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STABILIZED DDFV SCHEMES FOR STOKES PROBLEM WITH VARIABLE
VISCOSITY ON GENERAL 2D MESHES

STELLA KRELL∗

Abstract. “Discrete Duality Finite Volume” schemes (DDFV for short) on general meshes are studied here for
Stokes problems with variable viscosity with Dirichlet boundary conditions. The aim of this work is to analyze the
well-posedness of the scheme and its convergence properties. The DDFV method requires a staggered scheme, the
discrete unknowns, the components of the velocity and the pressure, are located on different nodes. The scheme is
stabilized using a finite volume analogue to Brezzi-Pitkäranta techniques. This scheme is proved to be well-posed on
general meshes and to be first order convergent in a discrete H1-norm and a discrete L2-norm for respectively the
velocity and the pressure. Finally numerical experiments confirm the theoretical prediction, in particular on locally
refined non conformal meshes.

Key words. Finite-volume methods, Stokes problem, DDFV methods, variable viscosity.

1. Introduction. This paper is devoted to the finite volume approximation of the 2D
steady Stokes model with variable viscosity:

−div (2η(x)Du) + ∇p = f , in Ω,
div(u) = 0, in Ω,

(1.1)

where u : Ω 7→ R2 is the velocity, p : Ω 7→ R is the pressure and Du = 1
2 (∇u + t∇u)

is the symmetric part of the gradient of u. We assume that the viscosity η may in fact ex-
plicitly depend on the space variable. Note that in physical models, the viscosity depends
on other characteristics of the flow like density, temperature, through the coupling with other
equations. Nevertheless, solving a problem like (1.1) is the first step needed towards the
approximation of more complex models.

Finite volume methods have been extensively study to solve problem (1.1) with constant
viscosity: −η∆u + ∇p = f . Hence, in this case, after integration of the equation on each
control volume, we only need to approximate the normal component of ∇u on the interface
between two adjacent control volumes (see, for instance, [20, 21] for methods on admissible
and conformal meshes), whereas for variable viscosity, the presence of the symmetric part
of the gradient Du imposes to address the problem of the reconstruction of the full velocity
gradient on the whole domain, even for admissible and conformal meshes. We propose here
a staggered method: the discrete unknowns, the components of the velocity and the pressure,
are located on different nodes. The most celebrated staggered scheme is the MAC scheme
[23, 31] on cartesian grids. Actually, for a cartesian grid and constant viscosity, the scheme
we propose here is equivalent (except on the boundary) to two uncoupled MAC schemes
written on two different staggered meshes. Moreover, even in the case when the viscosity
is a constant, a possible outflow boundary condition of physical interest is to impose the
normal component of the stress tensor on the boundary. In that case, we also really need to
deal with the original formulation (1.1) of the problem which makes appear the total stress
tensor 2ηDu − pId, where Id denotes the identity matrix. Hence, from a numerical point of
view we need a discretization of Du in order to deal with this problem. Although we will
only consider here the case of Dirichlet boundary conditions, we emphasize the fact that our
framework naturally allows to take into account those outflow boundary conditions.

Different methods of gradient reconstruction for cell-centered finite volume have been
proposed since the last ten years, one can refer to [3], [12], [17], [19] and [15, 25]. In all
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2 S. KRELL

cases, the crucial feature is that the summation-by-parts procedure permits to reconstruct the
whole two dimensional discrete gradient, starting from two point finite differences. Many
of them have been compared in the benchmark of the FVCA5 conference [24], for scalar
diffusion problems.

We consider here the class of finite volume schemes called “Discrete Duality Finite
Volume” (DDFV for short). The DDFV schemes have been first introduced and studied in
[15, 25] to approximate the solution of the Laplace equation on a large class of 2D meshes
including non-conformal and distorted meshes, without “orthogonality” assumptions as for
classical finite volume methods. Those schemes require unknowns on both vertices and “cen-
ters” of control volumes. These two sets of unknowns allow to reconstitute two-dimensional
discrete gradient (defined on new geometric elements called diamonds) and discrete diver-
gence operators that are in duality in a discrete sense (see Theorem 3.1). The number of
unknowns doubles compared to usual cell-centered finite volume schemes, but the gradient
approximation becomes simple and quite efficient. The benchmark [24] brings out that the
DDFV method is a competitive first order method especially as far as the accuracy of the
gradient is concerned. The DDFV framework is thoroughly recalled in Section 3.

Since ten years, the DDFV strategy has then been applied for several linear and nonlin-
ear problems: linear anisotropic diffusion equations in [6, 15, 25, 26]; convection-diffusion
problems in [10]; div-curl problems in [14]; the nonlinear diffusion equations for Leray-Lions
operators in [2, 5]. We can also mention [11] where the DDFV method is adapted to solve
numerically a bi-domain problem arising in bio-mathematics.

Concerning the DDFV discretization of the Stokes problem we are interested in here, the
first results can be found in [13] where the author first considered the natural extension of the
DDFV scheme classically used for the Laplace problem, that is: velocity unknowns located
at both vertices and centers of control volumes and pressure unknowns at the diamond cells
(those cells where the discrete gradient operator is defined). Unfortunately, the corresponding
scheme is only proved to be well-posed for particular classes of meshes. Indeed, the well-
posedness result relies on a uniform discrete inf-sup condition, which is still an open problem
for general meshes.

To overcome this difficulty, we propose here to add to this scheme a stabilization term in
the mass conservation equation. This stabilization term is inspired by the well known Brezzi-
Pitkäranta method [8] in the finite element framework. This stabilization strategy have been
successfully used in the finite volume framework [20, 21], since it is easy to write and to
implement, while preserving a good accuracy. We prove that the stabilized DDFV scheme
is well-posed for 2D general meshes. Moreover, this stabilization term plays a key role in
proving error estimates. Indeed, the appropriate choice of the stabilization term enables to
prove a stability result (see Theorem 6.1) which is the first step towards the error estimates.
More precisely, we prove here a first order convergence for the velocity, for its gradient and
for the pressure in the L2-norm provided that the exact solution satisfies usual regularity
assumptions.

Note that, an alternative strategy has also been proposed in [13] to overcome the diffi-
culties of the analysis of the non-stabilized scheme. The author proposed to formulate the
Stokes problem in the vorticity-velocity-pressure form and then to approximate the velocity
on the diamond cells and the pressure on both vertices and centers of primal control volumes.
This approach uses the fact that ∆v is equal to ∇div v− curl curl v, for any vector field v.
Thus, it seems that it can not be easily generalized to the case where the viscosity is variable.

Only the 2D case is on purpose in this article. 3D extensions of DDFV schemes have
been proposed in [11, 1], [27] and [9] for linear and nonlinear anisotropic diffusion equations,
see Remark 3.4, and the extension of the present work is proposed in [30].
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Outline. This paper is organized as follows. Section 2 is dedicated to introducing basic
notation. In Section 3, we recall the DDFV framework. In Section 4, we introduce the DDFV
stabilized scheme for the Stokes problem (2.1) and prove its well-posedness (see Theorem
4.1). In Section 5, we present the main results of discrete functional analysis necessary for
the theoretical study of the finite volume method. These results include properties of the
discrete strain rate tensor, in particular we prove a discrete Korn inequality (see Theorem
5.1). In Section 6, we study the stability properties of the approximate solution with respect
to the data (see Corollary 6.1). Then in Section 7, we prove error estimates provided that the
exact solution lies in (H2(Ω))2×H1(Ω) (see Theorem 7.1). Finally, in Section 8, theoretical
error estimates are illustrated with numerical results. In the concluding Section 9, we discuss
the extension of our study to some fully practical variants of the finite volume scheme and to
even more general viscosity, for instance discontinuous viscosity, see [29].

2. Stokes model. We are concerned with the finite volume approximation of the Stokes
equations with variable viscosity: Find u : Ω → R2 and p : Ω → R such that:

div (−2η(x)Du + pId) = f , in Ω,
div(u) = 0, in Ω,

u = g, on ∂Ω,

∫
Ω

p(x)dx = 0.
(2.1)

For the sake of simplicity, we restrict the presentation to the case of Dirichlet boundary con-
ditions and regular right-hand sides. We assume that Ω is a bounded connected polygonal
domain in R2, f is a function in (L2(Ω))2, the viscosity η is a function in L∞(Ω) and g is a
function in (H

1
2 (∂Ω))2 which verifies the compatibility condition:∫

∂Ω

g(s) · n⃗ds = 0. (2.2)

The viscosity η : Ω → R in (2.1) is supposed to be Lipschitz continuous on the whole
domain Ω and bounded: there exists three constant numbers Cη, Cη, Cη > 0 such that

Cη ≤ η(x) ≤ Cη, for a.e. x ∈ Ω, (2.3)

and

|η(x) − η(x′)| ≤ Cη|x − x′|, ∀x, x′ ∈ Ω. (2.4)

The well-posedness of the problem (2.1) is studied in [33, 7] for a constant viscosity.
Thanks to a Korn inequality, it can be generalize to variable viscosity. In order to study
convergence rates of our approximate solution, we need to assume regularity of the solution
(u, p) of the problem (2.1). If Ω is a convex polygon, g is equal to zero and the viscosity is
constant, then in [28, 33] the regularity of the solution is the following

u ∈ (H2(Ω))2 and p ∈ H1(Ω).

We denote by Mm,n(R) the set of real m × n matrices (we note Mn(R) when m = n). In
the sequel, ∥ · ∥2 stands for the natural L2-norm when we consider scalar valued and vector
valued functions and for the Frobenius norm when we consider matrix valued functions:

|||ξ|||2F = (ξ : ξ) , ∀ξ ∈ M2(R),

|||ξ|||22 =
∫

Ω

|||ξ(x)|||2Fdx, ∀ξ ∈ L2(Ω,M2(R)),
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where (ξ : ξ̃) =
∑

1≤i,j≤2

ξi,j ξ̃i,j = Trace(tξξ̃), ∀ξ, ξ̃ ∈ M2(R).

REMARK 2.1. The matrix norm ||| · |||F satisfies the following property∣∣∣∣∣∣∣∣∣∣∣∣A + tA

2

∣∣∣∣∣∣∣∣∣∣∣∣
F
≤ |||A|||F , ∀A ∈ M2(R).

3. The DDFV framework.

3.1. The meshes and notation.
The meshes. We recall here the main notation and definitions taken from [2]. A DDFV

mesh T is constituted by a primal mesh M ∪ ∂M and a dual mesh M∗ ∪ ∂M∗. An example
for square locally refined primal mesh is on Figure 3.1.

KK∗

xK∗

xK

K

xK

Primal cells K
Primal node xK

Interior vertices xK∗

Dual cell K∗

Vertices xK∗ on the boundary

FIG. 3.1. The mesh T . (Left) The primal mesh M∪ ∂M. (Right) The dual mesh M∗ ∪ ∂M∗.

The primal mesh M is a set of disjoint open polygonal control volumes K ⊂ Ω such that
∪K = Ω. We denote by ∂M the set of edges of the control volumes in M included in ∂Ω,
which we consider as degenerate control volumes. To each control volume and degenerate
control volume K ∈ M ∪ ∂M, we associate a point xK. For each degenerate control volume
K ∈ ∂M, we choose the point xK equal to the midpoint of the control volume K. This family
of points is denoted by X = {xK, K ∈ M ∪ ∂M}.

Let X∗ denote the set of the vertices of the primal control volumes in M that we split
into X∗ = X∗

int ∪ X∗
ext where X∗

int ∩ ∂Ω = ∅ and X∗
ext ⊂ ∂Ω. With any point xK∗ ∈ X∗

int

(resp. xK∗ ∈ X∗
ext), we associate the polygon K∗ ∈ M∗ (resp. K∗ ∈ ∂M∗) whose vertices are

{xK ∈ X, such that xK∗ ∈ K, K ∈ M} (resp. {xK∗} ∪ {xK ∈ X, such that xK∗ ∈ K, K ∈
(M∪∂M)}) sorted with respect to the clockwise order of the corresponding control volumes,
This defines the set M∗ ∪ ∂M∗ of dual control volumes. In some particular cases, we can
have an overlap of dual cells, like it is shown Figure 3.2. To eliminate such cases, we made
Assumption 3.1.

xL∗

Primal cells
xK∗

Dual cell K∗

Dual cell L∗

FIG. 3.2. An example where two dual cells K∗ and L∗ overlap: L∗ ⊂ K∗.
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REMARK 3.1. Our definition of dual control volumes differs from the one proposed in
[13, 14] or [26]. In [14], they built K∗ by joining not only the barycenter xK associated
to the elements of the primal mesh of which xK∗ is a vertex but also the midpoint of the
edges of which xK∗ is a vertex. This construction is usually called the barycentric dual mesh.
Barycentric dual cells never overlap.

For all control volumes K and L, we assume that ∂K ∩ ∂L is either empty or a common
vertex or an edge of the primal mesh denoted by σ = K|L. We note by E the set of such edges.
We also note σ∗ = K∗|L∗ and E∗ for the corresponding dual definitions.

Given the primal and dual control volumes, we define the diamond cells Dσ,σ∗ being the
quadrangles whose diagonals are a primal edge σ = K|L = (xK∗ , xL∗) and a corresponding
dual edge σ∗ = K∗|L∗ = (xK, xL), (see Fig. 3.3). Note that the diamond cells are not
necessarily convex. If σ ∈ E ∩ ∂Ω, the quadrangle Dσ,σ∗ degenerate into a triangle (see
Fig. 3.3). The set of the diamond cells is denoted by D and we have Ω = ∪

D∈D
D.

xL

xK

xL∗

xK∗

σ∗

xK∗

xL∗

xK

xL

Diamond cell D

Vertices
Primal node
Primal edge σ = K|L
Dual edge σ∗ = K∗|L∗ σ∗

σ σ

FIG. 3.3. The diamond cells. (Left) Interior diamond cell. (Right) Boundary diamond cell.

Notation. For any primal control volume K ∈ M ∪ ∂M, we note
• mK its Lebesgue measure,
• EK the set of its edges (if K ∈ M), or the one-element set {K} if K ∈ ∂M.
• DK = {Dσ,σ∗ ∈ D, σ ∈ EK},
• dK its diameter,
• σK := B(xK, ρK) ∩ ∂Ω ⊂ K for K ∈ ∂M, mσK its length, the value ρK is chosen

such that the inclusion is verified.
We will also use corresponding dual notation: mK∗ , EK∗ , DK∗ , dK∗ , σK∗ , ρK∗ and mσK∗ .

Dual edge σ∗ = K∗|L∗

Diamond cell D

Vertices
Primal node
Primal edge σ = K|L

τ⃗K,L

xL

n⃗σ∗K∗

xK

xL∗

xK∗

xD

σ∗

dK∗,L

dL∗,L

xK∗

xL∗

xK

xL

σ∗

σ σ

αD

τ⃗K∗,L∗

n⃗σK = n⃗D

FIG. 3.4. Notations in the diamond cells. (Left) Interior diamond cell. (Right) Boundary diamond cell.

For a diamond cell D = Dσ,σ∗ whose vertices are (xK, xK∗ , xL, xL∗) (Fig. 3.4), we note
• xD the center of the diamond cell D: xD = σ ∩ σ∗,
• mσ the length of the primal edge σ,
• mσ∗ the length of the dual edge σ∗,
• n⃗σK the unit vector normal to σ oriented from xK to xL, also noted n⃗D,



6 S. KRELL

• n⃗σ∗K∗ the unit vector normal to σ∗ oriented from xK∗ to xL∗ ,
• τ⃗ K,L the unit vector parallel to σ∗ oriented from xK to xL,
• τ⃗ K∗,L∗ the unit vector parallel to σ oriented from xK∗ to xL∗ ,
• αD the angle between τ⃗ K,L and τ⃗ K∗,L∗ ,
• dK∗,L (respectively dL∗,L) the length between xK∗ (respectively xL∗) and xL,
• hD its diameter,
• s its edges (for example s = [xK, xK∗ ]),
• ED = {s, s ∈ ∂D and s ̸⊂ ∂Ω} the set of interior edges of D,
• S = {s ∈ ED, ∀ D ∈ D} the set of interior edges of all diamond cells D ∈ D,
• ms the length of a diamond edge s,
• n⃗sD the unit vector normal to s = D|D′ oriented from D to D′,
• mD its measure, which is equal to

mD =
1
2

sin(αD)mσmσ∗ . (3.1)

In a diamond cell D ∈ D, we have two direct orthonormal basis: (τ⃗ K∗,L∗ , n⃗σK) and
(n⃗σ∗K∗ , τ⃗ K,L). We denote by n⃗D = (n⃗D)D∈D ∈ (R2)D. We distinguish the interior dia-
mond cells and the boundary diamond cells:

Dext = {D ∈ D, D ∩ ∂Ω ̸= ∅} and Dint = D\Dext.

ASSUMPTION 3.1. We assume that all the diamond cells D are convex.
Assumption 3.1 implies that the center xD of the diamond cell D (resp. the node xK∗ of

the dual cell K∗) is inside D (resp. K∗). We also have for all (K∗, L∗) ∈ M∗ ∪ ∂M∗ such that

K∗ ̸= L∗, we have
◦
K∗ ∩

◦
L∗= ∅. It is not the case if we do not assume 3.1 (see Figure 3.2).

REMARK 3.2. If Assumption 3.1 is not satisfied, for instance in Figure 3.5, we take the
barycentric dual mesh (defined in Remark 3.1). In that case, the center xD of the diamond
cell Dσ,σ∗ is defined as the barycenter of the primal edge σ.

D non convex

FIG. 3.5. An example where the diamond cells D could be non convex.

Mesh regularity measurement. Let size(T ) be the maximum of the diameters of the
diamond cells in D. To measure how flat the diamond cells are, we note αT the unique real
in ]0, π

2 ] such that sin(αT ) := min
D∈D

| sin(αD)|. We introduce a positive number reg(T ) that

quantifies the regularity of a given mesh and is useful to perform the convergence analysis of
finite volume schemes:

reg(T ) := max
(

1
sin(αT )

,N ,N ∗,max
D∈D

max
s∈ED

hD

ms
, max

K∈M
D∈DK

dK

hD
, max

K∗∈M∗∪∂M∗
D∈DK∗

dK∗

hD
,

max
D∈D

hD√
mD

, max
K∗∈M∗∪∂M∗

dK∗
√

mK∗
, max
K∈M

dK√
mK

)
,

(3.2)
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where N and N ∗ are the maximum of edges of each primal cell and the maximum of edges
incident to any vertex. The number reg(T ) should be uniformly bounded when size(T ) → 0
for the convergence to hold.

For instance, this number reg(T ) is involved in the following geometrical result: there
exists two constants C1 and C2 depending on reg(T ) such that for any K ∈ M, K∗ ∈ M∗ ∪
∂M∗ and D ∈ D such that D ∩ K ̸= ∅ and D ∩ K∗ ̸= ∅, we have

C1mK ≤ mD ≤ C2mK, C1mK∗ ≤ mD ≤ C2mK∗ .

3.2. Unknowns and discrete projections. The DDFV method for the Stokes problem
requires staggered unknowns. It associates to any primal cell K ∈ M∪∂M an unknown value
uK ∈ R2 for the velocity, to any dual cell K∗ ∈ M∗ ∪ ∂M∗ an unknown value uK∗ ∈ R2

for the velocity and to any diamond cell D ∈ D an unknown value pD ∈ R for the pressure.
These unknowns are collected in the families :

uT =
(
(uK)K∈(M∪∂M) , (uK∗)K∗∈(M∗∪∂M∗)

)
∈

(
R2

)T
,

pD =
(
(pD)D∈D

)
∈ RD.

We define now the discrete mean-value boundary data, for any vector function v lying in
(H1(Ω))2, denoted by P∂Ω

m and defined as follows:

P∂Ω

m v =

((
1

mσK

∫
σK

v(x)dx

)
K∈∂M

,

(
1

mσK∗

∫
σK∗

v(x)dx

)
K∗∈∂M∗

)
, (3.3)

and the interior mean-value projection for any integrable vector function v on Ω:

PM

mv =
((

1
mK

∫
K

v(x)dx

)
K∈M

)
, PM∗

m v =
((

1
mK∗

∫
K∗

v(x)dx

)
K∗∈M∗

)
. (3.4)

We finally gather these projections in the following notation:

PT
mv =

(
PM

mv, PM∗

m v, P∂Ω

m v
)
, ∀ v ∈ (H1(Ω))2. (3.5)

We introduce the center-value projection:

PT
c v = ((v(xK))K∈(M∪∂M), (v(xK∗))K∗∈(M∗∪∂M∗)), ∀ v ∈ (H2(Ω))2. (3.6)

We also define a mean-value projection on Ω over the diamond mesh D for any integrable
function q:

PD
mq =

((
1

mD

∫
D

q(x)dx

)
D∈D

)
. (3.7)

We specify two discrete subsets of
(
R2

)T needed to take into account the Dirichlet
boundary conditions

E0 =
{
vT ∈

(
R2

)T
s. t. vK =0, ∀K ∈ ∂M and vK∗ =0, ∀K∗ ∈ ∂M∗

}
,

Eg =
{
vT ∈

(
R2

)T
s. t. vK =(P∂Ω

m g)K, ∀K ∈ ∂M and vK∗ =(P∂Ω

m g)K∗ , ∀K∗ ∈ ∂M∗
}

.

We define the projection Pm,g on the set Eg:

Pm,g :
(
R2

)T −→ Eg

uT 7−→ ((uK)K∈M, (P∂Ω

m g)K∈∂M, (uK∗)K∗∈M∗ , (P∂Ω

m g)K∗∈∂M∗).
(3.8)
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3.3. Discrete operators. In this subsection, we define the discrete operators which are
needed in order to write and analyse the DDFV scheme. We begin with the discrete gradient.

DEFINITION 3.1 (Discrete gradient). We define a consistent approximation of the gra-
dient operator of a vector field in

(
R2

)T
denoted by ∇D : uT ∈

(
R2

)T 7→ (∇DuT )D∈D ∈
(M2(R))D, as follows:

∇DuT =
1

sin(αD)

[
uL − uK

mσ∗
⊗ n⃗σK +

uL∗ − uK∗

mσ

⊗ n⃗σ∗K∗

]
,

where ⊗ represents the tensor product. It can also be written as follows, (see (3.1)):

∇DuT =
1

2mD
[mσ(uL − uK) ⊗ n⃗σK + mσ∗(uL∗ − uK∗) ⊗ n⃗σ∗K∗ ] .

REMARK 3.3. We recall the discrete gradient operator for a scalar field in RT still
denoted by ∇D : uT ∈ RT 7→ (∇DuT )D∈D ∈

(
R2

)D
, which is defined as follows:

∇DuT =
1

2mD
[(uL − uK)mσn⃗σK + (uL∗ − uK∗)mσ∗ n⃗σ∗K∗ ] , ∀D ∈ D.

REMARK 3.4. For two neighbour cells K and L sharing a face F , we can naturally define
two directions: the line xKxL and one edge e ⊂ ∂F . The difference in the 3D approach comes
from the choice of the third complementary direction. In [1, 11] this third direction is given
by a different edge e′ ⊂ ∂F of the face F , restrictions on the primal mesh are needed. In
[27, 9], the third direction is given by xF xe where xF and xe are the barycenter of the face
F and the edge e ⊂ ∂F .

DEFINITION 3.2 (Discrete divergence). We define a consistent approximation of the
divergence operator applied to discrete tensor fields denoted by divT : ξD = (ξD)D∈D ∈
(M2(R))D 7→ divT ξD ∈

(
R2

)T
, as follows:

divKξD =
1

mK

∑
σ∈∂K

mσξDn⃗σK, ∀K ∈ M, and divKξD = 0, ∀K ∈ ∂M,

divK∗
ξD =

1
mK∗

∑
σ∗∈∂K∗

mσ∗ξDn⃗σ∗K∗ , ∀K∗ ∈ M∗,

divK∗
ξD =

1
mK∗

 ∑
Dσ,σ∗∈DK∗

mσ∗ξDn⃗σ∗K∗ +
∑

Dσ,σ∗∈DK∗∩Dext

dK∗,LξDn⃗σK

 , ∀K∗ ∈ ∂M∗.

In order to write the DDFV scheme in a compact form, we will denote the discrete divergence
on the primal mesh and on the interior dual mesh as follows:

divMξD =
((

divKξD
)
K∈M

)
, divM∗

ξD =
((

divK∗
ξD

)
K∗∈M∗

)
.

Thanks to the discrete gradient we can define a discrete strain rate tensor and a discrete
divergence of a vector field in

(
R2

)T .
DEFINITION 3.3 (Discrete strain rate tensor). We define a discrete strain rate tensor of

a vector field in
(
R2

)T
, denoted by: DD : uT ∈

(
R2

)T 7→ (DDuT )D∈D ∈ (M2(R))D, with

DDuT =
∇DuT + t(∇DuT )

2
, for all D ∈ D.
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DEFINITION 3.4. We define a discrete divergence of a vector field in
(
R2

)T
, denoted

by: divD : uT ∈
(
R2

)T 7→ (divDuT )D∈D ∈ RD, with divDuT = Trace(∇DuT ), for all
D ∈ D.

REMARK 3.5. Remark that divDuT can be expressed in the following way:

divDuT =
1

2mD
[mσ(uL − uK) · n⃗σK + mσ∗(uL∗ − uK∗) · n⃗σ∗K∗ ] ,

and

divD(uT ) =
1

mD

∑
s=[xK,xK∗ ]∈ED

ms
uK∗ + uK

2
· n⃗sD, ∀ uT ∈

(
R2

)T
. (3.9)

The relation 3.9 is the discrete counterpart of
∫

D

div(u)(z)dz =
∫
ED

u(s) · n⃗Dds.

3.4. Inner products and norms. First of all, we define trace operators on both
(
R2

)T

and (R2)D. Set γT : uT ∈
(
R2

)T 7→ γT (uT ) = (γσ(uT ))σ∈∂M ∈ (R2)∂M, as follows:

γσ(uT ) =
dK∗,L(uK∗ + uL) + dL∗,L(uL∗ + uL)

2mσ

, ∀ σ ∈ ∂M.

This trace operator enables to impose the Dirichlet boundary conditions in a weak way. The
second one is denoted by γD : ϕD ∈ (R2)D 7→ (ϕD)D∈Dext ∈ (R2)Dext and is only a
restriction operator on Dext. Then, we define the four following inner products

JvT ,uT KT =
1
2

( ∑
K∈M

mKuK · vK +
∑

K∗∈M∗∪∂M∗

mK∗uK∗· vK∗

)
, ∀uT ,vT∈

(
R2

)T
,

(ϕD,vT )∂Ω =
∑

Dσ,σ∗∈Dext

mσϕD · vσ, ∀ ϕD ∈ (R2)Dext ,vT ∈ (R2)∂M,

(pD, qD)D =
∑
D∈D

mDpDqD, ∀pD, qD ∈ RD,

(ξD : ϕD)D =
∑
D∈D

mD(ξD : ϕD), ∀ξD, ϕD ∈ (M2(R))D,

(recall that (ξ : ξ̃) = Trace(tξξ̃)). We define the corresponding norms as follows

∥uT ∥2 = JuT ,uT K 1
2
T , ∀uT ∈

(
R2

)T
,

∥pD∥2 = (pD, pD)
1
2
D, ∀pD ∈ RD,

|||ξD|||2 = (ξD : ξD)
1
2
D, ∀ξD ∈ (M2(R))D.

3.5. Discrete Stokes formula. In [2, 14, 15], the discrete gradient and discrete diver-
gence for a scalar-value function are linked by a discrete Stokes formula, which is the duality
property giving its name to the method. We want to generalize the discrete Stokes formula for
vector-valued functions. The discrete Stokes formula for vector-valued functions is deduced
from its scalar counterpart (given in [2]) by working component per component.

THEOREM 3.1 (Discrete Stokes formula). For all ξD ∈ (M2(R))D, uT ∈
(
R2

)T
:

JdivT ξD,uT KT = −(ξD : ∇DuT )D + (γD(ξDn⃗D),γT (uT ))∂Ω.
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3.6. Preparation of the stabilization procedure. Finally, a second order discrete dif-
ference operator will be needed to define the stabilization term in the Stokes problem.

DEFINITION 3.5. We define a non consistent discrete approximation of the laplacian
∆p, denoted by ∆D : pD ∈ RD 7→ ∆DpD ∈ RD, and defined as follows:

∆DpD =
1

mD

∑
s=D|D′∈ED

h2
D + h2

D′

h2
D

(pD′
− pD), ∀ D ∈ D.

Note that we do not need a consistent approximation of the Laplace operator. In fact, a
consistent approximation based on a two-point flux formula would require the diamond mesh
to verify an orthogonality constraint as, for instance, in the case of admissible meshes [18],
which has no reason to hold here.

Related to this operator, we define a mesh dependent semi-norm | · |h over RD by:

|pD|2h =
∑

s=D|D′∈S

(h2
D + h2

D′)(pD′
− pD)2, ∀pD ∈ RD. (3.10)

The semi-norm |p|h is the discrete counterpart of size(T )|∇p|2.
REMARK 3.6. We have, for any pD ∈ RD, by reorganizing the summation over s ∈ S,

−(h2
D∆DpD, pD)D =

∑
D∈D

pD
∑

s∈ED

(h2
D + h2

D′)(pD − pD′
)

=
∑

s=D|D′∈S

(h2
D + h2

D′)(pD′
− pD)2

= |pD|2h.

The following Lemma is an inverse Sobolev lemma, that is a bound of the discrete semi-
norm | · |h, defined by (3.10), by the L2-norm ∥ · ∥2.

LEMMA 3.1. Let T be a mesh of Ω. There exists C > 0 depending only on reg(T ), such
that for any pD ∈ RD, we have

|pD|h ≤ C∥pD∥2.

Proof. Using the definition (3.10) of the discrete semi-norm | · |h and the Young inequality,
we have

|pD|2h ≤ 2
∑

s=D|D′∈S

(h2
D + h2

D′)((pD′
)2 + (pD)2).

Reordering the summation over the set of diamond cells, we get

|pD|2h ≤ 2
∑
D∈D

mD(pD)2

 1
mD

∑
s=D|D′∈ED

(h2
D + h2

D′)

 .

We conclude, using the relation (3.2) and the fact that #(ED) ≤ 4. ¤

4. DDFV schemes for the Stokes equation. We note ηD =
∫

D̄

η(s)dµD̄(s), for all

D ∈ D, where µD̄ is a probability measure on D̄. This includes the case ηD = η(xD) or

ηD =
1

mD

∫
D

η(x)dx. Furthermore, we always have the following inequality

Cη ≤ ηD ≤ Cη, ∀D ∈ D.
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As claimed in introduction, we approximate the velocity on both vertices and centers of
primal control volumes and the pressure on the diamond cells. We integrate the momentum
conservation law of problem (2.1) on the primal mesh M and on the interior dual mesh
M∗. The mass conservation equation is directly approached on the diamond mesh using
the discrete operator divD and a stabilized term inspired by the well known Brezzi-Pitkäranta
scheme. We impose the Dirichlet boundary conditions on ∂M and on ∂M∗. Finally, the
integral of the pressure is imposed to be equal to zero.

The scheme for the problem (2.1) reads as follows:

Find uT ∈ Eg and pD ∈ RD such that,

divM(−2ηDDDuT + pDId) = fM,

divM∗
(−2ηDDDuT + pDId) = fM∗

,

divD(uT ) − λh2
D∆DpD = 0,∑

D∈D

mDpD = 0,

(4.1)

with λ > 0 given, fM = PM

mf and fM∗ = PM∗

m f , where the projection is defined by (3.4).
REMARK 4.1. At the continuous level, we have a compatibility condition (2.2). The

same relation still holds at the discrete level. Indeed, we have by using the discrete Stokes
formula Theorem 3.1

(divD(uT ) − λh2
D∆DpD, 1)D = (divDuT , 1)D = (∇DuT : Id)D

= (γD(n⃗D), γT (uT ))∂Ω.

Using the scheme (4.1), we obtain the following condition∑
Dσ,σ∗∈Dext

mσγσ(gT ) · n⃗σK = 0.

We deduce a link between the mass conservation equation and the Dirichlet boundary condi-
tion.

REMARK 4.2. In (4.1), we have added the discrete counterpart of
∫
Ω

p(x)dx = 0, that

is
∑
D∈D

mDpD = 0 in order to ensure the uniqueness of the pressure.

REMARK 4.3. Note that we impose the Dirichlet boundary conditions on ∂M∗, so that
we do not integrate the momentum conservation law of problem (2.1) on ∂M∗. An alternative
scheme would be for instance

Find uT ∈
(
R2

)T
and pD ∈ RD such that,

divT (−2ηDDDuT + pDId) = fT ,
γT (uT ) = g∂M,

divD(uT ) − λh2
D∆DpD = 0,∑

D∈D

mDpD = 0.

Since even for g = 0 we are not sure that uT ∈ E0, the well-posedness and the stability of
this scheme is still an open problem (it is not known if Korn inequality holds in this case, see
Theorem 5.1).

THEOREM 4.1. Assume that η satisfies (2.3). For any mesh T as described in Section 3,
the finite volume scheme (4.1) with λ > 0 admits a unique solution (uT , pD) ∈

(
R2

)T ×RD.
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In order to prove the existence and uniqueness of the solution of (4.1), a discrete Korn
inequality is needed and proved in Section 5.1 (see Theorem 5.1).
Proof. Let N denote the cardinal of

(
R2

)T ×RD. Scheme (4.1) can be written with qD = 0
and α = 0 as

divM(−2ηDDDuT + pDId) = fM,

divM∗
(−2ηDDDuT + pDId) = fM∗

,

∀K ∈ ∂M, uK = gK,

∀K∗ ∈ ∂M∗, uK∗ = gK∗ ,

divD(uT ) − λh2
D∆DpD = qD,∑

D∈D

mDpD = α.

This is a linear system: Av = b with a rectangle matrix A ∈ MN+1,N (R), v ∈ RN and
b = (fM, fM∗

,gT , qD, α)′ ∈ RN+1. Let X be the following set

X =

(fM, fM∗
,gT , qD, α)′ ∈ RN+1,

∑
D∈D

mDqD =
∑

Dσ,σ∗∈Dext

mσγσ(gT ) · n⃗σK

 ,

with dim X = N . We have that (fM, fM∗
,gT , 0, 0)′ belongs to X , see Remark 4.1. Simi-

larly, we can prove that ImA ⊂ X . If we prove that the kernel of the matrix A is zero, we
conclude that dim ImA = N and so ImA = X . Let us then study the kernel of the matrix A.
Let uT ∈ E0 and pD ∈ RD such that:

divM(−2ηDDDuT + pDId) = 0,

divM∗
(−2ηDDDuT + pDId) = 0,

divD(uT ) − λh2
D∆DpD = 0,∑

D∈D

mDpD = 0.

By definition of J·, ·KT and the fact that uT ∈ E0, we deduce that

JdivT (−2ηDDDuT + pDId),uT KT = 0.

Using the discrete Stokes formula Theorem 3.1, noting that uT ∈ E0 implies that γT (uT )=
0, that DDuT is a symmetric tensor, and substituting divDuT = Trace∇DuT = (Id :
∇DuT ), we obtain

JdivT (−2ηDDDuT + pDId),uT KT =
(
2ηDDDuT : DDuT

)
D
− (divDuT , pD)D.

Furthermore, the mass conservation equation and Remark 3.6 give:

−(divDuT , pD)D = −λ(h2
D∆DpD, pD)D = λ|pD|2h,

where |.|h is the semi-norm introduced in (3.10). Using the discrete Korn inequality, c.f.
Theorem 5.1, and the bounds on η given in (2.3), we have:

JdivT (−2ηDDDuT + pDId),uT KT ≥ Cη|||∇DuT |||22 + λ|pD|2h.
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We finally get

0 ≥ Cη|||∇DuT |||22 + λ|pD|2h,

which implies that

|||∇DuT |||22 = 0 and |pD|2h = 0.

Therefore, we have that ∇DuT = 0 and pD is constant, which implies that there exists three
constants c0 ∈ R2, c1 ∈ R2 and c3 ∈ R such that :

∀ K ∈ (M ∪ ∂M), uK = c0,
∀ K∗ ∈ (M∗ ∪ ∂M∗), uK∗ = c1,
∀ D ∈ D, pD = c3.

Since uT belongs to E0 we have c0 = c1 = 0. Consequently, we have uT = 0. Then, we
use the fact that pD verifies

∑
D∈D

mDpD = 0 so pD = 0. ¤

5. Results on discrete operators. In this section, we present several results on the dis-
crete operators. In Section 5.1, we begin with the properties of the discrete strain rate tensor.
The main result is the proof of a discrete Korn inequality. In Sections 5.2-5.3, we review the
results of [2] and adapt them to the vector-valued setting. Then, in Sections 5.4-5.5, we focus
on the properties of mean-value projection operator.

5.1. Properties of discrete strain rate tensor. Korn inequality. We first have the
bound of the discrete strain rate tensor by the discrete gradient.

PROPOSITION 5.1. For all uT ∈
(
R2

)T
, we get

|||DDuT |||2 ≤ |||∇DuT |||2.

Proof. Thanks to Remark 2.1 we have

|||DDuT |||22 =
∑
D∈D

mD|||DDuT |||2F ≤
∑
D∈D

mD|||∇DuT |||2F = |||∇DuT |||22.

¤
We introduce the following notation

∀u,v ∈ R2, u ∧ v = u1v2 − u2v1.

From usual differential calculus, we know that for any smooth function u : Ω −→ R2, we
have

div
(

t(∇u)
)

= div (div (u) Id) = ∇(div(u)).

The corresponding discrete property is proved in the following proposition.
PROPOSITION 5.2. For all uT ∈ E0, we have

divT
(

t(∇DuT
))

= divT
(
divD(uT )Id

)
.

Proof. On any diamond D ∈ D, the matrix
(

t(∇DuT ) − divDuT Id
)

is given by(
t(∇DuT ) − divDuT Id

)
=

(
− (∇DuT

2 )2 (∇DuT
2 )1

(∇DuT
1 )2 − (∇DuT

1 )1

)
.
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Let K ∈ M. We obtain

mKdivK
(

t(∇DuT
)
− divD(uT )Id

)
=

∑
D∈DK

mσ

(
∇DuT

2 ∧ n⃗σK

−∇DuT
1 ∧ n⃗σK

)
.

Using the definition of the gradient for a scalar field defined in Remark 3.3 and the fact that
n⃗σK ∧ n⃗σ∗K∗ = sin(αD), we deduce

∇DuT
i ∧ n⃗σK =

ui,L∗ − ui,K∗

sin(αD)mσ

n⃗σ∗K∗ ∧ n⃗σK =
ui,K∗ − ui,L∗

mσ

.

It implies that we have

mKdivK
(

t(∇DuT
)
− divD(uT )Id

)
=

∑
D∈DK

(
u2,K∗ − u2,L∗

u1,L∗ − u1,K∗

)
. (5.1)

K

τ⃗K,L

n⃗σ∗K∗

n⃗σ∗K∗

τ⃗K,L
xK

D

D′

xL∗ in D

xK∗ in D′

FIG. 5.1. Trigonometrical path.

Recall that in each diamond cell D ∈ DK, the basis (τ⃗ K,L, n⃗σ∗K∗) is supposed to be directly
oriented. It implies that for each diamond cell D ∈ DK the points xK∗ and xL∗ are well defined
with this choice and for two distinguished diamond cells D and D′, such that D̄ ∩ D̄′ ̸= ∅, the
point xL∗ of D coincides with the point xK∗ of D′, (see Figure 5.1). Thus the right-hand side
of (5.1) is equal to zero. Hence for all K ∈ M, we conclude

divK
(

t(∇DuT
))

= divK
(
divD(uT )Id

)
.

The same result holds for all K∗ ∈ M∗. First, we get

mK∗divK∗
(

t(∇DuT
)
− divD(uT )Id

)
=

∑
D∈DK∗

mσ∗

(
∇DuT

2 ∧ n⃗σ∗K∗

−∇DuT
1 ∧ n⃗σ∗K∗

)
,

and

mK∗divK∗
(

t(∇DuT
)
− divD(uT )Id

)
=

∑
D∈DK∗

(
u2,L − u2,K

u1,K − u1,L

)
. (5.2)

Thanks to the orientation, the right-hand side of (5.2) is equal to zero, it implies that

divK∗
(

t(∇DuT
))

= divK∗
(
divD(uT )Id

)
, ∀ K∗ ∈ M∗.
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The case where K∗ ∈ ∂M∗ is slightly different, Definition 3.2 of the discrete divergence gives

mK∗divK∗
(

t(∇DuT
)
− divD(uT )Id

)
=

∑
D∈DK∗

mσ∗

(
t(∇DuT ) − divDuT Id

)
n⃗σ∗K∗

+
∑

D∈DK∗∩Dext

dK∗,L

(
t(∇DuT ) − divDuT Id

)
n⃗σK.

(5.3)
For the first sum on D ∈ DK∗ of the right-hand side of (5.3), we can do the same as for
K∗ ∈ M∗: thanks to (5.2), we have

∑
D∈DK∗

mσ∗

(
t(∇DuT ) − divDuT Id

)
n⃗σ∗K∗ =

∑
D∈DK∗

(
u2,L − u2,K

u1,K − u1,L

)
. (5.4)

For the second sum of the right-hand side of (5.3), we can do the same as for K ∈ M: thanks
to (5.1), we have

∑
D∈DK∗∩Dext

dK∗,L

(
t(∇DuT ) − divDuT Id

)
n⃗σK =

∑
D∈DK∗∩Dext

dK∗,L

mσ

(
u2,K∗ − u2,L∗

u1,L∗ − u1,K∗

)
. (5.5)

Substituting (5.4) and (5.5) into (5.3), we get

mK∗divK∗
(
t(∇DuT

)
− divD(uT )Id)

=
∑

D∈DK∗

(
u2,L − u2,K

u1,K − u1,L

)
+

∑
D∈DK∗∩Dext

dK∗,L

mσ

(
u2,K∗ − u2,L∗

u1,L∗ − u1,K∗

)
.

Thanks to the boundary condition uT ∈ E0, for all D ∈ DK∗ ∩ Dext, we have u2,K∗ =
u2,L∗ = u1,L∗ = u1,K∗ = 0. It implies that

∑
D∈DK∗∩Dext

dK∗,L

mσ

(
u2,K∗ − u2,L∗

u1,L∗ − u1,K∗

)
= 0.

xK∗xL∗
1

xL1 xL∗
2

xK2

xL2

n⃗σ∗K∗

n⃗σ∗K∗

n⃗σ∗K∗

xK1

K∗
τ⃗K,L

τ⃗K,L

n⃗σ∗K∗

τ⃗K,L

τ⃗K,L
D1 D2

τ⃗K,L n⃗σ∗K∗

FIG. 5.2. Trigonometrical path.

Using the notation of Figure 5.2, the sum over the diamond cells D ∈ DK∗ is equal to

∑
D∈DK∗

(
u2,L − u2,K

u1,K − u1,L

)
=

(
u2,L1 − u2,L2

u1,L2 − u1,L1

)
.
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Since uT ∈ E0, we have u2,L1 = u2,L2 = u1,L2 = u1,L1 = 0. We deduce

∑
D∈DK∗

(
u2,L − u2,K

u1,K − u1,L

)
+

∑
D∈DK∗∩Dext

dK∗,L

mσ

(
u2,K∗ − u2,L∗

u1,L∗ − u1,K∗

)
= 0.

It concludes the proof. ¤
REMARK 5.1. We need uT ∈ E0 to prove divK∗

(t
(
∇DuT

)
) = divK∗

(−divD(uT )Id),
for all K∗ ∈ ∂M∗, otherwise we have to add boundary terms.

From Proposition 5.2, we deduce the following proposition.
PROPOSITION 5.3. For all uT ∈ E0, we have(

t(∇DuT
)

: ∇DuT
)

D
= ∥divD(uT )∥2

2 ≥ 0.

Proof. Using the Stokes formula Theorem 3.1, the fact that uT ∈ E0 and then Proposition
5.2, we have(

t(∇DuT
)

: ∇DuT
)

D
=−JdivT

(
t(∇DuT

))
,uT KT =−JdivT (divD(uT )Id),uT KT .

Using once more the Stokes formula Theorem 3.1 for uT ∈ E0 and substituting divDuT =
Trace∇DuT = (Id : ∇DuT ), we obtain(

t(∇DuT
)

: ∇DuT
)

D
= (divD(uT )Id : ∇DuT )D = ∥divD(uT )∥2

2 ≥ 0.

¤
We are now able to prove a discrete Korn inequality:
THEOREM 5.1 (Discrete Korn inequality). For all uT ∈ E0, we have

|||∇DuT |||2 ≤
√

2|||DDuT |||2.

Proof. This is just a consequence of the following equality and of Proposition 5.3.

|||DDuT |||22 =
1
2
|||∇DuT |||22 +

1
2
(
t(∇DuT

)
: ∇DuT )D.

¤
5.2. Technical lemmas. Poincaré inequality. We will need two technical results and

the discrete Poincaré inequality whose proofs can be found in the literature. The first one is
[2, Lemma 3.4] (see also [17, Lemma 6.3]).

LEMMA 5.1. There exists a constant C > 0 such that for any bounded polygonal set
P ⊂ R2 with positive measure, any segment σ ⊂ R2 and any v ∈ H1(R2), we have

|vP − vσ|2 ≤ 1
mσmP

∫
σ

∫
P
|v(x) − v(y)|2dxdy ≤ C

diam(P̂σ)3

mσmP

∫
cPσ

|∇v(z)|2dz,

where vP denotes the mean value of v on P , vσ the mean value of v on the segment σ, and
P̂σ is the convex hull of P ∪ σ.

The second one is the vector-valued version of the first Lemma 8.1 in the Appendix [16].
LEMMA 5.2. Let K be a non empty open polygonal convex set in R2 such that, for

some α > 0, there exists a ball of radius αdiam(K) contained in K. Let E be an affine
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hyperplane of R2 and σ be a non-empty open subset of E contained in ∂K ∩ E. Then there
exists a constant C > 0, depending only on α, for any v ∈ (H1(K))2:∣∣∣∣ 1

mσ

∫
σ

v(s)ds

∣∣∣∣2 ≤ Cdiam(K)
mσ

∫
K

|||∇v(s)|||2Fds +
C

diam(K)mσ

∫
K

|v(s)|2ds.

Let us finally state the discrete version of the Poincaré inequality which is the vector-
valued version of [2, Lemma 3.3].

THEOREM 5.2 (Discrete Poincaré inequality). Let T be a mesh of Ω. There exists a
constant C > 0, depending only on the diameter of Ω and reg(T ), such that for any uT ∈ E0,
we have

∥uT ∥2 ≤ C|||∇DuT |||2.

5.3. Properties of the mean-value and center-value projection operators. In this
subsection, we give some lemmas on projection operators. We only prove results which
can not be deduced immediately from their scalar counterpart (given in [2]) by working com-
ponent per component.

The following properties of the center-value projection operator, defined by (3.6), are
used in the estimate of the consistency error of our finite volume scheme.

LEMMA 5.3. Let T be a mesh of Ω. There exists a constant C > 0, depending only on
reg(T ), such that for any function v in (H2(Ω))2, we have

|||∇v −∇DPT
c v|||2 ≤ Csize(T )|||∇v|||H1 .

COROLLARY 5.1. Let T be a mesh of Ω. There exists a constant C > 0, depending only
on reg(T ), such that for any function v in (H2(Ω))2, we have

|||∇DPT
c v|||2 ≤ C|||∇v|||H1 .

COROLLARY 5.2. Let T be a mesh of Ω. There exists a constant C > 0, depending only
on reg(T ), such that for any function v in (H2(Ω))2 which satisfies div v = 0, we have

∥divDPT
c v∥2 ≤ Csize(T )|||∇v|||H1 .

Proof. Let v ∈ (H2(Ω))2 which satisfies div v = 0. Let D ∈ D; using the fact that
divD(PT

c v) = Trace(∇DPT
c v) and div v = Trace(∇v) = 0, we have

divD(PT
c v) = Trace(∇DPT

c v −∇v(x)), ∀ x ∈ D.

Lemma 5.3 gives

∥divD(PT
c v)∥2 ≤ |||∇DPT

c v −∇v|||2 ≤ Csize(T )|||∇v|||H1 .

¤
We will need to evaluate the contribution in the error of the two different projections

PT
c v, Pm,gPT

c v, defined by (3.6) and (3.8), where g = γ(v). Note that these two projec-
tions only differ on the boundary cells. For Lemma 5.4 it is crucial to have that P∂Ω

m , defined
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by (3.3), used the mean-value on σK (resp. σK∗ ) with the point xK (resp. xK∗ ) located at the
middle of the edge σK (resp. σK∗).

LEMMA 5.4. Let T be a mesh of Ω. There exists a constant C > 0, depending only on
reg(T ), such that for any function v in (H2(Ω))2, whose trace is denoted by g = γ(v), we
have

|||∇DPT
c v −∇DPm,gPT

c v|||2 ≤ Csize(T )∥v∥H2 .

Next lemma gives the main properties of the mean-value projection, defined by (3.5), of
a H1 functions.

LEMMA 5.5. Let T be a mesh of Ω. There exists C > 0 depending only on reg(T ), such
that:

|||∇DPT
mv|||2 ≤ C|||∇v|||2, ∀ v ∈ (H1(Ω))2,

∥v − PT
mv∥2 ≤ Csize(T )|||∇v|||2, ∀ v ∈ (H1(Ω))2.

We give below the main properties of the center-value projection, defined by (3.6).
LEMMA 5.6. Let T be a mesh of Ω. There exists C > 0 depending only on reg(T ), such

that:

∥v − PT
c v∥2 ≤ Csize(T )|||∇v|||H1 , ∀ v ∈ (H2(Ω))2,

∥v − Pm,gPT
c v∥2 ≤ Csize(T )|||∇v|||H1 , ∀ v ∈ (H2(Ω))2,

where g = γ(v).
Proof. We only prove the second inequality. The definition of the projection Pm,g implies
that Pm,gPT

c v and PT
c v only differ on the boundary ∂M and ∂M∗ whereas Pm,gPT

c v and
PT

mv coincide on the boundary ∂M and ∂M∗. So we get

∥v − Pm,gPT
c v∥2

2 =
1
2

∑
K∈M

∫
K

|v(x) − v(xK)|2dx +
1
2

∑
K∗∈M∗

∫
K∗

|v(x) − v(xK∗)|2dx

+
1
2

∑
K∗∈∂M∗

∫
K∗

∣∣∣∣∣v(x) − 1
mσK∗

∫
σK∗

v(z)dz

∣∣∣∣∣
2

dx.

We deduce that

∥v − Pm,gPT
c v∥2

2 ≤ ∥v − PT
c v∥2

2 + ∥v − PT
mv∥2

2.

Lemma 5.5 and the first inequality conclude the proof. ¤

5.4. Properties of mean-value projection operator on the diamond mesh. The error
estimates analysis of our scheme involves the estimate of the projection PD

m on the diamond
mesh, defined by (3.7), of functions lying in H1(Ω). We give below a property of such a
projection onto the set of discrete functions in our framework.

LEMMA 5.7. Let T be a mesh of Ω. There exists C > 0 depending only on reg(T ), such
that for any function p in H1(Ω), we have∑

s=D|D′∈S

(PD′

m p − PD
mp)2 ≤ C∥∇p∥2

2.
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Proof. Let p ∈ H1(Ω). We note for simplicity pD = PD
mp for any D ∈ D and ps =

1
ms

∫
s

p(y)dy, for any s ∈ S. We add and subtract ps and use the Cauchy-Schwarz inequal-

ity: ∑
s=D|D′∈S

(pD′
− pD)2 ≤ 2

∑
s=D|D′∈S

∣∣∣pD′
− ps

∣∣∣2 + 2
∑

s=D|D′∈S

|pD − ps|2 . (5.6)

Lemma 5.1 applied on a diamond edge s and the diamond cell D, leads to

|pD − ps|2 ≤ C
h3

D

msmD

∫
D

|∇p(z)|2dz.

As
h3

D

msmD
≤ C(reg(T )), (see the relation (3.2)), we obtain

|pD − ps|2 ≤ C

∫
D

|∇p(z)|2dz. (5.7)

Substituting (5.7) into (5.6), we get∑
s=D|D′∈S

(pD′
− pD)2 ≤ C

∑
s=D|D′∈S

(∫
D

|∇p(z)|2dz +
∫

D′
|∇p(z)|2dz

)
.

A diamond cells has at most four neighbouring diamond cells, we deduce∑
s=D|D′∈S

(pD′
− pD)2 ≤ 4C

∑
D∈D

∫
D

|∇p(z)|2dz = 4C

∫
Ω

|∇p(z)|2dz.

¤
PROPOSITION 5.4. For any mesh T on Ω, there exists a constant C > 0, depending only

on reg(T ), such that for any function p in H1(Ω), we have

∥PD
mp − p∥2 ≤ Csize(T )∥∇p∥2.

Proof. Let D ∈ D. We apply the Jensen inequality∫
D

|PD
mp − p(x)|2dx ≤ 1

mD

∫
D

∫
D

|p(z) − p(x)|2dzdx.

To get the upper bound, we add and subtract
1

ms

∫
s

p(y)dy for s ∈ ED and use the Cauchy-

Schwarz inequality:∫
D

|PD
mp − p(x)|2dx ≤ 4

∫
D

∣∣∣∣ 1
ms

∫
s

(p(z) − p(y))dy

∣∣∣∣2 dz.

Applying the Jensen inequality, we have∫
D

|PD
mp − p(x)|2dx ≤ 4

ms

∫
D

∫
s

|p(z) − p(y)|2 dydz.

We apply Lemma 5.1 on a diamond edge s and a diamond cell D

1
ms

∫
D

∫
s

|p(y) − p(x)|2 dydx ≤ C
h3

D

ms

∫
D

|∇p(z)|2dz.
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The relation (3.2) gives that
hD

ms
≤ C. Finally, we obtain

∫
D

|PD
mp − p(x)|2dx ≤ size(T )2C

∫
D

|∇p(z)|2dz,

which concludes the proof. ¤
5.5. Properties of the discrete divergence on diamond cells. In order to prove the

stability of our finite volume scheme, we will need the following estimate.
PROPOSITION 5.5. Let T be a mesh of Ω. There exists C > 0 depending only on reg(T ),

such that for any function v in (H1(Ω))2 and any pD ∈ RD, we have∑
D∈D

∫
D

pD (divD(vT ) − div(v)) dz ≤ C|pD|h∥v∥H1 ,

where vT = PT
mv is the mean-value projection of v, defined by (3.5), on the mesh T .

Proof. Using the equality (3.9) and the continuous Stokes formula, we have, for any D ∈ D:∫
D

(divD(vT ) − div(v(z))) dz =
∑

s=[xK,xK∗ ]∈ED

ms
1

ms

∫
s

(
vK + vK∗

2
− v(z)

)
· n⃗sDdz.

We note Rs
div(v) =

1
ms

∫
s

(
vK + vK∗

2
− v(z)

)
dz. First we multiply by pD and we sum

over the diamond cells D ∈ D.∑
D∈D

∫
D

pD (divD(vT ) − div(v(z))) dz =
∑
D∈D

pD
∑

s∈ED

msRs
div(v) · n⃗sD.

Reordering the summation over s ∈ S, we get∑
D∈D

∫
D

pD (divD(vT ) − div(v(z))) dz =
∑

s=D|D′∈S

msRs
div(v) · n⃗sD(pD − pD′

).

The Cauchy-Schwarz inequality and (3.10) imply that

∑
D∈D

∫
D

pD (divD(vT ) − div(v(z))) dz ≤ |pD|h

 ∑
s=D|D′∈S

m2
s

h2
D + h2

D′
|Rs

div(v)|2
 1

2

.

In order to conclude, it remains to prove that ∑
s=D|D′∈S

m2
s

h2
D + h2

D′
|Rs

div(v)|2
 1

2

≤ C∥v∥H1 ,

which is done in the following Lemma 5.8. ¤
LEMMA 5.8. Let T be a mesh of Ω. There exists C > 0 depending only on reg(T ), such

that for any function v in (H1(Ω))2, we have∑
s=D|D′∈S

m2
s

h2
D + h2

D′
|Rs

div(v)|2 ≤ C∥v∥2
H1 ,
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where vT = PT
mv and Rs

div(v) =
1

ms

∫
s

(
vK + vK∗

2
− v(z)

)
dz.

Proof. Let v ∈ (H1(Ω))2. We note v =
(

v1

v2

)
and the value vs :=

1
ms

∫
s

v(y)dy, for any

s ∈ S. We prove the result for any component of v, and then for the function v. For i = 1,
2. For instance, since s ∈ S, we can write s = [xK, xK∗ ] ⊂ K, we apply Lemma 5.1 on the
edge s and on the primal cell K:

∣∣vi
K − vi

s

∣∣2 =
∣∣∣∣ 1
msmK

∫
K

∫
s

(vi(z) − vi(x))dzdx

∣∣∣∣2 ≤ C
(diam(K̂))3

msmK

∫
bK

|∇vi(z)|2dz.

Thanks to the relation (3.2), we have
m2

s(diam(K̂))3

msmK(h2
D + h2

D′)
≤ C. It implies that

m2
s

h2
D + h2

D′

∣∣vi
K − vi

s

∣∣2 ≤ C

∫
bK

|∇vi(z)|2dz.

We deduce that

m2
s

h2
D + h2

D′
|Rs

div(v
i)|2 ≤ m2

s

h2
D + h2

D′

∣∣vi
K − vi

s

∣∣2 +
m2

s

h2
D + h2

D′

∣∣vi
K∗ − vi

s

∣∣2
≤ C

∫
bK∪cK∗

|∇vi(z)|2dz.

Thus, we obtain for i = 1, 2∑
s=D|D′∈S

m2
s

h2
D + h2

D′
|Rs

div(v
i)|2 ≤ C

∫
Ω

|∇vi(z)|2dz.

Summing over i gives the result. ¤

6. Stability of the scheme. In this section, we prove the uniform stability of the DDFV
scheme thanks to the right stabilization term. The stabilization already plays a role to prove
the well-posedness of our scheme, in Section 4. In Theorem 6.1, the choice of the stabilization
term à la Brezzi-Pitkäranta is crucial, since we get Remark 3.6. Let us first introduce the
bilinear form associated to our DDFV scheme (4.1):

DEFINITION 6.1. We define the bilinear form associated to our DDFV scheme (4.1):

∀ (uT , pD), (ũT , p̃D) ∈
(
R2

)T × RD,

B(uT , pD; ũT , p̃D) =JdivT (−2ηDDDuT + pDId), ũT KT
+ (divD(uT ) − λh2

D∆DpD, p̃D)D,

where the stabilization parameter λ is a positive number.
THEOREM 6.1 (Stability of the scheme). Assume that η satisfies (2.3). Then there exists

C1 > 0 and C2 > 0, depending only on the diameter of Ω, λ, Cη , Cη and reg(T ), such that

for each pair (uT , pD) ∈ E0 × RD such that
∑
D∈D

mDpD = 0, there exists ũT ∈ E0 and

p̃D ∈ RD:

|||∇DũT |||2 + ∥p̃D∥2 ≤ C1

(
|||∇DuT |||2 + ∥pD∥2

)
, (6.1)
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and

|||∇DuT |||22 + ∥pD∥2
2 ≤ C2B(uT , pD; ũT , p̃D). (6.2)

Proof. Let (uT , pD) ∈ E0 × RD such that
∑
D∈D

mDpD = 0. The proof of this Theorem is

obtained by building explicitly (ũT , p̃D) ∈ E0 × RD such that the relations (6.1) and (6.2)
hold.

Step 1. We apply the discrete Stokes formula Theorem 3.1 to B Definition 6.1, remark
that γT (uT ) = 0 and that DDuT is symmetric, we get

B(uT , pD;uT , pD) = (2ηDDDuT : DDuT )D − λ(h2
D∆DpD, pD)D.

Thanks to the inequality (2.3) and Remark 3.6, we obtain

B(uT , pD;uT , pD) ≥ 2Cη|||DDuT |||22 + λ|pD|2h.

Finally we use the discrete Korn inequality Theorem 5.1 in order to get

B(uT , pD;uT , pD) ≥ Cη|||∇DuT |||22 + λ|pD|2h. (6.3)

Note that the above estimate on the pressure is mesh dependent. Recall that the semi-norm
|.|h is itself mesh dependent. That is why we could not bound uniformly the L2-norm of the
pressure by the semi-norm |.|h.

Step 2. We use the Nec̆as Lemma (see [22, Corollary 2.4] or [4, Lemma III.1.17]): since
pD =

∑
D∈D

pD1D ∈ L2(Ω) and its integral over Ω is zero, there exists a constant C > 0

depending only on Ω, and v ∈ (H1
0 (Ω))2 such that div(v) = −pD and

∥v∥H1 ≤ C∥pD∥2. (6.4)

Let us choose vT = PT
mv the mean-value projection PT

mv, defined by (3.5). In particular,
we have vT ∈ E0. Using Lemma 5.5, we obtain

|||∇DvT |||2 ≤ C∥v∥H1 ≤ C∥pD∥2. (6.5)

The discrete Stokes formula Theorem 3.1 implies

B(uT , pD;vT , 0) = 2(ηDDDuT : ∇DvT )D − (pD, divD(vT ))D.

Using the Cauchy-Schwarz inequality, adding and subtracting
∑

D∈D

∫
D

pDdiv(v(z))dz, we
deduce

B(uT , pD;vT , 0) ≥− Cη|||DDuT |||2|||∇DvT |||2 −
∑
D∈D

∫
D

pDdiv(v(z))dz

−
∑
D∈D

∫
D

pD (divD(vT ) − div(v(z))) dz.

Since we have div(v) = −pD, the inequality (6.5) and Proposition 5.1 give

B(uT , pD;vT , 0) ≥− C|||∇DuT |||2∥pD∥2 + ∥pD∥2
2

−
∑
D∈D

∫
D

pD (divD(vT ) − div(v(z))) dz.
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Thanks to Proposition 5.5 and to estimate (6.4) we have∑
D∈D

∫
D

pD (divD(vT ) − div(v(z))) dz ≤ C ′|pD|h∥v∥H1 ≤ C|pD|h∥pD∥2.

We deduce that

B(uT , pD;vT , 0) ≥ ∥pD∥2
2 − C∥pD∥2|||∇DuT |||2 − C|pD|h∥pD∥2.

Using Young’s inequality, we obtain the existence of three constants C1, C2, C3 > 0, depend-
ing only on Ω, Cη and reg(T ), such that

B(uT , pD;vT , 0) ≥ C1∥pD∥2
2 − C2|||∇DuT |||22 − C3|pD|2h. (6.6)

Step 3. By bilinearity of B, the inequalities (6.3) and (6.6) give for each positive number
ξ > 0:

B(uT , pD;uT+ ξvT , pD)≥
(
Cη − ξC2

)
|||∇DuT |||22 + ξC1∥pD∥2

2 + (λ − ξC3) |pD|2h. (6.7)

Choosing a value of ξ > 0 small enough (depending only on Cη, C2, λ and C3) to have all
the constant coefficients in front of the norms positive, this inequality (6.7) yields an estimate
of the form (6.2). As the relation (6.1) is clearly verified by the pair ũT = uT + ξvT and
p̃D = pD, this concludes the proof. ¤

REMARK 6.1. It is clear that the proof breaks down if we do not consider the stabiliza-
tion term (i.e. if λ = 0).

An immediate consequence of this stability inequality is the continuous dependence of
the DDFV solution with respect to the data.

COROLLARY 6.1. Assume that η satisfies (2.3). There exists C > 0, depending only on
the diameter of Ω, λ, Cη, Cη and reg(T ), such that the couple (uT , pD) ∈ E0×RD, solution
of the scheme (4.1) with g = 0, satisfies:

|||∇DuT |||22 + ∥pD∥2
2 ≤ C∥fT ∥2

2.

Proof. Let (uT , pD) ∈ E0×RD solution of the scheme (4.1). Thanks to Theorem 6.1, there
exists ũT ∈ E0, p̃D ∈ RD, such that

|||∇DũT |||2 + ∥p̃D∥2 ≤ C1

(
|||∇DuT |||2 + ∥pD∥2

)
, (6.8)

and

|||∇DuT |||22 + ∥pD∥2
2 ≤ C2B(uT , pD; ũT , p̃D).

By Definition 6.1 of B, we get B(uT , pD; ũT , p̃D) = JfT , ũT KT . Using the Cauchy-
Schwarz inequality and the discrete Poincaré inequality (Theorem 5.2), we get

|||∇DuT |||22 + ∥pD∥2
2 ≤ C2∥fT ∥2∥ũT ∥2 ≤ C∥fT ∥2|||∇DũT |||2.

Using (6.8) and Young inequality, the claim is proved. ¤
7. Error estimates. We now provide an error estimate in the case when the exact so-

lution of the problem (2.1) lies in the space (H2(Ω))2 × H1(Ω) and the viscosity is smooth
enough. Our main result is the following

THEOREM 7.1. Assume that η satisfies (2.3) and (2.4). Assume that the solution (u, p)
of the problem (2.1) belongs to (H2(Ω))2 × H1(Ω). Let (uT , pD) ∈

(
R2

)T × RD be the
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solution of the scheme (4.1). There exists a constant C > 0 depending only on reg(T ), λ,
Cη, Cη , Cη , ∥u∥H2 and ∥p∥H1 , such that:

∥u − uT ∥2 + |||∇u −∇DuT |||2 ≤ Csize(T ),

and

∥p − pD∥2 ≤ Csize(T ).

As usual for the error analysis of finite volume methods, the consistency error which has
to be studied is the error on the numerical fluxes across each of the edges and dual edges in
the mesh. Therefore consistency errors are naturally defined on the diamond cells.

DEFINITION 7.1. We define the consistency errors on D for any v ∈ (H2(Ω))2 and for
any p ∈ H1(Ω)

Rv
D(z) = η(z)Dv(z) − ηDDDPm,γ(v)P

T
c v, for z ∈ D, D ∈ D,

Rp
D(z) = PD

mp − p(z), for z ∈ D, D ∈ D.

Recall that the edges σ and σ∗ are the diagonals of D = Dσ,σ∗ . Let us introduce the following
consistency errors on the numerical fluxes, for i ∈ {v, p}:

Ri
σ,K = −Ri

σ,L =
1

mσ

∫
σ

Ri
D(s)n⃗σKds,

Ri
σ∗,K∗ = −Ri

σ∗,L∗ =
1

mσ∗

∫
σ∗

Ri
D(s)n⃗σ∗K∗ds,

Ri
σ = |Ri

σ,K| = |Ri
σ,L|,

Ri
σ∗ = |Ri

σ∗,K∗ | = |Ri
σ∗,L∗ |.

We note the L2-norm of the consistency error as follows, for i = v, p:

∥Ri
σ∥2

2 =
∑

Dσ,σ∗∈D

mD|Ri
σ|2, ∥Ri

σ∗∥2
2 =

∑
Dσ,σ∗∈D

mD|Ri
σ∗ |2.

7.1. First step proof of Theorem 7.1. Let eT = Pm,gPT
c u − uT ∈ E0 denote the

approximation error for the velocity solution field and eD = PD
mp − pD ∈ RD the approxi-

mation error for the pressure solution field. Recall that g = γ(u). Thanks to (4.1) and (2.1),
we have ∀K ∈ M

divK(−2ηDDDuT + pDId) = fK,

− 1
mK

∫
K

div(2η(x)Du(x))dx +
1

mK

∫
K

∇p(x)dx = fK.

Therefore, we deduce

mKdivK(−2ηDDDeT + eDId) =mKdivK(−2ηDDDPm,gPT
c u + PD

mpId)

+
∫

K

div(2η(x)Du(x))dx −
∫

K

∇p(x)dx.

Using Definition 7.1, it becomes

mKdivK(−2ηDDDeT + eDId) = 2
∑

D∈DK

mσRu
σ,K +

∑
D∈DK

mσRp
σ,K.
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In the same way, we have ∀ K∗ ∈ M∗

mK∗
(
divK∗

(−2ηDDDeT + eDId)
)

= 2
∑

D∈DK∗

mσ∗Ru
σ∗,K∗ +

∑
D∈DK∗

mσ∗Rp
σ∗,K∗ .

Finally, the couple (eT , eD) ∈ E0 × RD satisfies:
divM(−2ηDDDeT + eDId) = RM,

divM∗
(−2ηDDDeT + eDId) = RM∗ ,

divD(eT ) − λh2
D∆DeD = RD,∑

D∈D

mDeD = 0,

(7.1)

where

RK =
2

mK

∑
D∈DK

mσRu
σ,K +

1
mK

∑
D∈DK

mσRp
σ,K, ∀ K ∈ M,

RK∗ =
2

mK∗

∑
D∈DK∗

mσ∗Ru
σ∗,K∗ +

1
mK∗

∑
D∈DK∗

mσ∗Rp
σ∗,K∗ , ∀ K∗ ∈ M∗

RD = divD(Pm,gPT
c u) − λh2

D∆DPD
mp, ∀ D ∈ D.

Remark that we have
∑
D∈D

mDRD = 0. Theorem 6.1 implies that there exists ẽT ∈ E0,

ẽD ∈ RD and C > 0 such that :

|||∇DẽT |||2 + ∥ẽD∥2 ≤ C
(
|||∇DeT |||2 + ∥eD∥2

)
, (7.2)

and

|||∇DeT |||22 + ∥eD∥2
2 ≤ CB(eT , eD; ẽT , ẽD). (7.3)

Thanks to Definition 6.1 of B and to (7.1), we have B(eT , eD; ẽT , ẽD) = JRT , ẽT KT +
(RD, ẽD)D. We note I := JRT , ẽT KT and T := (RD, ẽD)D.

Estimate of I . Using the fact that ẽK∗ = 0 for any K∗ ∈ ∂M∗ and the definition of I ,
we have

I =
1
2

∑
K∈M

∑
D∈DK

mσ(Rp
σ,K + 2Ru

σ,K) · ẽK

+
1
2

∑
K∗∈M∗∪∂M∗

∑
D∈DK∗

mσ(Rp
σ∗,K∗ + 2Ru

σ∗,K∗) · ẽK∗ .

Reordering the summation over the set of diamond cells and using the fact that Ri
σ,K =

−Ri
σ,L and Ri

σ∗,K∗ = −Ri
σ∗,L∗ for i = u, p, we deduce

I =
1
2

∑
Dσ,σ∗∈D

mσ(Rp
σ,K + 2Ru

σ,K) · (ẽK − ẽL)

+
1
2

∑
Dσ,σ∗∈D

mσ∗(Rp
σ∗,K∗ + 2Ru

σ∗,K∗) · (ẽK∗ − ẽL∗).
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Using Definition 3.1 of the discrete gradient and the Cauchy-Schwarz inequality, we obtain

I = −
∑

Dσ,σ∗∈D

mD

sin(αD)
(
Rp

σ,K + 2Ru
σ,K

)
·
(
(∇DẽT )τ⃗ K,L

)
−

∑
Dσ,σ∗∈D

mD

sin(αD)
(
Rp

σ∗,K∗ + 2Ru
σ∗,K∗

)
·
(
(∇DẽT )τ⃗ K∗,L∗

)
≤|||∇DẽT |||2

C

sin(αT )
[∥Ru

σ∥2 + ∥Ru
σ∗∥2 + ∥Rp

σ∥2 + ∥Rp
σ∗∥2] .

Estimate of T . First, Corollary 5.2 and Lemma 5.4 imply

∥divD(Pm,gPT
c u)∥2 ≤ Csize(T )∥u∥H2 .

Applying the Cauchy-Schwarz inequality to (divD(Pm,gPT
c u), ẽD)D, we get

(divD(Pm,gPT
c u), ẽD)D ≤ Csize(T )∥u∥H2∥ẽD∥2. (7.4)

Reordering the summation over s ∈ S in the term T1 := −(λh2
D∆DPD

mp, ẽD)D, we have as
in Remark 3.6

T1 = −λ
∑
D∈D

mDẽDh2
D∆DPD

mp = λ
∑

s=D|D′∈S

(h2
D + h2

D′)(PD′

m p − PD
mp)(ẽD′

− ẽD).

The Cauchy-Schwarz inequality and (3.10) imply:

|T1| ≤ λ

 ∑
s=D|D′∈S

(h2
D + h2

D′)(PD′

m p − PD
mp)2

 1
2

 ∑
s=D|D′∈S

(h2
D + h2

D′)(ẽD′
− ẽD)2

 1
2

≤ 2size(T )λ|ẽD|h

 ∑
s=D|D′∈S

(PD′

m p − PD
mp)2

 1
2

.

Using Lemmas 3.1 and 5.7, we obtain

|T1| ≤ Csize(T )∥ẽD∥2∥∇p∥2. (7.5)

Remark that T = (divD(Pm,gPT
c u), ẽD)D + T1, thanks to (7.4) and (7.5), we deduce

|T | ≤ Csize(T )∥ẽD∥2 (∥u∥H2 + ∥∇p∥2) .

Estimate of B. To sum up, (7.3) becomes

|||∇DeT |||22 + ∥eD∥2
2 ≤ C

sin(αT )
|||∇DẽT |||2 [∥Ru

σ∥2 + ∥Ru
σ∗∥2 + ∥Rp

σ∥2 + ∥Rp
σ∗∥2]

+ Csize(T )∥ẽD∥2 (∥u∥H2 + ∥∇p∥2) .

Finally, using (7.2), we deduce

|||∇DeT |||22 + ∥eD∥2
2 ≤C(∥Ru

σ∥2 + ∥Ru
σ∗∥2 + ∥Rp

σ∥2 + ∥Rp
σ∗∥2)(|||∇DeT |||2 + ∥eD∥2)

+ Csize(T ) (∥u∥H2 + ∥∇p∥2) (|||∇DeT |||2 + ∥eD∥2).
(7.6)

It remains to estimate the consistency errors.
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7.2. Analysis of the consistency error.

7.2.1. Estimate of Rv
σ . The consistency error Rv

D can be split into four different con-
tributions Rv,η

D , Rv,Dv
D , Rv,z

D and Rv,bd
D coming, respectively, from the errors due to the

approximation with respect to the space variable of the flux η(.)Dv(.), to the approximation
of the gradient, to the approximation of the viscosity and to the discretization of the boundary
data:

Rv
D(z) = Rv,η

D (z) + Rv,Dv
D + Rv,z

D + Rv,bd
D , (7.7)

where, for z ∈ D,

Rv,η
D (z) = η(z)Dv(z) − 1

mD

∫
D

η(x)Dv(x)dx,

Rv,Dv
D =

1
mD

∫
D

η(x)(Dv(x) − DDPT
c v)dx,

Rv,z
D =

(
1

mD

∫
D

η(x)dx − ηD

)
DDPT

c v,

Rv,bd
D = ηD(DDPT

c v − DDPm,γ(v)P
T
c v).

In order to control Rv
σ and Rv

σ∗ , let us estimate separately the different terms in the right-hand
side of (7.7).

PROPOSITION 7.1 (Error due to the discrete gradient). Assume that η satisfies (2.3). For
any mesh T on Ω, there exists a constant C > 0, depending only on reg(T ) and Cη , such
that for any function v in (H2(Ω))2, we have

|||Rv,Dv
D |||2 ≤ Csize(T )|||∇v|||H1 .

Proof. Using Jensen inequality and the inequality (2.3) we get

|||Rv,Dv
D |||22 ≤

∑
D∈D

∫
D

(η(x)(Dv(x) − DDPT
c v))2 dx ≤ C

2

η|||Dv − DDPT
c v|||22.

Remark 2.1 implies that

|||Dv − DDPT
c v|||2 ≤ |||∇v −∇DPT

c v|||2,

and then, applying Lemma 5.3, we get the result. ¤
PROPOSITION 7.2 (Error due to the viscosity variation). Assume that η satisfies (2.4).

For any mesh T on Ω, there exists a constant C > 0, depending only on reg(T ) and Cη, such
that for any function v in (H2(Ω))2, we have

|||Rv,z
D |||2 ≤ Csize(T )|||∇v|||H1 .

Proof. The Jensen inequality gives

|||Rv,z
D |||22 ≤

∑
D∈D

mD
1

mD

(∫
D

∫
D̄

|η(x) − η(z)|2 dµD̄(z)dx

)
|||DDPT

c v|||2F .

Thanks to (2.4) and Proposition 5.1 we have

|||Rv,z
D |||22 ≤ C2

η

∑
D∈D

(∫
D

∫
D̄

|x − z|2 dµD̄(z)dx

)
|||DDPT

c v|||2F ≤ Csize(T )2|||∇DPT
c v|||22.
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Finally, Corollary 5.1 gives the result. ¤
PROPOSITION 7.3 (Error due to the boundary data). Assume that η satisfies (2.3). For

any mesh T on Ω, there exists a constant C > 0, depending only on reg(T ) and Cη , such
that for any function v in (H2(Ω))2, whose trace is denoted by g = γ(v), we have

|||Rv,bd
D |||2 ≤ Csize(T )∥v∥H2 .

Proof. Inequality (2.3) and Proposition 5.1 imply

|||Rv,bd
D |||22 ≤ C

2

η|||DD(PT
c v − Pm,gPT

c v)|||22 ≤ C|||∇D
(
PT

c v − Pm,gPT
c v

)
|||22,

and finally, Lemma 5.4 gives the result. ¤
PROPOSITION 7.4 (Error due to the approximate flux). Assume that η satisfies (2.3) and

(2.4). For any mesh T on Ω, there exists a constant C > 0, depending only on reg(T ), Cη

and Cη, such that for any function v in (H2(Ω))2, we have

∑
Dσ,σ∗∈D

mD

[
1

mσ

∫
σ

|||Rv,η
D (s)|||2Fds +

1
mσ∗

∫
σ∗

|||Rv,η
D (s)|||2Fds

]
≤ Csize(T )2|||∇v|||2H1 .

Proof. We apply the Jensen inequality

|||Rv,η
D (s)|||2F ≤ 1

mD

∫
D

|||η(s)Dv(s) − η(x)Dv(x)|||2Fdx.

Thus, adding and subtracting η(s)Dv(x), Cauchy-Schwarz inequality implies

|||Rv,η
D (s)|||2F

≤ 2
mD

∫
D

|η(s) − η(x)|2 |||Dv(x)|||2Fdx +
2

mD

∫
D

|η(s)|2 |||Dv(s) − Dv(x)|||2Fdx.

Inequalities (2.3) and (2.4) imply

|||Rv,η
D (s)|||2F ≤ size(T )2

2C2
η

mD

∫
D

|||Dv(x)|||2Fdx +
2C

2

η

mD

∫
D

|||Dv(s) − Dv(x)|||2Fdx. (7.8)

We average the second integral on the right-hand side of (7.8) on σ and apply Lemma 5.1

1
mDmσ

∫
σ

∫
D

|||Dv(s) − Dv(x)|||2Fdxds ≤ C
h3

D

mσmD

∫
D

|∇(Dv(y)|2dy.

Note that we use here an extension of Lemma 5.1 to the matrix framework. Thanks to the
relation (3.2), it follows∑

Dσ,σ∗∈D

mD
1

mDmσ

∫
σ

∫
D

|||Dv(s) − Dv(x)|||2Fdxds ≤ Csize(T )2|||∇v|||2H1 .

As a result, we obtain∑
Dσ,σ∗∈D

mD
1

mσ

∫
σ

|||Rv,η
D (s)|||2Fds ≤ Csize(T )2|||∇v|||2H1 .
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We use the same computation for the similar term on the dual edge σ∗. ¤
Now, we can control Rv

σ and Rv
σ∗ , as follows

COROLLARY 7.1. Assume that η satisfies (2.3) and (2.4). For any mesh T on Ω, there
exists a constant C > 0, depending only on reg(T ), Cη and Cη, such that for any function v
in (H2(Ω))2, we have

∥Rv
σ∥2 + ∥Rv

σ∗∥2 ≤ Csize(T )|||∇v|||H1 .

Proof. Thanks to (7.7) and Cauchy-Schwarz inequality, we get∑
Dσ,σ∗∈D

mD|Rv
σ|2 ≤4

∑
Dσ,σ∗∈D

mD
1

mσ

∫
σ

|||Rv,η
D (s)|||2Fds + 4|||Rv,Dv

D |||22

+ 4|||Rv,z
D |||22 + 4|||Rv,bd

D |||22.

We conclude using Propositions 7.1, 7.2, 7.3 and 7.4. We proceed in the same way for the
estimate of Rv

σ∗ . ¤
7.2.2. Estimate of Rp

σ. Now, we can control Rp
σ and Rp

σ∗ , as follows
COROLLARY 7.2. For any mesh T on Ω, there exists a constant C > 0, depending only

on reg(T ), such that for any function p in H1(Ω), we have

∥Rp
σ∥2 + ∥Rp

σ∗∥2 ≤ Csize(T )∥∇p∥2.

Proof. We use Lemma 5.2 on a primal edge σ and a half diamond cell D1 such that
Dσ,σ∗ = D1 ∪ D2 with D1 ∩ D2 = σ for Rp

D(s)n⃗σK: for i = 1, 2

|Rp
σ|2 =

∣∣∣∣ 1
mσ

∫
σ

Rp
D(s)n⃗σKds

∣∣∣∣2
≤ ChDi

mσ

∫
Di

|||∇(Rp
D(z)n⃗σK)|||2Fds +

C

hDimσ

∫
Di

|(Rp
D(z)n⃗σK)|2dz.

Thanks to the relation (3.2) we have
mDhDi

mσ

≤ 1
2
size(T )2 and

mD

hDimσ

≤ C. Recall that

Rp
D = PD

mp − p, we deduce∑
Dσ,σ∗∈D

mD|Rp
σ|2 ≤ Csize(T )2

∑
D∈D

∫
D

|∇p(z)|2dz + C
∑
D∈D

∫
D

|PD
mp − p(z)|2dz.

Finally, Proposition 5.4 gives∑
Dσ,σ∗∈D

mD|Rp
σ|2 ≤ Csize(T )2∥∇p∥2

2.

We proceed in the same way for the estimate of Rp
σ∗ . ¤

7.3. Concluding the proof of Theorem 7.1. We may now collect all the previous results
in order to conclude the proof of Theorem 7.1, that we started in Section 7.1.
Proof. Having denoted by eT = Pm,gPT

c u − uT and eD = PD
mp − pD, we have obtained

the following inequality (7.6)

|||∇DeT |||22 + ∥eD∥2
2 ≤C(∥Ru

σ∥2 + ∥Ru
σ∗∥2 + ∥Rp

σ∥2 + ∥Rp
σ∗∥2)(|||∇DeT |||2 + ∥eD∥2)

+ Csize(T ) (∥u∥H2 + ∥∇p∥2) (|||∇DeT |||2 + ∥eD∥2).

Corollaries 7.1 and 7.2 imply

|||∇DeT |||2 ≤ Csize(T ) and ∥eD∥2 ≤ Csize(T ). (7.9)
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Estimate of ∥u − uT ∥2. We have

∥u − uT ∥2 ≤ ∥u − Pm,gPT
c u∥2 + ∥Pm,gPT

c u − uT ∥2.

Lemma 5.6 and the discrete Poincaré inequality (Theorem 5.2) imply

∥u − uT ∥2 ≤ Csize(T )|||∇u|||H1 + C|||∇DPm,gPT
c u −∇DuT |||2.

Finally, (7.9) gives the estimate of ∥u − uT ∥2.
Estimate of |||∇u −∇DuT |||2. We have

|||∇u −∇DuT |||2 ≤|||∇u −∇DPT
c u|||2 + |||∇DPT

c u −∇DPm,gPT
c u|||2

+ |||∇DPm,gPT
c u −∇DuT |||2.

Finally, Lemmas 5.3, 5.4 and (7.9) imply the estimate of |||∇u −∇DuT |||2.
Estimate of ∥p − pD∥2. We have

∥p − pD∥2 ≤ ∥p − PD
mp∥2 + ∥PD

mp − pD∥2.

We conclude thanks to Proposition 5.4 and (7.9). ¤
8. Numerical results. We first want to emphasize that the implementation of DDFV

schemes only requires a TPFA mesh structure, that is an edge structure with references to the
two neighbouring cells and to its two vertices. In particular, we never need to construct the
dual mesh and the diamond mesh.

We show here some numerical results obtained on a rectangular domain Ω =]0, 1[2.
Error estimates are given on four different tests with a stabilization coefficient chosen to be
λ = 10−3.

REMARK 8.1. Remark 6.1 brings out the theoretical role of λ. Reference [13] proves that
if λ is zero, the scheme is well-posed only for conformal triangle meshes with acute angles or
for non-conformal square meshes, otherwise for a mesh like in Figure 8.1(a) well-posedness
is open.

We present four test cases. For all of them, we give in the following the exact solution
and the original mesh. In order to illustrate error estimates, the family of meshes are obtained
by successive global refinement of the original mesh. In the first test, the exact solution is
the Green-Taylor vortex on a quadrangle and triangle mesh (see Figure 8.1(a)). In the second
one, the exact solution is a polynomial function on a non-conformal square mesh (see Figure
8.2(a)). The third and fourth tests are performed using a discontinuous viscosity function.

The exact solution (u, p) and the viscosity η being chosen, we define the source term f
and the boundary data g in such a way that (2.1) is satisfied. Since the pressure is smooth
in our example, we compare the approximate pressure to the center-value projection of the
exact pressure on Ω:

PD
c p = ((p(xD))D∈D) .

In Figures 8.1-8.4, we compare the L2-norm of the error obtained with the DDFV scheme,

for the pressure
∥PD

c p − pD∥2

∥PD
c p∥2

, for the velocity gradient
|||∇DPT

c u −∇DuT |||2
|||∇DPT

c u|||2
and for the

velocity
∥PT

c u − uT ∥2

∥PT
c u∥2

respectively, as functions of the size of the mesh size(T ) in a loga-

rithmic scale. The convergence rates shown on 8.1-8.4 are computed through a least square
linear approximation of the computed data.
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8.1. Test 1 (Green-Taylor vortex) - Constant viscosity. Let us consider the following
exact solution:

u(x, y) =

(
1
2 sin(2πx) cos(2πy)

− 1
2 cos(2πx) sin(2πy)

)
, p(x, y) =

1
8

cos(4πx) sin(4πy),

and the viscosity η(x, y) = 1. The considered mesh is a quadrangle and triangle mesh (see
Figure 8.1(a)). For smooth solution and viscosity, as predicted in Theorem 7.1, we observe

(a) Quadrangle and triangle mesh.
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FIG. 8.1. Test 1, Green-Taylor vortex, on a quadrangle and triangle mesh.

a first order convergence for the L2-norm of the velocity gradient and of the pressure, which
seems to be optimal. We obtain a second order convergence for the L2-norm of the velocity.
This super-convergence of the L2-norm is classical for finite volume method, however its
proof still remains an open problem see [32].

For λ = 0, we numerically observe the well-posedness and similar rates of convergence.

8.2. Test 2 (polynomial function) - Non constant viscosity. The exact solution on the
second test are the following polynomial functions:

u(x, y) =

(
1000x2(1−x)22y(1−y)(1−2y)

−1000y2(1−y)22x(1−x)(1−2x)

)
, p(x, y) = x2 + y2 − 2

3
,
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(a) Locally refined rectangular mesh.
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FIG. 8.2. Test 2, polynomial function, on a non conformal rectangular mesh.

and the viscosity η(x, y) = 2x + y + 1. We use the non conformal square mesh, arbitrar-
ily locally refined on the left bottom corner, as shown on Figure 8.2(a). For the velocity, its
gradient and the pressure, we numerically obtain convergence rates equal to 1.9, 1.3 and 2
respectively for the DDFV scheme. Note that the convergence rates obtained in this numer-
ical test are greater than the theoretical one given in Theorem 7.1. This is related to some
uniformity of the mesh away from the refinement area. Furthermore, let us emphasize that
the convergence rate is not sensitive to the presence of non conformal control volumes.

8.3. Test 3 - Discontinuous viscosity. The exact solution is the following:

u(x, y) =

(
−πy

sin(π(x − 0.5))

)
, p(x, y) = 2.5(x − y).

Here, we consider a discontinuous viscosity:

η(x, y) =

{
1 for x > 0.5

10−4 else.

We use the triangle mesh, shown on Figure 8.3(a). With this viscosity, the assumptions of
Theorem 7.1 are not satisfied. Nevertheless, the numerical test shows that we have a first
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(a) Triangle mesh.
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FIG. 8.3. Test 3, discontinuous viscosity on a triangle mesh.

order convergence for the velocity in H1
0 -norm and for the pressure in L2-norm. It seems

to come from the fact that Du is equal to zero across the discontinuity line of the viscosity
{x = 0.5} so that the jump of viscosity does not affect the consistency properties of the
numerical fluxes at the interface. We will see in the next test case that it is not always the
case.

8.4. Test 4 - Discontinuous viscosity. Let us consider the following exact solution:

u(x, y) =


{

y2 − 0.5y for y > 0.5

104(y2 − 0.5y) else.

0

 , p(x, y) = 2x − 1,

and the discontinuous viscosity:

η(x, y) =

{
1 for y > 0.5

10−4 else.

We use the non conformal quadrangle mesh, locally refined where the viscosity is discontin-
uous, shown on Figure 8.4(a). Once more here the assumptions on the viscosity of Theorem
7.1 are not satisfied and the symmetric part of the gradient Du is discontinuous across the
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(a) Non conformal quadrangle mesh.
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FIG. 8.4. Test 4, discontinuous viscosity on a non conformal quadrangle mesh.

interface {y = 0.5}. We observe that the scheme is still convergent even if we have lost the
first order convergence for the DDFV scheme, as expected.

In this test case, the discontinuities of the viscosity must be taken into account by the
scheme to overcome this consistency defect. We propose and analyse such a modification of
the present scheme in [29], following the strategy of [5].

9. Conclusion. In this article, we propose stabilized DDFV schemes with Dirichlet
boundary conditions for the Stokes problem with variable viscosity. The DDFV scheme
is proved to be well-posed and to be first order convergent in the L2-norm for the velocity
gradient, as well as for the velocity and for the pressure. These results are proved in the case
where the viscosity is smooth on the whole domain Ω. When the viscosity is no more smooth,
we still numerically observe the convergence of the DDFV scheme. Nevertheless, the method
is no more first order convergent.

In practice, the viscosity may present discontinuities across some interfaces, in multi-
phase flows, for instance. Such a viscosity function is no more Lipschitz continuous on the
whole domain Ω. For anisotropic scalar elliptic problems, in presence of discontinuities, a
suitable modification of the discrete gradient allows the authors of [5] to recover the first order
convergence. This approach can be adapted to the present framework for the Stokes interface
problem. We proved in [29] that the modified DDFV scheme presents a better consistency of
the fluxes near the places where discontinuities of the viscosity occur. Finally, the modified
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scheme is proved to be well-posed and first order convergent on 2D general meshes, even for
a discontinuous viscosity.
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