 3.9:

From (16) and (21)

k2(x, z) =
cos2 zx

4z2
B1(x) +

sin2 zx

4z2
B2(x)

=
B1(x) + B2(x)

8z2
+

cos 2zx

8z2
B1(x) − sin 2zx

8z2
B2(x).

From Lemma 3.6 and Lemma 3.8

∣

∣

∣

∣

∫ a

0

cos 2zx

8z2
B1(x)(q1(x) − q2(x))dx

∣

∣

∣

∣

≤ C
e2|ℑz|a

|ℑz|2+
1
p′

(e−ε|ℑz| + δε)

and
∣

∣

∣

∣

∫ a

0

sin 2zx

8z2
B2(x)(q1(x) − q2(x))dx

∣

∣

∣

∣

≤ C
e2|ℑz|a

|ℑz|2+
1
p′

(e−ε|ℑz| + δε)

for all z ∈ C and where C and δε are defined in the statement of the proposition.
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This and the definition of L2 prove Proposition 3.9. ¤

In particular Proposition 3.5, 3.7 and 3.9 imply Proposition 3.4 with

L(q1, h1, q2, h2) = L0(q1, q2) + L1(q1, h1, q2, h2) + L2(q1, h1, q2, h2).

In order to get Proposition 3.1 in the case k = 2 from Proposition 3.4 it suffices to verify the next result

which follows directly from Riemann-Lebesgue lemma.

Proposition 3.10. If σ(Aq1,h1,H) ∩ σ(Aq2,h2,H) is infinite then

L(q1, h1, q2, h2) = 0.

Proof of Proposition 3.10:

We first remark that the following estimates holds (for z ∈ R)

f(z) =
L(q1, h1, q2, h2)

z2
+ o

(

1

z2

)

as z → +∞. (22)

Indeed, in order to get (22) one may use Riemann-Lebesgue lemma instead of using Lemma 3.2 in the

proofs of Proposition 3.5, 3.7 and 3.9.

Let (tj)j∈N be an infinite increasing sequence in σ(Aq1,h1,H) ∩ σ(Aq2,h2,H). It is known that

∀ j ∈ N, f(tj) = 0. (23)

Indeed let z2 = tj and ψ(x, z, q1, h1) and ψ(x, z, q2, h2) be the corresponding eigenfunctions, multiply
(

− d2

dx2 + q1(x) − z2
)

ψ(x, z, q1, h1) = 0 by ψ(x, z, q2, h2), multiply
(

− d2

dx2 + q2(x) − z2
)

ψ(x, z, q2, h2) =

0 by ψ(x, z, q1, h1) and integrate their difference on [0, 1] to obtain that f(z) equals 2(h1−h2)+
∫ 1

0
q2(x)−

q1(x)dx. This term is zero from (6). Consequently, (6) shows (23). Therefore (22) and (23) prove

Proposition 3.10. ¤.

Proof of Proposition 3.1. The case k = 2:

It now follows from Proposition 3.4 and Proposition 3.10. ¤

As a complementary result we have

Proposition 3.11. Let q ∈ W 2,1([0, 1]) and h ∈ R. Define

L♯(q, h) = −q′(0) − 4hq(0) +

∫ 1

0

q2(t)dt + 4h2

∫ 1

0

q(t)dt − 2h

(
∫ 1

0

q(t)dt

)2

+
1

3

(
∫ 1

0

q(t)dt

)3

.

Then

8L(q1, h1, q2, h2) = L♯(q1, h1) − L♯(q2, h2).

In particular L♯(q, h) is a spectral invariant.
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This means that if q1, q2 ∈ W 2,1([0, 1]), H, h1, h2 ∈ R and if σ(Aq1,h1,H) = σ(Aq2,h2,H) then L♯(q1, h1) =

L♯(q2, h2). This spectral invariant is very probably related to the spectral invariant c3(q, h,H) appearing

in the asymptotic expansion of the eigenvalues λj(q, h, H) when q ∈ W 2,1([0, 1])

√

λj(q, h, H) = jπ +
c1(q, h, H)

jπ
+

c3(q, h, H)

j3π3
+ o

(

1

j3

)

as j → +∞ in the sense that c3(q1, h1,H) = c3(q2, h2,H) ⇒ L♯(q1, h1) = L♯(q2, h2) in the same way

that c1(q, h, H) = H − h + 1
2

∫ 1

0
q(x)dx is a spectral invariant and that c1(q1, h1, H) = c1(q2, h2,H) ⇒

∫ 1

0
q1(x)dx + 2h1 =

∫ 1

0
q2(x)dx + 2h2.

The spectral invariant L♯(q, h) is probably well-known but we are not able to indicate an exact reference.

In particular, we have not seen the coefficient c3 written down explicitly for the boundary conditions (2)

(for the existence of c3 and more generally for the existence of c2j+1 when the potential is sufficiently

regular, see Section 5.6.1 in [LS], Problems in Section 5 of [M], or [LG]. See also [KP] and the references

therein for the spectral invariants in the periodic case related to the KdV hierarchy). The proof of

Proposition 3.11 is obtained by direct computations and we omit it. Furthermore, if the coefficient c3

was known, Proposition 3.11 would provide an alternative proof (instead of the use of Riemann-Lebesgue

lemma) of the equality L(q1, h1, q2, h2) = 0 in Proposition 3.10.

4 Proof of Theorem 1.1

The purpose of this section is to deduce Theorem 1.1 from Proposition 3.1 and the hypothesis (H) or the

hypothesis (H ′).

Define the sj , j ∈ N as the strictly increasing sequence being in S. For any c ∈ R the map q → q + c acts

as λj(q, h, H) → λj(q, h, H) + c for each j ∈ N. Therefore we suppose without loss of generality that all

the sj are strictly positive numbers. Therefore we may define the sets

S
1
2 = {±√

sj , j ∈ N}, S
1
2 ,+ = {√sj , j ∈ N}.

We also set for any sequence of numbers α,

Nα(R) =

∫ R

0

nα(t)

t
dt,

for any R > 0 and where nα(t) is defined in (4).

Proposition 4.1. The hypothesis (H ′) implies that the sequence
(

N
S

1
2
(
√

sj) −
4a

π

√
sj +

(

k + 1 − 1

p

)

ln
√

sj

)

j∈N
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is bounded from below.

Proof of Proposition 4.1:

This is a straightforward modification of the arguments found in [AR], where k = 0. It suffice to replace
1
p′ with k + 1

p′ in (H1), (H2) and (HL) in [AR] (where 1
p

+ 1
p′ = 1). We also note that p = +∞ is allowed.

¤

In the following, A is the operator chosen in Theorem 1.1. We also denote by (λj), j ∈ N the increasing

sequence of its eigenvalues and σ(A)
1
2 ,+ denote the sequence (

√

λj), j ∈ N.

Proposition 4.2. The assumption (H) implies that the sequence

(

N
S

1
2
(
√

λj) −
4a

π

√

λj +

(

k + 1 − 1

p

)

ln
√

λj

)

j∈N

is bounded from below.

In the proof of the Proposition 4.1 the assumption (H ′) is mainly used in order to derive an asymptotic

expansion of the sequence (
√

sj) (see (H2) in [AR]). In particular, it is at this point that we need an

estimate from above for the sj ’s provided by the left inequality in (H ′). Then N
S

1
2

is evaluated on the
√

sj ’s. In the proof of the Proposition 4.2 we proceed slightly differently even if the computations are

similar. We first use (H) to minorize N
S

1
2
(R) for all R > 0. We evaluate N

S
1
2

on the
√

λj ’s. The

point being that asymptotic expansion of the
√

λj ’s is available without any supplementary assumption.

Consequently, we do not need any estimate from above for the sj ’s and there is no estimation from above

in (H) for nS(t).

Proof of Proposition 4.2:

We have for any R > 0,

N
S

1
2
(R) =

∫ R

0

n
S

1
2
(t)

t
dt

= 2

∫ R

0

n
S

1
2

,+(t)

t
dt

≥ 2

∫ R

0

2an
σ(A)

1
2

,+(t) + 1
2p

− 1
2 − a − k

2

t
dt,

where the last inequality follows from (H).
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Consequently,

N
S

1
2
(
√

λj) ≥ 2

j−1
∑

k=0

∫

√
λk+1

√
λk

2a(k + 1) + 1
2p

− 1
2 − a − k

2

t
dt + O(1)

= 4a

j−1
∑

k=0

(k + 1)(ln
√

λk+1 − ln
√

λk) +

(

1

p
− 1 − 2a − k

)

(ln
√

λk+1 − ln
√

λk) + O(1)

= 4a

j−1
∑

k=0

((k + 1) ln
√

λk+1 − k ln
√

λk) − 4a

j−1
∑

k=0

ln
√

λk + O(1)

+

(

1

p
− 1 − 2a − k

)

ln
√

λj + O(1)

= 4aj ln
√

λj − 4a

j−1
∑

k=0

ln
√

λk +

(

1

p
− 1 − 2a − k

)

ln
√

λj + O(1),

(24)

for j ∈ N. From (3) we see that there exist a positive real number C satisfying

jπ − C

j
≤

√

λj ≤ jπ +
C

j
, j ∈ N. (25)

Therefore,

j ln
√

λj = j(ln j + lnπ) + O(1), ln
√

λj = ln j + O(1), (26)

as j → +∞.

Moreover, using Stirling asymptotic expansion ln j! =
(

j + 1
2

)

ln j − j + O(1) as j → +∞ we obtain,

j−1
∑

k=0

ln
√

λk ≤
j−1
∑

k=1

ln

(

kπ +
C

k

)

+ O(1)

≤
j−1
∑

k=1

lnπ + ln k + ln

(

1 +
C

k2

)

) + O(1)

≤ j lnπ + ln(j − 1)! + O(1)

= j lnπ +

(

j − 1

2

)

ln j − j + O(1),

(27)

as j → +∞.

Combining (24) with (26) and (27) we obtain the following estimate

N
S

1
2
(
√

λj) ≥ 4aj +

(

1

p
− 1 − k

)

ln j + O(1), (28)
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as j → +∞.

Turning back to the
√

λj ’s, (28) reads as

N
S

1
2
(
√

λj) ≥
4a

π

√

λj +

(

1

p
− 1 − k

)

ln
√

λj + O(1),

as j → +∞. This concludes the proof. ¤

Proposition 4.3. Suppose that the function f is not identically vanishing on C. Then

lim
R→+∞

N
S

1
2
(R) − 4a

π
R +

(

k + 1 − 1

p

)

lnR = −∞.

Proof of Proposition 4.3:

This is a consequence of Proposition 3.1 with Jensen’s Theorem. This argument is borrowed to [L].

Let nf (t) be the number of zeros of the entire function f in the closed ball centered at the origin with

radius t > 0. In the proof of Proposition 3.10 we recall that if z2 belongs to S then f(z) = 0. Thus

n
S

1
2
(t) ≤ nf (t) for all t > 0. Moreover, using the estimates in Proposition 3.1 in Jensen’s Theorem we

obtain
∫ R

0

nf (t)

t
dt =

4a

π
R −

(

k + 1 − 1

p

)

lnR +
1

2π

∫ 2π

0

ln(e−εR| sin θ| + δε)dθ + O(1). (29)

If R is large enough and ε is small enough (> 0) the third term in the r.h.s. of (29) is smaller than any

negative number. ¤

Proof of Theorem 1.1:

If f is not identically vanishing then Proposition 4.1 or Proposition 4.2 together with Proposition 4.3

lead to a contradiction. Thus f(z) = 0 for all z ∈ C. This implies using the short argument in [AR, step

5] that q1 = q2 and h1 = h2. ¤
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