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STABILIZED DDFV SCHEMES FOR STOKES PROBLEM WITH VARIABLE

VISCOSITY ON GENERAL 2D MESHES

STELLA KRELL∗

Abstract. “Discrete Duality Finite Volume” schemes (DDFV for short) on general meshes are studied here

for Stokes problems with variable viscosity with Dirichlet boundary conditions. The aim of this work is to analyze

the wellposedness of the scheme and its convergence properties. The classical Stokes problem has already been

presented with DDFV discretization in [14]. They first considered the natural extension of the DDFV scheme

classically used for the Laplace problem. Unfortunately, its wellposedness is still an open problem on general

meshes. To overcome this difficulty, we provide here a stabilized DDFV scheme, for Stokes problems with variable

viscosity. This scheme is wellposed on general meshes and is proved to be first order convergent. Numerical

examples are given, including those on locally refined non conformal meshes.

Key words. Finite-volume methods, Stokes problem, DDFV methods, variable viscosity.

1. Introduction. This paper is devoted to the finite volume approximation of the 2D

steady Stokes model with variable viscosity:

−div (2η(x)Du) + ∇p = f , in Ω,

div(u) = 0, in Ω,
(1.1)

where u : Ω 7→ R2 is the velocity, p : Ω 7→ R is the pressure and Du = 1
2 (∇u + t∇u)

is the symmetric part of the gradient of u. Of course, this system will be supplemented with

boundary conditions. We assume that the viscosity η simply depends on the space variable.

Note that in more physically interesting models, not considered here, the viscosity depends

in fact on other characteristics of the flow like density, temperature, through the coupling

with other equations. Nevertheless, solving a problem like (1.1) is very often one of the steps

needed to approximate the solution of those more complex models by the mean of some time

splitting methods.

Since the velocity is divergence free, the momentum conservation equation can be written

−η∆u + ∇p = f when the viscosity is a constant. Hence, in this case, after integration of

the equation on each control volume, we only need to approximate the normal component of

∇u on the interface between two adjacent control volumes (see, for instance, [20, 21] and

[29] for methods on admissible and conformal meshes), whereas for variable viscosity, the

presence of the symmetric part of the gradient Du imposes to address the problem of the

reconstruction of the full velocity gradient on the whole domain, even for admissible and

conformal meshes. Moreover, even in the case where the viscosity is a constant, a possible

outflow boundary condition of physical interest is to impose the normal component of the

stress on the boundary. In that case, we really need to deal with the original formulation (1.1)

of the problem which makes appear the stress tensor 2ηDu − pId. Hence, from a numerical

point of view we need a discretization of Du in order to treat this problem. Although we will

only consider here the case of Dirichlet boundary conditions, we emphasize the fact that our

framework naturally allows to take into account those outflow boundary conditions.

Different methods of gradient reconstruction have been proposed since the last ten years,

one can refer for finite volume scheme to [3], [13], [18], [19] and [16, 25]. In all cases,

the crucial feature is that the summation-by-parts procedure permits to reconstitute, starting

from two point finite differences, the whole two dimensional discrete gradient. Many of them
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2 S. KRELL

have been compared in the benchmark [24] of the FVCA5 conference, for scalar diffusion

problems.

We consider here the class of finite volume schemes called “Discrete Duality Finite

Volume” (DDFV for short). The DDFV schemes have been first introduced and studied in

[16, 25] to approximate the solution of the Laplace equation on a large class of 2D meshes

including non-conformal and distorted meshes. Those schemes require unknowns on both

vertices and “centers” of control volumes. These two sets of unknowns allow to reconstitute

two-dimensional discrete gradient (defined on new geometric elements called diamonds) and

discrete divergence operators that are in duality in a discrete sense (see Theorem 3.2). The

number of unknowns doubles compared to usual cell-centered finite volume schemes, but the

gradient approximation becomes simple and quite efficient. In the benchmark [24], we see

that the DDFV method is a competitive first order method especially as far as the accuracy of

the gradient is concerned. The DDFV framework is thoroughly recalled in Section 3.

From now on, the DDFV strategy has then been applied for several linear and nonlinear

problems: linear anisotropic diffusion equations in [6, 16, 25, 26]; convection-diffusion prob-

lems in [10]; div-curl problems in [15]; the nonlinear diffusion equations for Leray-Lions

operators in [2, 5]. We can also mention [11] where the DDFV method is adapted to solve

numerically a bidomain problem arising in biomathematics.

Concerning the DDFV discretization of the Stokes problem we are interested in here, the

first results can be found in [14] where the author first considered the natural extension of

the DDFV scheme classically used for the Laplace problem, that is: velocity unknowns lo-

cated at both vertices and centers of control volumes and pressure unknowns at the diamond

cells (those cells where the discrete gradient operator is defined). Unfortunately, the corre-

sponding scheme is only proved to be wellposed for particular classes of meshes. Indeed,

the wellposedness result relies on a uniform discrete inf-sup condition, which is still an open

problem for general meshes.

To overcome this difficulty, we propose here to add to this scheme a stabilization term in

the mass conservation equation. This stabilization term is inspired by the well known Brezzi-

Pitkäranta scheme [8] in the finite element framework. We then prove that the DDFV stabi-

lized scheme is wellposed for 2D general meshes. Moreover, the stabilization term plays a

key role in proving error estimates. Indeed, for both finite element schemes [8] and finite vol-

ume schemes [20], the appropriate choice of the stabilization term enables to prove a stability

result (see Theorem 6.1) which is the first step towards the error estimates. More precisely,

we prove here a first order convergence for the velocity, for its gradient and for the pressure

in the L2-norm provided that the exact solution satisfies usual regularity assumptions.

Note that, an alternative strategy has also been proposed in [14] to overcome the diffi-

culties of the analysis of the non-stabilized scheme. The author proposed to formulate the

Stokes problem in the vorticity-velocity-pressure form and then to approximate the velocity

on the diamond cells and the pressure on both vertices and centers of primal control volumes.

This approach uses the fact that ∆v is equal to ∇div v− curl curl v, for any vector field v.

Thus, it seems that it can not be easily generalized to the case where the viscosity is variable.

Only the 2D case is on purpose in this article. 3D extensions of DDFV schemes have

been proposed in [9, 12, 27] for linear and nonlinear anisotropic diffusion equations and the

extension of the present work is under study.

Outline. This paper is organized as follows. Section 2 is dedicated to introducing basic

notation. In Section 3, we recall the DDFV framework. In Section 4, we introduce the DDFV

stabilized scheme for the Stokes problem (2.1) and prove its wellposedness (see Theorem

4.1). In Section 5, we present the main results of discrete functional analysis necessary for

the theoretical study of the finite volume method. These results include properties of the
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discrete strain rate tensor, in particular we prove a discrete Korn inequality (see Theorem

5.1). In Section 6, we study the stability properties of the approximate solution with respect

to the data (see Corollary 6.1). Then we prove error estimates provided that the exact solution

lies in (H2(Ω))2×H1(Ω) (see Theorem 7.1). Finally, in Section 8, theoretical error estimates

are illustrated with numerical results. In the concluding Section 9, we discuss the extension

of our study to some fully practical variants of the finite volume scheme and to even more

general viscosities, for instance discontinuous viscosities, that will be addressed in future

works.

2. Stokes model. We are concerned with the finite volume approximation of the Stokes

equations with variable viscosity: Find u : Ω → R2 and p : Ω → R such that:

div (−2η(x)Du + pId) = f , in Ω,

div(u) = 0, in Ω,

u = g, on ∂Ω,

∫

Ω

p(x)dx = 0,

(2.1)

For the sake of simplicity, we restrict the presentation to the case of Dirichlet boundary condi-

tions and regular right-hand sides. We assume that Ω is a polygonal connected open bounded

subset of R2, f is a function in (L2(Ω))2, the viscosity η is a function in L∞(Ω) and g is a

function in (H
1

2 (∂Ω))2 which verifies the compatibility condition:
∫

∂Ω

g(s) · ~nds = 0. (2.2)

Assumptions for the viscosity. The viscosity η : Ω → R in (2.1) is Lipschitz continuous

on the whole domain Ω̄ and is supposed to be bounded : there exists Cη, Cη, C̄η > 0 such

that

Cη ≤ η(x) ≤ C̄η, for a.e. x ∈ Ω, (2.3)

and

|η(x) − η(x′)| ≤ Cη|x − x′|, ∀x, x′ ∈ Ω̄. (2.4)

The wellposedness of the problem (2.1) is studied in [7] with a constant viscosity. In

order to study convergence rates of our approximate solution, we need to assume regularity

of the solution (u, p) of the problem (2.1). In [1], it is show that if Ω is a convex polygon, g
is equal to zero and the viscosity is smooth, then the regularity of the solution is the following

u ∈ (H2(Ω))2 and p ∈ H1(Ω).

In the sequel, ‖ · ‖2 stands for the natural L2-norm when we consider scalar and vector

functions and for the Frobenius norm when we consider matrix functions:

|||ξ|||2F = (ξ : ξ) , ∀ξ ∈ M2(R),

|||ξ|||22 =

∫

Ω

|||ξ(x)|||2Fdx, ∀ξ ∈ L2(Ω,M2(R)),

where (ξ : ξ̃) =
∑

1≤i,j≤2

ξi,j ξ̃i,j = Trace(tξξ̃), ∀ξ, ξ̃ ∈ M2(R).

REMARK 2.1. The matrix norm ||| · |||F satisfies the following property

∣∣∣∣
∣∣∣∣
∣∣∣∣
A + tA

2

∣∣∣∣
∣∣∣∣
∣∣∣∣
F

≤ |||A|||F , ∀A ∈ M2(R).
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3. The DDFV framework.

3.1. The meshes and notation.

The meshes. We recall here the main notation and definitions taken from [2]. A DDFV

mesh T is constituted by a primal mesh M ∪ ∂M and a dual mesh M
∗ ∪ ∂M

∗ (Figure 3.1).

K
K∗

xK∗

Inside node xK∗ of the dual cell

The boundary dual cell K∗

Node xK∗ of the boundary dual cell
xK

Primal control volumes
Inside dual cell K∗

Inside node xK of the primal cell
Node xK of the boundary primal cell

FIG. 3.1. The mesh T

The primal mesh M is a set of disjoint open polygonal control volumes K ⊂ Ω such that

∪K = Ω. We denote by ∂M the set of edges of the control volumes in M included in ∂Ω, that

we consider as degenerate control volumes. To each control volume and degenerate control

volume K ∈ M∪∂M, we associate a point xK. For each degenerate control volume K ∈ ∂M,

we choose the point xK on the middle point of the control volume. This family of points is

denoted by X = {xK, K ∈ M ∪ ∂M}.

Let X∗ denote the set of the vertices of the primal control volumes in M that we split into

X∗ = X∗
int ∪X∗

ext where X∗
int ∩∂Ω = ∅ and X∗

ext ⊂ ∂Ω. With any point xK∗ ∈ X∗
int (resp.

xK∗ ∈ X∗
ext), we associate the polygon K∗ whose vertices are {xK ∈ X, such that xK∗ ∈

K, K ∈ M} (resp. {xK∗} ∪ {xK ∈ X, such that xK∗ ∈ K, K ∈ (M ∪ ∂M)}) sorted with

respect to the clockwise order of the corresponding control volumes. This defines the set

M
∗ ∪ ∂M

∗ of dual control volumes.

REMARK 3.1. Remark that our dual control volumes differ from the one proposed in

[15] or [26]. In [15], they built K∗ by joining not only the barycenters xK associated to the

elements of the primal mesh of which xK∗ is a vertex but also the middle points of the edges

of which xK∗ is a vertex. This construction is usually called the barycentric dual mesh.

For all control volumes K and L, we assume that ∂K ∩ ∂L is either empty or a common

vertex or an edge of the primal mesh denoted by σ = K|L. We note by E the set of such edges.

We also note σ∗ = K∗|L∗ and E∗ for the corresponding dual definitions.

Given the primal and dual control volumes, we define the diamond cells Dσ,σ∗ being the

quadrangles whose diagonals are a primal edge σ = K|L = (xK∗ , xL∗) and a corresponding

dual edge σ∗ = K∗|L∗ = (xK, xL), (see Fig. 3.2). Note that the diamond cells are not

necessarily convex. If σ ∈ E ∩ ∂Ω, the quadrangle Dσ,σ∗ degenerate into a triangle. The set

of the diamond cells is denoted by D and we have Ω = ∪
D∈D

D.

Notation. For any primal control volume K ∈ M ∩ ∂M, we note

• mK its Lebesgue measure,

• EK the set of its edges (if K ∈ M), or the one-element set {K} if K ∈ ∂M.

• DK = {Dσ,σ∗ ∈ D, σ ∈ EK},

• dK its diameter,
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xL

~nσ
∗

K
∗

xK

~τK,L

αD

xL∗

xK∗

xD

~τK∗
,L∗

~nσK = ~nD

σ∗
= K

∗|L∗

σ = K|L σ = K|L

dK∗
,L

dL∗
,L

xK∗

xL∗

xK

xD

xK

xL∗

xK∗

xL

σ∗
= K

∗|L∗

σ = K|L

σ∗
= K

∗|L∗

xL

FIG. 3.2. Notations in the diamond cells. (Left) Interior cell. (Middle) Boundary cell. (Right) Non convex

interior cell.

• BK := B(xK, ρK) ⊂ Ω the open ball of radius ρK > 0 for K ∈ M, mBK
its measure.

The value ρK is chosen such that the inclusion is verified.

• σK = K ∩ ∂Ω for K ∈ ∂M, mσK
its length.

We will also use corresponding dual notation: mK∗ , EK∗ , DK∗ , dK∗ , BK∗ , mBK∗ , ρK∗ , σK∗

and mσK∗ . For a diamond cell D = Dσ,σ∗ whose vertices are (xK, xK∗ , xL, xL∗), we note

• xD the center of the diamond cell D: xD = σ ∩ σ∗,

• mD its measure,

• mσ the length of the primal edge σ,

• mσ∗ the length of the dual edge σ∗,

• ~nσK the unit vector normal to σ oriented from xK to xL,

• ~nσ
∗

K
∗ the unit vector normal to σ∗ oriented from xK∗ to xL∗ ,

• ~τ K,L the unit vector parallel to σ∗ (oriented from xK to xL),

• ~τ K
∗,L∗ the unit vector parallel to σ (oriented from xK∗ to xL∗ ),

• αD the angle between ~τ K,L and ~τ K
∗,L∗ ,

• dK∗,L (respectively dL∗,L) the length between xK∗ (respectively xL∗ ) and xL,

• hD its diameter,

• s its edges (for example s = [xK, xK∗ ]),
• ED = {s, s ∈ ∂D and s 6⊂ ∂Ω} the set of edges of D,

• S = {s ∈ ED, ∀ D ∈ D} the set of inside edges of the diamond cells D ∈ D,

• ms the length of a diamond edge s,

• ms∗ the length between xD and xD′ if s = D|D′,

• ~nsD the unit vector normal to s = D|D′ oriented from D to D
′.

In a diamond cell D ∈ D, we have two direct orthonormal basis: (~τ K
∗,L∗ , ~nσK) and

(~nσ
∗

K
∗ , ~τ K,L). The boundary unit normal vectors are denoted by ~nD ∈ (R2)D such that

~nD = ~nσK. We distinguish the interior diamond cells and the boundary diamond cells:

Dext = {D ∈ D, D ∩ ∂Ω 6= ∅} and Dint = D\Dext.

REMARK 3.2. In practice, during implementation, we do not construct explicitly the dual

mesh but a local data structure, that contains the information on the vertices and centers of a

diamond cell, we also calculate the measures of D∩K, D∩K∗ and the normal vectors mσ~nσK,

mσ∗~nσ
∗

K
∗ , which depend on the center xD of the diamond cell D. By perusing this structure,

we assemble completely the matrix.

ASSUMPTION 3.1. We assume that all the diamond cells D are convex.

Assumption 3.1 implies that the center xD of the diamond cell D (resp. the node xK∗ of

the dual cell K∗) is inside D (resp. K∗). We also have for all (K∗, L∗) ∈ M
∗ ∪ ∂M

∗ such that

K∗ 6= L∗, we have
◦

K∗ ∩
◦

L∗= ∅. It is not the case if we do not assume 3.1 (see Figure 3.3).
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xL∗

Primal cells

xK∗

Dual cell K∗

Dual cell L∗

FIG. 3.3. An example where two dual cells K
∗ and L

∗ overlap: L
∗ ⊂ K

∗.

REMARK 3.3. If Assumption 3.1 is not satisfied, for instance in Figure 3.4, we take the

barycentric dual mesh (defined in Remark 3.1). In that case, the center xD of the diamond

cell Dσ,σ∗ is defined as the barycenter of the primal edge σ.

D non convex

FIG. 3.4. An example where the diamond cells D could be non convex.

Mesh regularity measurement. Set size(T ) the maximum of the diameters of the dia-

mond cells in D. To measure how flat the diamond cells can be, we note αT the unique real

in ]0, π
2 ] such that sin(αT ) := min

D∈D

| sin(αD)|. We introduce a positive number reg(T ) that

quantifies the regularity of a given mesh and is useful to perform the convergence analysis of

finite volume schemes like in [2] and [5].

NT := sup
x∈Ω

#
{
K∗, x ∈ ̂K∗ ∪ BK∗

}
+ sup

x∈Ω
#

{
K, x ∈ K̂ ∪ BK

}

+ sup
x∈Ω

#
{
D, x ∈ D̂ ∪ BD

}
,

reg(T ) := max

(
1

sin(αT )
,NT ,max

D∈D

max
s∈ED

hD

min(ms, ms∗)
, max

K∈M

D∈DK

dK

hD

,

max
K∗∈M∗∪∂M∗

D∈D
K∗

dK∗

hD

, max
K∈M

dK

ρK

+
ρK

dK

, max
K∗∈M∗∪∂M∗

dK∗

ρK∗

+
ρK∗

dK∗


 ,

(3.1)

where Ê is the convex hull of E. For instance, this number reg(T ) is involved in the following

geometrical result: there exists two constants C1 and C2 depending on reg(T ) such that for

any K ∈ M, K∗ ∈ M
∗ ∪ ∂M

∗ and D ∈ D such that D ∩ K 6= ∅ and D ∩ K∗ 6= ∅, we have

C1mK ≤ mD ≤ C2mK, C1mK∗ ≤ mD ≤ C2mK∗ .

We define two discrete sets RT and
(
R2

)D
. The first one RT associates to all primal

cells K ∈ M ∪ ∂M a value uK ∈ R and to all dual cells K∗ ∈ M
∗ ∪ ∂M

∗ a value uK∗ ∈ R.
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The second one
(
R2

)D
associates to all diamond cells D ∈ D a value φD ∈ R

2. So that we

have

uT ∈ R
T ⇐⇒ uT =

(
(uK)

K∈(M∪∂M) , (uK∗)
K∗∈(M∗∪∂M∗)

)
,

φD ∈
(
R

2
)D ⇐⇒ φD = (φD)D∈D.

We recall the two discrete operators defined in [2] for a scalar-value function.

DEFINITION 3.1. We define a gradient operator of a scalar fields in RT denoted by

∇D : uT ∈ RT 7→ (∇DuT )D∈D
∈

(
R2

)D
, as follows:

∇DuT =
1

2mD

[(uL − uK)mσ~nσK + (uL∗ − uK∗)mσ∗~nσ
∗

K
∗ ] , ∀D ∈ D.

Using the value of the diamond cell measure 2mD = sin(αD)mσmσ∗ , it can also be written

as follows:

∇DuT =
1

sin(αD)

[
uL − uK

mσ∗

~nσK +
uL∗ − uK∗

mσ

~nσ
∗

K
∗

]
.

We also define the discrete divergence of a vector field in
(
R2

)D
.

DEFINITION 3.2. We define a discrete divergence operator applied to vector fields in(
R2

)D
denoted by divT : φD = (φD)D∈D ∈

(
R2

)D 7→ divT φD ∈RT , as follows:

divKφD =
1

mK

∑

σ∈∂K

mσφD · ~nσK, ∀K ∈ M, and divKφD = 0, ∀K ∈ ∂M,

divK∗

φD =
1

mK∗

∑

σ∗∈∂K∗

mσ∗φD · ~nσ
∗

K
∗ , ∀K∗ ∈ M

∗ ∪ ∂M
∗.

In [2, 15, 16], the discrete gradient and discrete divergence for a scalar-value function

are linked by a discrete Stokes formula, as follows.

THEOREM 3.1. For all ψD ∈ (R2)D and for all uT ∈ RT :

[divT ψD, uT ]T = −
∑

D∈D

mDψD · ∇DuT +
∑

Dσ,σ∗∈Dext

mσ(ψD · ~nD)γσ(uT ),

where [vT , uT ]T =
1

2

∑

K∈M

mKuKvK +
1

2

∑

K∗∈M∗∪∂M∗

mK∗uK∗vK∗ , ∀uT , vT ∈ RT and

γσ(uT ) =
dK∗,L(uK∗ + uL) + dL∗,L(uL∗ + uL)

2mσ

, ∀Dσ,σ∗ ∈ Dext and ∀uT ∈ RT .

3.2. Unknowns and discrete projections. The DDFV method for the Stokes problem

associates to any primal control volume K ∈ M ∪ ∂M an unknown value uK ∈ R
2 for the

velocity, to any dual control volume K∗ ∈ M
∗ ∪ ∂M

∗ an unknown value uK
∗ ∈ R

2 for the

velocity and to any diamond cell D ∈ D an unknown value pD ∈ R for the pressure. The

approximate solution on the mesh (T , D) is denoted by (uT , pD) ∈
(
R2

)
T × RD:

uT =
(
(uK)

K∈(M∪∂M) , (uK
∗)

K∗∈(M∗∪∂M∗)

)
, pD =

(
(pD)

D∈D

)
.
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We piecewise the two constant functions uM =
∑

K∈M

uK1K and uM
∗

=
∑

K∗∈M∗∪∂M∗

uK
∗1K∗ ,

where 1E is the characteristic function of any set E. As a consequence, one can define the

L2-norm of uT .

‖uT ‖2
2 =

1

2

(
‖uM‖2

2 + ‖uM
∗‖2

2

)
, ∀uT ∈

(
R

2
)T

.

In a same way, we associate the piecewise constant function to a discrete function pD

pD ∼
∑

D∈D

pD1D, and ‖pD‖2
2 =

∑

D∈D

mD|pD|2, ∀pD ∈ R
D.

We define the two projections of functions defined on Ω over the primal and dual meshes

T , the mean-value one and the center-value one. We begin with the mean-value projection.

We call the interior mean-value projection for any integrable vector function v on Ω:

P
M

mv =

((
1

mBK

∫

BK

v(x)dx

)

K∈M

)
,

P
M

∗

m v =

((
1

mBK∗

∫

BK∗

v(x)dx

)

K∗∈M∗

)
.

(3.2)

Then we consider the discrete mean-value boundary data, for any integrable vector function

v on Ω̄, denoted by P
∂Ω

m and defined as follows:

P
∂Ω

m v =

((
1

mσK

∫

σK

v(x)dx

)

K∈∂M

,

(
1

mσK∗

∫

σK∗

v(x)dx

)

K∗∈∂M∗

)
. (3.3)

Finally, we define the mean-value projection for any integrable vector function v on Ω̄ with

the two other projections as follows:

P
T

mv =
(
P

M

mv, PM
∗

m v, P∂Ω

m v
)
. (3.4)

In particular, the mean-value projection is well defined for any vector function v lying in

(H1(Ω))2. The second one is the center-value projection for any continuous function v on

Ω:

P
T

c v = ((v(xK))K∈(M∪∂M), (v(xK∗))K∗∈(M∗∪∂M∗)). (3.5)

In particular, the center-value projection is well defined for any vector function v lying in

(H2(Ω))2.

We also define a mean-value projection on Ω over the diamond mesh D for any integrable

function q:

P
D

mq =

((
1

mD

∫

D

q(x)dx

)

D∈D

)
. (3.6)

We introduce two discrete subsets of
(
R2

)
T

needing in the following

E0 =
{
vT ∈

(
R

2
)T

s. t. vK =0, ∀K ∈ ∂M and vK
∗ =0, ∀K∗ ∈ ∂M

∗
}

,

Em,g =
{
vT ∈

(
R

2
)T

s. t. vK =(P∂Ω

m g)K, ∀K ∈ ∂M and vK
∗ =(P∂Ω

m g)K∗ , ∀K∗ ∈ ∂M
∗
}

.
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We define the projection Pm,g on the set Em,g:

Pm,g :
(
R2

)
T −→ Em,g

uT 7−→ ((uK)K∈M, (P∂Ω

m g)K∈∂M, (uK
∗)K∗∈M∗ , (P∂Ω

m g)K∗∈∂M∗).
(3.7)

3.3. Discrete operators. In this subsection, we define the discrete operators which are

needed in order to write the DDFV scheme. We begin with the discrete gradient.

DEFINITION 3.3 (Discrete gradient). We define a consistent approximation of the gra-

dient operator of a vector field in
(
R2

)
T

denoted by ∇D : uT ∈
(
R2

)
T 7→ (∇DuT )D∈D

∈
(M2(R))D, as follows:

∇DuT =

(
t
(∇DuT

1 )
t
(∇DuT

2 )

)
, ∀D ∈ D,

where ∇DuT

i is defined in Definition 3.1, for i = 1, 2.

DEFINITION 3.4 (Discrete divergence). We define a consistent approximation of the

divergence operator applied to discrete tensor fields denoted by divT : ξD = (ξD)D∈D ∈
(M2(R))D 7→ divT ξD ∈

(
R2

)
T

, as follows:

divKξD =
1

mK

∑

σ∈∂K

mσξD~nσK, ∀K ∈ M, and divKξD = 0, ∀K ∈ ∂M,

divK
∗

ξD =
1

mK∗

∑

σ∗∈∂K∗

mσ∗ξD~nσ
∗

K
∗ , ∀K∗ ∈ M

∗ ∪ ∂M
∗.

To write the DDFV scheme, we also need to denote the discrete divergence on the primal

mesh and on the interior dual mesh as follows:

divMξD =
((

divKξD
)
K∈M

)
, divM

∗

ξD =
((

divK
∗

ξD
)
K∗∈M∗

)
.

Also, these two operators are in discrete duality since they can be linked by a discrete

Stokes formula Theorem 3.2. Thanks to the discrete gradient we can define a discrete strain

rate tensor and a discrete divergence of a vector field in
(
R2

)
T

.

DEFINITION 3.5 (Discrete strain rate tensor). Let us define a discrete strain rate tensor of

a vector field in
(
R2

)
T

, by using the discrete gradient: DD : uT ∈
(
R2

)
T 7→ (DDuT )D∈D ∈

(M2(R))D, such that DDuT =
∇DuT +

t
(∇DuT )

2
.

DEFINITION 3.6. Let us define a discrete divergence of a vector field in
(
R2

)
T

, by using

the discrete gradient: divD : uT ∈
(
R2

)
T 7→ (divDuT )D∈D ∈ RD, such that divDuT =

Trace(∇DuT ).
REMARK 3.4. Remark that divDuT can be expressed in the following way:

divDuT =
1

2mD

[mσ(uL − uK) · ~nσK + mσ∗(uL
∗ − uK

∗) · ~nσ
∗

K
∗ ] .

The discrete counterpart of the equality

∫

D

div(u)(z)dz =

∫

ED

(u(s),~nD)ds is the following:

mDdivD(uT ) =
∑

s∈ED

ms

(
uK

∗ + uK

2
,~nsD

)
, ∀ uT ∈

(
R

2
)T

. (3.8)
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Finally, we define the stabilization term as follows.

DEFINITION 3.7. The stabilization term is a non consistent discrete approximation of

2 size(T )∆p, denoted by ∆D : pD ∈ RD 7→ ∆DpD ∈ RD, and defined as follows:

∆DpD =
1

mD

∑

s=D|D′∈ED

h2
D

+ h2
D′

h2
D

(pD
′ − pD), ∀ D ∈ D.

Note that we do not need a consistent discrete form of a laplacian.

3.4. Discrete Stokes formula. We want to generalize the Theorem 3.1 for vector-value

functions. First of all, we define trace operators on both
(
R2

)
T

and (R2)D.

Set γT : uT ∈
(
R2

)
T 7→ γT (uT ) = (γσ(uT ))σ∈∂M ∈ (R2)∂M, as follows:

γσ(uT ) =
dK∗,L(uK

∗ + uL) + dL∗,L(uL
∗ + uL)

2mσ

, ∀ σ ∈ ∂M.

This trace operator enables to impose the Dirichlet boundary conditions in a weak way. The

second one is denoted by γD : φD ∈ (R2)D 7→ (φD)D∈Dext
∈ (R2)Dext .

Then, we define the four following inner products

JvT ,uT KT =
1

2

(
∑

K∈M

mKuK · vK +
∑

K∗∈M∗∪∂M∗

mK∗uK
∗· vK

∗

)
, ∀uT ,vT∈

(
R

2
)T

,

(φD,vT )∂Ω =
∑

Dσ,σ∗∈Dext

mσφD · vσ, ∀ φD ∈ (R2)Dext ,vT ∈ (R2)∂M,

(pD, qD)D =
∑

D∈D

mDpDqD, ∀pD, qD ∈ R
D,

(ξD : φD)D =
∑

D∈D

mD(ξD : φD), ∀ξD, φD ∈ (M2(R))D.

The following result is the generalization of the discrete Stokes formula 3.1 to the case of

vector-value functions.

THEOREM 3.2 (Discrete Stokes formula). For all ξD ∈ (M2(R))D, uT ∈
(
R2

)
T

:

JdivT ξD,uT KT = −(ξD : ∇DuT )D + (γD(ξD~nD), γT (uT ))∂Ω.

Proof. Let ξD ∈ (M2(R))D with ξD =

(
tξD

1
tξD

2

)
, ξD

1 , ξD

2 ∈ R2, and uT =

(
uT

vT

)
∈

(
R2

)
T

.

By definition of (· : ·)D, we have

(ξD : ∇DuT )D =
∑

D∈D

mDξD

1 · ∇DuT +
∑

D∈D

mDξD

2 · ∇DvT .

We apply the discrete Stokes formula Theorem 3.1 to each component of the velocity

(ξD : ∇DuT )D = − [divT ξD

1 , uT ]T +
∑

Dσ,σ∗∈Dext

mσ(ξD

1 · ~nD)γσ(uT )

− [divT ξD

2 , vT ]T +
∑

Dσ,σ∗∈Dext

mσ(ξD

2 · ~nD)γσ(vT ).
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Furthermore, we have as (ξD~nD) · γσ(uT ) = (ξD
1 ·~nD)γσ(uT ) + (ξD

2 ·~nD)γσ(vT ), we get

∑

Dσ,σ∗∈Dext

mσ(ξD

1 ·~nD)γσ(uT )+
∑

Dσ,σ∗∈Dext

mσ(ξD

2 ·~nD)γσ(vT ) = (γD(ξD~nD), γT (uT ))∂Ω.

Apply the first inner product J·, ·KT and Definition 3.4, we get

2JdivT ξD,uT KT =
∑

K∈M

∑

σ∈∂K

mσuK · (ξD~nσK) +
∑

K∗∈M∗∪∂M∗

∑

σ∗∈∂K∗

mσ∗uK
∗ · (ξD~nσ

∗
K

∗).

We conclude using as previous that uK · (ξD~nσK) = (ξD
1 · ~nσK)uK + (ξD

2 · ~nσK)vK and

uK
∗ · (ξD~nσ

∗
K

∗) = (ξD
1 · ~nσ

∗
K

∗)uK∗ + (ξD
2 · ~nσ

∗
K

∗)vK∗ , so that

[divT ξD

1 , uT ]T + [divT ξD

2 , vT ]T = JdivT ξD,uT KT ,

which concludes the proof. ¤

In addition, we define a mesh dependent seminorm | · |h over RD by:

|pD|2h =
∑

s=D|D′∈S

(h2
D

+ h2
D′)(pD

′ − pD)2, ∀pD ∈ R
D. (3.9)

REMARK 3.5. We have, for any pD ∈ RD, by reorganizing the summation over s ∈ S,

−(h2
D∆DpD, pD)D =

∑

D∈D

pD
∑

s∈ED

(h2
D

+ h2
D′)(pD − pD

′

)

=
∑

s=D|D′∈S

(h2
D

+ h2
D′)(pD

′ − pD)2

= |pD|2h.

4. DDFV schemes for the Stokes equation. We note ηD =

∫

D̄

η(s)dµD̄(s), for all

D ∈ D, where µD̄ is a probability measure on D̄. This includes the case ηD = η(xD) or

ηD =
1

mD

∫

D

η(x)dx. Furthermore, we always have the following inequality

Cη ≤ ηD ≤ C̄η, ∀D ∈ D.

As claimed in introduction, we approximate the velocity on both vertices and centers of

primal control volumes and the pressure on the diamond cells. We integrate the momentum

conservation law of problem (2.1) on the primal mesh M and on the interior dual mesh

M
∗. The mass conservation equation is directly approached on the diamond mesh using

the discrete operator divD and a stabilized term inspired by the well known Brezzi-Pitkäranta

scheme. We impose the Dirichlet boundary conditions on ∂M and on ∂M
∗. Finally, the

integral of the pressure is imposed to be equal to zero.

The scheme for the problem (2.1) reads as follows:





Find uT ∈ Em,g and pD ∈ RD such that,

divM(−2ηDDDuT + pDId) = fM,

divM
∗

(−2ηDDDuT + pDId) = fM
∗

,

divD(uT ) − λh2
D

∆DpD = 0,∑

D∈D

mDpD = 0,

(4.1)
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with λ > 0 given, fM = P
M

mf and fM
∗

= P
M

∗

m f , where the projection is defined by (3.2).

REMARK 4.1. With these choices and if g satisfies the compatibility condition (2.2), we

easily check that
∑

Dσ,σ∗∈Dext

mσγσ(gT ) · ~nσK = 0.

THEOREM 4.1. Assume that η satisfies (2.3). For all mesh T as described in Section 3,

the finite volume scheme (4.1) with λ > 0 admits a unique solution (uT , pD) ∈
(
R2

)
T ×RD.

In order to prove the existence and uniqueness of the solution of (4.1), a discrete Korn

inequality is needed. Note that the discrete Korn inequality (Theorem 5.1) is proved in Sub-

section 5.1.

Proof. Let N = #(
(
R2

)
T ×RD). Scheme (4.1) is a linear system of the form: Av = b with

A : R
N → V =



(gT , fM, fM

∗

, qD, α)′ ∈ R
N+1,

∑

D∈D

mDqD =
∑

Dσ,σ∗∈Dext

mσγσ(gT ) · ~nσK



 .

As dim V = N , it suffices to prove that the matrix A is injective. Let us then study the kernel

of the matrix A. Let uT ∈ E0 and pD ∈ RD such that:





divM(−2ηDDDuT + pDId) = 0,

divM
∗

(−2ηDDDuT + pDId) = 0,

divD(uT ) − λh2
D

∆DpD = 0,∑

D∈D

mDpD = 0,

By definition of J·, ·KT , we deduce that

JdivT (−2ηDDDuT + pDId),uT KT = 0.

Using the discrete Stokes formula Theorem 3.2, noting that uT ∈ E0 implies that γT (uT )=
0, DDuT is a symmetric tensor, and substituting divDuT = Trace∇DuT = (Id : ∇DuT ),
we obtain

JdivT (−2ηDDDuT + pDId),uT KT =
(
2ηDDDuT : DDuT

)
D
− (divDuT , pD)D.

Furthermore, the mass conservation equation and Remark 3.5 give:

−(divDuT , pD)D = −λ(h2
D∆DpD, pD)D = λ|pD|2h,

where |.|h is the seminorm introduced in (3.9). Using the discrete Korn inequality, c.f. Theo-

rem 5.1, and the boundness on η given in (2.3), we have:

JdivT (−2ηDDDuT + pDId),uT KT ≥ Cη|||∇DuT |||22 + λ|pD|2h.

We finally get

0 ≥ Cη|||∇DuT |||22 + λ|pD|2h,

which implies that

|||∇DuT |||22 = 0 and |pD|2h = 0.
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Therefore, we have that ∇DuT = 0 and pD is constant for every D ∈ D, which implies that

there exists three constants c0 ∈ R
2, c1 ∈ R

2 and c3 ∈ R such that :

∀ K ∈ (M ∪ ∂M), uK = c0,

∀ K∗ ∈ (M∗ ∪ ∂M
∗), uK

∗ = c1,

∀ D ∈ D, pD = c3.

Furthermore, uT belongs to E0 so that c0 = c1 = 0. Consequently, we have uT = 0 and

pD = c3. And then, we use the fact that pD verifies
∑

D∈D

mDpD = 0 so pD = 0. ¤

5. Results on discrete operators. In this section, we present some several results on the

discrete operators. In Subsections 5.1, we begin with the properties of the discrete strain rate

tensor in order to prove a discrete Korn inequality. In Subsection 5.2, we review the results

of [2] and adapt them to the vector-valued. Then, in Subsections 5.3, 5.4 and 5.5, we focus

on the properties of mean-value and center value projection operators.

5.1. Properties of discrete strain rate tensor. Korn inequality. We first have the

bound of the discrete strain rate tensor by the discrete gradient.

PROPOSITION 5.1. For all uT ∈
(
R2

)
T

, we get

|||DDuT |||2 ≤ |||∇DuT |||2.

Proof. Thanks to Remark 2.1 we have

|||DDuT |||22 =
∑

D∈D

mD|||DDuT |||2F ≤
∑

D∈D

mD|||∇DuT |||2F = |||∇DuT |||22.

¤

We introduce the following notation

∀u,v ∈ R
2, u ∧ v = u1v2 − u2v1.

From calculus, we know that

div
(

t
(∇u)

)
= div (div (u) Id) = ∇(div(u)).

The corresponding discrete property is proved in the following proposition.

PROPOSITION 5.2. For all uT =

(
uT

vT

)
∈

(
R2

)
T

, we have

∀ K ∈ M, divK

(
t(∇DuT

))
=divK

(
divD(uT )Id

)
,

∀ K∗ ∈ M
∗, divK

∗
(

t(∇DuT
))

=divK
∗
(
divD(uT )Id

)
,

∀ K∗ ∈ ∂M
∗, divK

∗
(

t(∇DuT
))

=divK
∗
(
divD(uT )Id

)
+

1

mK∗

∑

D∈DK∗

(
vL − vK

uK − uL

)

+
1

mK∗

∑

D∈DK∗∩Dext

dK∗,L

mσ

(
vK∗ − vL∗

uL∗ − uK∗

)
.
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Proof. Let K ∈ M. On any diamond D ∈ D, the matrix
(

t
(∇DuT ) − divDuT Id

)
is given

by

(
t
(∇DuT ) − divDuT Id

)
=

(
− (∇DvT )2 (∇DvT )1
(∇DuT )2 − (∇DuT )1

)
.

So that

mKdivK

(
t(∇DuT

)
− divD(uT )Id

)
=

∑

D∈DK

mσ

(
∇DvT ∧ ~nσK

−∇DuT ∧ ~nσK

)
.

Using the Definition 3.1 and the fact that ~nσK ∧ ~nσ
∗

K
∗ = sin(αD), we deduce

∇DuT ∧ ~nσK =
uL∗ − uK∗

sin(αD)mσ

~nσ
∗

K
∗ ∧ ~nσK =

uK∗ − uL∗

mσ

.

We do the same with the first component and we deduce

mKdivK

(
t(∇DuT

)
− divD(uT )Id

)
=

∑

D∈DK

(
vK∗ − vL∗

uL∗ − uK∗

)
. (5.1)

K

~τK,L

~nσ
∗

K
∗

~nσ
∗

K
∗

~τK,L

xK

D

D
′

xL∗ in D

xK∗ in D
′

FIG. 5.1. Trigonometrical path.

Recall that in each diamond cell D ∈ DK, the basis (~τ K,L,~nσ
∗

K
∗) is supposed to be directly

oriented. It implies that for each diamond cell D ∈ DK the points xK∗ and xL∗ are well

defined with this choice and for two diamond cells D and D
′, such that D̄ ∩ D̄′ is a side of D,

the point xL∗ of D coincides with the point xK∗ of D
′. (see Figure 5.1). Thus the last sum

(5.1) is equal to zero,

mKdivK

(
t(∇DuT

)
− divD(uT )Id

)
= 0.

Hence for all K ∈ M, we conclude

divK

(
t(∇DuT

))
= divK

(
divD(uT )Id

)
.

The same result holds for all K∗ ∈ M
∗:

mK∗divK
∗
(

t(∇DuT
)
− divD(uT )Id

)
=

∑

D∈DK∗

mσ∗

(
∇DvT ∧ ~nσ

∗
K

∗

−∇DuT ∧ ~nσ
∗

K
∗

)

=
∑

D∈DK∗

(
vL − vK

uK − uL

)

= 0.
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The case where K∗ ∈ ∂M
∗ is slightly different

mK∗divK
∗
(

t(∇DuT
)
− divD(uT )Id

)
=

∑

D∈DK∗

mσ∗

(
t
(∇DuT ) − divDuT Id

)
~nσ

∗
K

∗

+
∑

D∈DK∗∩Dext

dK∗,L

(
t
(∇DuT ) − divDuT Id

)
~nσK.

For the first sum on D ∈ DK∗ , we can do the same as for K∗ ∈ M
∗, and the second one on

K ∈ M

mK∗divK
∗

(
t(∇DuT

)
−divD(uT )Id) =

∑

D∈DK∗

(
vL − vK

uK − uL

)
+

∑

D∈DK∗∩Dext

dK∗,L

mσ

(
vK∗ − vL∗

uL∗ − uK∗

)
.

¤

COROLLARY 5.1. For all uT ∈ E0, we have

divT

(
t(∇DuT

))
= divT

(
divD(uT )Id

)
. (5.2)

Proof. Let uT =

(
uT

vT

)
∈ E0. Thanks to Proposition 5.2, we just have to prove that

∀ K∗ ∈ ∂M
∗,

∑

D∈DK∗

(
vL − vK

uK − uL

)
+

∑

D∈DK∗∩Dext

dK∗,L

mσ

(
vK∗ − vL∗

uL∗ − uK∗

)
= 0.

Let K∗ ∈ ∂M
∗. Thanks to the boundary condition uT ∈ E0, for all D ∈ DK∗ ∩ Dext, we

have vK∗ = vL∗ = uL∗ = uK∗ = 0. It implies that

∑

D∈DK∗∩Dext

dK∗,L

mσ

(
vK∗ − vL∗

uL∗ − uK∗

)
= 0.

xK∗xL
∗
1

xL1
xL

∗
2

xK2

xL2

~nσ
∗

K
∗

~nσ
∗

K
∗

~nσ
∗

K
∗

xK1

K
∗

~τK,L

~τK,L

~nσ
∗

K
∗

~τK,L

~τK,L
D1 D2

~τK,L ~nσ
∗

K
∗

FIG. 5.2. Trigonometrical path.

Using the notation of 5.2, the sum over the diamond cells D ∈ DK∗ is equal to

∑

D∈DK∗

(
vL − vK

uK − uL

)
=

(
vL1

− vL2

uL2
− uL1

)
.

But we have uT ∈ E0, it implies that vL1
= vL2

= uL2
= uL1

= 0. We deduce

∑

D∈DK∗

(
vL − vK

uK − uL

)
+

∑

D∈DK∗∩Dext

dK∗,L

mσ

(
vK∗ − vL∗

uL∗ − uK∗

)
= 0.
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It concludes the proof. ¤

From Corollary 5.2, we deduce the following proposition.

PROPOSITION 5.3. For all uT ∈ E0, we have

(
t(∇DuT

)
: ∇DuT

)

D

= ‖divD(uT )‖2
2 ≥ 0.

Proof. Using the Stokes formula Theorem 3.2, the fact that uT ∈ E0 and then Corollary 5.2,

we have
(

t(∇DuT
)

: ∇DuT

)

D

=−JdivT

(
t(∇DuT

))
,uT KT =−JdivT (divD(uT )Id),uT KT .

Using once more the Stokes formula Theorem 3.2 for uT ∈ E0 and substituting divDuT =
Trace∇DuT = (Id : ∇DuT ), we obtain

(
t(∇DuT

)
: ∇DuT

)

D

= (divD(uT )Id : ∇DuT )D = ‖divD(uT )‖2
2 ≥ 0.

¤

We are now able to prove a discrete Korn inequality:

THEOREM 5.1 (Discrete Korn inequality). For all uT ∈ E0, we have

|||∇DuT |||2 ≤
√

2|||DDuT |||2

Proof. This is just a consequence of the following equality and of Proposition 5.3.

|||DDuT |||22 =
1

2
|||∇DuT |||22 +

1

2
(
t(∇DuT

)
: ∇DuT )D.

¤

5.2. Technical lemmas. Poincaré inequality. We will need two technical results and

the discrete Poincaré inequality whose proofs can be found in the literature. The first one is

[2, Lemma 3.4] (see also [18, Lemma 6.3]).

LEMMA 5.1. There exists a constant C > 0 such that for any bounded polygonal set

P ⊂ R2 with positive measure, any segment σ ⊂ R2 and any v ∈ H1(R2), we have

|vP − vσ|2 ≤ 1

mσmP

∫

σ

∫

P

|v(x) − v(y)|2dxdy ≤ C
diam(P̂σ)3

mσmP

∫

cPσ

|∇v(z)|2dz,

where vP denotes the mean value of v on P , vσ the mean value of v on the segment σ, and

P̂σ is the convex hull of P ∪ σ.

The second one is the vector-valued version of the first Lemma 8.1 in the Appendix [17].

LEMMA 5.2. Let K be a non empty open polygonal convex set in R2 such that, for some

α > 0, there exists a ball of radius αdiam(K) contained in K. Let E be an affine hyperplane

of R2 and σ be a non-empty open subset of E contained in ∂K ∩ E. Then there exists a

constant C > 0, depending only on α, for any v ∈ (H1(K))2:

∣∣∣∣
1

mσ

∫

σ

v(s)ds

∣∣∣∣
2

≤ Cdiam(K)

mσ

∫

K

|||∇v(s)|||2Fds +
C

diam(K)mσ

∫

K

|v(s)|2ds.

Let us finally state the discrete version of the Poincaré inequality which the vector-valued

version of [2, Lemma 3.3].
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THEOREM 5.2 (Discrete Poincaré inequality). Let T be a mesh of Ω. There exists

a constant C > 0, depending only on the diameter of Ω and reg(T ), such that for any

g ∈ (H
1

2 (∂Ω))2 and any uT ∈ Em,g , we have

‖uT ‖2 ≤ C
(
|||∇DuT |||2 + ‖g‖

H
1

2 (∂Ω)

)
.

In the following Lemma, we bound the discrete seminorm | · |h, defined by (3.9), by the

L2-norm ‖ · ‖2.

LEMMA 5.3. Let T be a mesh of Ω. There exists C > 0 depending only on reg(T ), such

that for any pD ∈ RD, we have

|pD|h ≤ C‖pD‖2.

Proof. Using the definition (3.9) of the discrete seminorm | · |h, we have

|pD|2h =
∑

s=D|D′∈S

(h2
D

+ h2
D′)(pD

′ − pD)2

≤ 2
∑

s=D|D′∈S

(h2
D

+ h2
D′)((pD

′

)2 + (pD)2).

Reordering the summation over the set of diamond cells, we get

|pD|2h ≤ 2
∑

D∈D

mD(pD)2

(
1

mD

∑

s∈ED

(h2
D

+ h2
D′)

)
.

We conclude, using Definition (3.1) and the fact that #(ED) ≤ 4. ¤

5.3. Properties of the mean-value and center-value projection operators. In this

subsection, we give some Lemmas on projection operators. We only prove results which

can not be deduced from their scalar counterpart (given in [2]) by working component per

component. First of all, we need to recall briefly the definitions and the main properties of

the Sobolev spaces defined on ∂Ω. A complete study of these topics can be found, for in-

stance, in [23]. The domain Ω is supposed to be polygonal and we note Γ1, · · · , Γk the sides

of Ω. We define the following space:

H̃
3

2 (∂Ω)=

{
g ∈ H1(∂Ω) s. t.

k∑

i=1

∫

Γi

∫

Γi

∣∣∣∣
∇g(x) −∇g(y)

|x − y| 12

∣∣∣∣
2

dx dy

|x − y| < +∞
}

, (5.3)

with the following norm

‖g‖2
eH

3

2 (∂Ω)
=

k∑

i=1

∫

Γi

∫

Γi

∣∣∣∣
∇g(x) −∇g(y)

|x − y| 12

∣∣∣∣
2

dx dy

|x − y| .

We recall that the trace operator γ is continuous from H2(Ω) onto a finite codimensional

subset of H̃
3

2 (∂Ω).
The following properties of the center-value projection operator, defined by (3.5), are

used in the estimate of the consistency error of our finite volume scheme.

LEMMA 5.4. Let T be a mesh of Ω. There exists a constant C > 0, depending only on

reg(T ), such that for any function v in (H2(Ω))2, we have

|||∇v −∇D
P

T

c v|||2 ≤ C size(T )|||∇v|||H1 .
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COROLLARY 5.2. Let T be a mesh of Ω. There exists a constant C > 0, depending only

on reg(T ), such that for any function v in (H2(Ω))2, we have

|||∇D
P

T

c v|||2 ≤ C|||∇v|||H1 .

Proof. Let v ∈ (H2(Ω))2. Using the triangle inequality and Lemma 5.4, we have

|||∇D
P

T

c v|||2 ≤ |||∇D
P

T

c v −∇v|||2 + |||∇v|||2 ≤ (C size(T ) + 1)|||∇v|||H1 .

¤

COROLLARY 5.3. Let T be a mesh of Ω. There exists a constant C > 0, depending only

on reg(T ), such that for any function v in (H2(Ω))2 which satisfies div v = 0, we have

‖divD
P

T

c v‖2 ≤ C size(T )|||∇v|||H1 .

Proof. Let v ∈ (H2(Ω))2 which satisfies div v = 0. Let D ∈ D; using the fact that

divD(PT

c v) = Trace(∇DP
T

c v) and div v = Trace(∇v) = 0, we have

divD(PT

c v) = Trace(∇D
P

T

c v −∇v(x)), ∀ x ∈ D.

This gives, by applying Lemma 5.4:

‖divD(PT

c v)‖2 ≤ |||∇D
P

T

c v −∇v|||2 ≤ C size(T )|||∇v|||H1 .

¤

We will need to evaluate the contribution in the error of the two different projections

P
T

c v, Pm,gP
T

c v, defined by (3.5) and (3.7), where g = γ(v). Note that this two projections

only differ on the boundary cells.

LEMMA 5.5. Let T be a mesh of Ω. There exists a constant C > 0, depending only on

reg(T ), such that for any function v in (H2(Ω))2, whose trace is denoted by g = γ(v), we

have

|||∇D
P

T

c v −∇DPm,gP
T

c v|||2 ≤ C size(T )‖g‖
( eH

3

2 (∂Ω))2
≤ C size(T )‖v‖H2 .

Next lemma gives the main properties of the mean-value projection, defined by (3.4), of

a H1 functions.

LEMMA 5.6. Let T be a mesh of Ω. There exists C > 0 depending only on reg(T ), such

that:

|||∇D
P

T

mv|||2 ≤ C|||∇v|||2, ∀ v ∈ (H1(Ω))2,

‖v − P
T

mv‖2 ≤ C size(T )|||∇v|||2, ∀ v ∈ (H1(Ω))2.

We give below the main properties of the center-value projection, defined by (3.5), onto

the set of discrete functions in our framework.

LEMMA 5.7. Let T be a mesh of Ω. There exists C > 0 depending only on reg(T ), such

that:

‖v − P
T

c v‖2 ≤ C size(T )|||∇v|||H1 , ∀ v ∈ (H2(Ω))2,

‖v − Pm,gP
T

c v‖2 ≤ C size(T )|||∇v|||H1 , ∀ v ∈ (H2(Ω))2,

where g = γ(v).
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Proof. We only prove the second inequality. The definition of the projection Pm,g implies

that Pm,gP
T

c v and P
T

c v only differ on the boundary ∂M and ∂M
∗ whereas Pm,gP

T

c v and

P
T

mv coincide on the boundary ∂M and ∂M
∗. So we get

‖v − Pm,gP
T

c v‖2
2 =

1

2

∑

K∈M

∫

K

|v(x) − v(xK)|2dx +
1

2

∑

K∗∈M∗

∫

K∗

|v(x) − v(xK∗)|2dx

+
1

2

∑

K∗∈∂M∗

∫

K∗

∣∣∣∣∣v(x) − 1

mσK∗

∫

σK∗

v(z)dz

∣∣∣∣∣

2

dx.

We deduce that

‖v − Pm,gP
T

c v‖2
2 ≤ ‖v − P

T

c v‖2
2 + ‖v − P

T

mv‖2
2.

Lemma 5.6 and the first inequality conclude the proof. ¤

5.4. Properties of mean-value projection operator on the diamond mesh. The error

estimates analysis of our scheme involves some discrete approximation of test functions lying

in H1(Ω) for the pressure. Since the pressure is defined on the diamond mesh, the natural

projection (as these test functions may not be continuous) is the mean-value projection PD

m,

defined by (3.6), on the diamond mesh. We give below a property of such a projection onto

the set of discrete functions in our framework.

LEMMA 5.8. Let T be a mesh of Ω. There exists C > 0 depending only on reg(T ), such

that for any function p in H1(Ω), we have

∑

s=D|D′∈S

(PD
′

m p − P
D

mp)2 ≤ C‖∇p‖2
2.

Proof. Let p ∈ H1(Ω). We note for simplicity pD = PD

mp for any D ∈ D. Introducing the

value ps :=
1

ms

∫

s

p(y)dy, for any s ∈ S (see Figure 5.3), we have the following equality

∑

s=D|D′∈S

(pD
′ − pD)2 =

∑

s=D|D′∈S

m2
s∗

∣∣∣∣∣
(pD

′ − ps) − (pD − ps)

ms∗

∣∣∣∣∣

2

.

xK∗

xD

D
′

D

xK

xL∗
xL

ms∗

xD′

s

s
∗

FIG. 5.3. Recall of notation

Then by using Young’s inequality, we obtain

∑

s=D|D′∈S

(pD
′ − pD)2 ≤ 2

∑

s=D|D′∈S

m2
s∗

∣∣∣∣∣
pD

′ − ps

ms∗

∣∣∣∣∣

2

+ 2
∑

s=D|D′∈S

m2
s∗

∣∣∣∣
pD − ps

ms∗

∣∣∣∣
2

.



20 S. KRELL

Lemma 5.1 applied on a edge s and the diamond cell D, leads to

∣∣∣∣
pD − ps

ms∗

∣∣∣∣
2

≤ C
(hD)3

m2
s∗msmD

∫

D

|∇p(z)|2dz.

Multiplying by m2
s∗ , we deduce

m2
s∗

∣∣∣∣
pD − ps

ms∗

∣∣∣∣
2

≤ C
(hD)3

msmD

∫

D

|∇p(z)|2dz.

As
(hD)3

msmD

≤ C(reg(T )), (see (3.1)), we obtain

m2
s∗

∣∣∣∣
pD − ps

ms∗

∣∣∣∣
2

≤ C

∫

D

|∇p(z)|2dz.

One gets

∑

s=D|D′∈S

(pD
′ − pD)2 ≤ C

∑

s=D|D′∈S

(∫

D

|∇p(z)|2dz +

∫

D′

|∇p(z)|2dz

)

≤ 2C
∑

D∈D

∫

D

|∇p(z)|2dz

≤ CNT

∫

Ω

|∇p(z)|2dz,

and the claim is proved. ¤

PROPOSITION 5.4. For any mesh T on Ω, there exists a constant C > 0, depending only

on reg(T ), such that for any function p in H1(Ω), we have

‖P
D

mp − p‖2 ≤ C size(T )‖∇p‖2.

Proof. Let D ∈ D. We apply the Cauchy-Schwarz inequality
∫

D

|PD

mp − p(x)|2dx ≤ 1

mD

∫

D

∫

D

|p(z) − p(x)|2dzdx.

Introducing the value
1

ms

∫

s

p(y)dy for s ∈ ED, we get

∫

D

|PD

mp − p(x)|2dx ≤ 2

mD

∫

D

∫

D

∣∣∣∣
1

ms

∫

s

(p(z) − p(y))dy

∣∣∣∣
2

dzdx

+
2

mD

∫

D

∫

D

∣∣∣∣
1

ms

∫

s

(p(y) − p(x))dy

∣∣∣∣
2

dzdx.

Applying once more the Cauchy-Schwarz inequality, we have
∫

D

|PD

mp − p(x)|2dx ≤ 4

ms

∫

D

∫

s

|p(z) − p(y)|2 dydz.

We apply Lemma 5.1 on a edge s and a diamond cell D. There exists a constant C > 0, such

that:

1

ms

∫

D

∫

s

|p(y) − p(x)|2 dydx ≤ C
h3

D

ms

∫

D

|∇p(z)|2dz.
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The definition (3.1) gives that
hD

ms

≤ C. Finally, we obtain

∫

D

|PD

mp − p(x)|2dx ≤ size(T )2C

∫

D

|∇p(z)|2dz

which concludes the proof. ¤

We can immediately deduce that the following property of the mean-value projection on

the diamond mesh D holds.

COROLLARY 5.4. For any mesh T on Ω, there exists a constant C > 0, depending only

on reg(T ), such that for any function p in H1(Ω), we have

‖P
D

mp‖2 ≤ C‖p‖H1 .

Proof. The triangle inequality and Proposition 5.4 give

‖P
D

mp‖2 ≤ ‖P
D

mp − p‖2 + ‖p‖2 ≤ C size(T )‖∇p‖2 + ‖p‖2,

which concludes the proof. ¤

5.5. Properties of the discrete operator divD. In order to prove the stability of our

finite volume scheme, we will need the following estimate.

PROPOSITION 5.5. Let T be a mesh of Ω. There exists C > 0 depending only on reg(T ),
such that for any function v in (H1(Ω))2 and any pD ∈ RD, we have

∑

D∈D

∫

D

pD (divD(vT ) − div(v)) dz ≤ C|pD|h‖v‖H1 .

where vT = P
T

mv is the mean-value projection of v, defined by (3.4), on the mesh T .

Proof. Let D ∈ D, by using the equality (3.8) and the Stokes formula Theorem 3.2, we have:

∫

D

(divD(vT ) − div(v(z))) dz =
∑

s∈ED

ms

1

ms

∫

s

(
vK + vK

∗

2
− v(z),~nsD

)
dz.

We note Rs

div(v) =
1

ms

∫

s

(
vK + vK

∗

2
− v(z)

)
dz. First we multiply by pD and we sum

over the diamond cells D ∈ D. Then by reordering the summation over s ∈ S, we get

∑

D∈D

∫

D

pD (divD(vT ) − div(v(z))) dz =
∑

D∈D

pD

∑

s∈ED

ms(R
s

div(v),~nsD)

=
∑

s=D|D′∈S

ms(R
s

div(v),~nsD)(pD − pD
′

).

We apply the Cauchy-Schwarz inequality

∑

D∈D

∫

D

pD (divD(vT ) − div(v(z))) dz ≤ |pD|h




∑

s=D|D′∈S

m2
s

h2
D

+ h2
D′

|Rs

div(v)|2



1

2

.

In order to conclude, it remains to prove that




∑

s=D|D′∈S

m2
s

h2
D

+ h2
D′

|Rs

div(v)|2



1

2

≤ C‖v‖H1 ,
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which is done in the following Lemma. ¤

LEMMA 5.9. Let T be a mesh of Ω. There exists C > 0 depending only on reg(T ), such

that for any function v in (H1(Ω))2, we have

∑

s=D|D′∈S

m2
s

h2
D

+ h2
D′

|Rs

div(v)|2 ≤ C‖v‖2
H1 ,

where vT = P
T

mv and Rs

div(v) =
1

ms

∫

s

(
vK + vK

∗

2
− v(z)

)
dz.

Proof. Let v ∈ (H1(Ω))2. We note v =

(
v1

v2

)
and the value vs :=

1

ms

∫

s

v(y)dy, for any

s ∈ S. We prove the result for any component of v, and then for the function v. For i = 1,

2. We apply Lemma 5.1 on a edge s and the open ball BK:

∣∣vi
K
− vi

s

∣∣2 =

∣∣∣∣
1

msmBK

∫

BK

∫

s

(vi(z) − vi(x))dzdx

∣∣∣∣
2

≤ 1

msmBK

∫

BK

∫

s

∣∣vi(z) − vi(x)
∣∣2 dzdx

≤ C
(diam(B̂K ∪ s))3

msmBK

∫

B̂K∪s

|∇vi(z)|2dz.

Thanks to (3.1) we have
m2

s(diam(B̂K ∪ s))3

msmBK
(h2

D
+ h2

D′)
≤ C. It implies that

m2
s

h2
D

+ h2
D′

∣∣vi
K
− vi

s

∣∣2 ≤ C

∫

B̂K∪D

|∇vi(z)|2dz.

We deduce that

m2
s

h2
D

+ h2
D′

|Rs

div(v
i)|2 ≤ m2

s

h2
D

+ h2
D′

∣∣vi
K
− vi

s

∣∣2 +
m2

s

h2
D

+ h2
D′

∣∣vi
K∗ − vi

s

∣∣2

≤ C

∫

B̂K∪D

|∇vi(z)|2dz.

Thus, we obtain for i = 1, 2

∑

s=D|D′∈S

m2
s

h2
D

+ h2
D′

|Rs

div(v
i)|2 ≤ C

∫

Ω

|∇vi(z)|2dz.

Suming over i gives the result. ¤

6. Stability of the scheme. We used in Section 4 the stabilization to prove the well-

posedness of our scheme. In this section, we prove the uniform stability of the DDFV scheme

thanks to the stabilization term. We note in the following, for all uT , ũT and pD, p̃D be two

elements of respectively
(
R2

)
T

and RD, with λ > 0,

B(uT , pD; ũT , p̃D)=JdivT (−2ηDDDuT +pDId), ũT KT +(divD(uT )−λh2
D∆DpD, p̃D)D.

(6.1)

THEOREM 6.1 (Stability of the scheme). Assume that η satisfies (2.3). Then there exists

C1 > 0 and C2 > 0, depending only on the diameter of Ω, λ, Cη , C̄η and reg(T ), such that
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for each pair (uT , pD) ∈ E0 × RD such that
∑

D∈D

mDpD = 0, there exists ũT ∈ E0 and

p̃D ∈ RD:

|||∇DũT |||2 + ‖p̃D‖2 ≤ C1

(
|||∇DuT |||2 + ‖pD‖2

)
, (6.2)

and

|||∇DuT |||22 + ‖pD‖2
2 ≤ C2B(uT , pD; ũT , p̃D). (6.3)

Proof. Let (uT , pD) ∈ E0 × RD such that
∑

D∈D

mDpD = 0. The proof of this Theorem is

obtained by building explicitly (ũT , p̃D) ∈ E0 × RD such that the relations (6.2) and (6.3)

hold.

Step 1. We apply the discrete Stokes formula Theorem 3.2, by using (6.1) and the fact

that γT (uT ) = 0, we have

B(uT , pD;uT , pD) = (2ηDDDuT : ∇DuT )D − λ(h2
D∆DpD, pD)D

= (2ηDDDuT : DDuT )D − λ(h2
D∆DpD, pD)D.

Thanks to the inequality (2.3) and Remark 3.5, we obtain

B(uT , pD;uT , pD) ≥ Cη|||DDuT |||22 + λ|pD|2h.

Finally we use the discrete Korn inequality Theorem 5.1 in order to get

B(uT , pD;uT , pD) ≥ Cη|||∇DuT |||22 + λ|pD|2h. (6.4)

Note that the above estimate on the pressure is mesh dependent. Recall that the seminorm

|.|h is itself mesh dependent. That is why we could not bound uniformly the L2-norm of the

pressure by the seminorm |.|h.

Step 2. We make use of the following result (see [22, Corollary 2.4] or [4, Lemma

III.1.17]): since pD =
∑

D∈D

pD1D ∈ L2(Ω) and its integral over Ω is zero, there exists a

constant C > 0 depending only on Ω, and v ∈ (H1
0 (Ω))2 such that div(v) = −pD and

‖v‖H1 ≤ C‖pD‖2. (6.5)

We denote the mean-value projection P
T

mv of the function v on T by vT , so we have vK =
(PT

mv)K for any K ∈ M∪ ∂M and vK
∗ = (PT

mv)K∗ for any K∗ ∈ M
∗ ∪ ∂M

∗. In particular,

we have vT ∈ E0. Using Lemma 5.6, we obtain

|||∇DvT |||2 ≤ C‖v‖H1 ≤ C‖pD‖2. (6.6)

The discrete Stokes formula Theorem 3.2 implies

B(uT , pD;vT , 0) = 2(ηDDDuT : ∇DvT )D − (pD, divD(vT ))D.

Using the Cauchy-Schwarz inequality, we deduce

B(uT , pD;vT , 0) ≥− C̄η|||DDuT |||2|||∇DvT |||2 −
∑

D∈D

∫

D

pDdiv(v(z))dz

−
∑

D∈D

∫

D

pD (divD(vT ) − div(v(z))) dz.
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Since we have div(v) = −pD, the inequality (6.6) and Proposition 5.1 give

B(uT , pD;vT , 0) ≥− C|||∇DuT |||2‖pD‖2 + ‖pD‖2
2

−
∑

D∈D

∫

D

pD (divD(vT ) − div(v(z))) dz.

Thanks to Proposition 5.5 and to estimate (6.5) we have

∑

D∈D

∫

D

pD (divD(vT ) − div(v(z))) dz ≤ C ′|pD|h‖v‖H1 ≤ C|pD|h‖pD‖2.

We deduce that

B(uT , pD;vT , 0) ≥ ‖pD‖2
2 − C‖pD‖2|||∇DuT |||2 − C|pD|h‖pD‖2.

Using Young’s inequality, we obtain the existence of three constants C1, C2, C3 > 0, depend-

ing only on Ω, C̄η and reg(T ), such that

B(uT , pD;vT , 0) ≥ C1‖pD‖2
2 − C2|||∇DuT |||22 − C3|pD|2h. (6.7)

Step 3. By bilinearity of B, the inequalities (6.4) and (6.7) give for each positive number

ξ > 0:

B(uT , pD;uT + ξvT , pD) ≥
(
Cη − ξC2

)
|||∇DuT |||22 + ξC1‖pD‖2

2 + (λ − ξC3) |pD|2h.

Choosing a value of ξ > 0 small enough (depending only on Cη, C2, λ and C3), this inequal-

ity yields an estimate of the form (6.3). As the relation (6.2) is clearly verified by the pair

ũT = uT + ξvT and p̃D = pD, this concludes the proof. ¤

An immediate consequence of this stability inequality is the continuous dependence of

the DDFV solution with respect to the data.

COROLLARY 6.1. Assume that η satisfies (2.3). There exists C > 0, depending only on

the diameter of Ω, λ, Cη, C̄η and reg(T ), such that the couple (uT , pD) ∈ E0 ×RD, solution

of the scheme (4.1) with g = 0, satisfies:

|||∇DuT |||22 + ‖pD‖2
2 ≤ C‖fT ‖2

2.

Proof. Let (uT , pD) ∈ E0 × RD solution of the scheme (4.1):





divM(−2ηDDDuT + pDId) = fM,

divM
∗

(−2ηDDDuT + pDId) = fM
∗

,

divD(uT ) − λh2
D

∆DpD = 0,∑

D∈D

mDpD = 0,

Thanks to Theorem 6.1, there exists ũT ∈ E0, p̃D ∈ RD:

|||∇DuT |||22 + ‖pD‖2
2 ≤ C2B(uT , pD; ũT , p̃D).

By definition (6.1) of B, using the Cauchy-Schwarz inequality and the discrete Poincaré

inequality (Theorem 5.2), we get

B(uT , pD; ũT , p̃D) ≤ C‖fT ‖2|||∇DũT |||2.

Using (6.2) and (6.3), the claim is proved. ¤
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7. Error estimates.

7.1. Statement of the result and sketch of proof. We conclude by providing an error

estimate in case where the exact solution of the problem (2.1) lies in the space (H2(Ω))2 ×
H1(Ω) and the viscosity is smooth enough. Our main result is the following

THEOREM 7.1. Assume that η satisfies (2.3) and (2.4). Let f ∈ (L2(Ω))2, g ∈
(H̃

3

2 (∂Ω))2 and assume that the solution (u, p) of the problem (2.1) belongs to (H2(Ω))2

× H1(Ω). Let (uT , pD) ∈
(
R2

)
T × RD be the solution of the scheme (4.1). There exists a

constant C > 0 depending only on reg(T ), λ, Cη, Cη, C̄η, ‖u‖H2 and ‖p‖H1 , such that:

‖u − uT ‖2 + |||∇u −∇DuT |||2 ≤ C size(T ),

and

‖p − pD‖2 ≤ C size(T ).

As usual for the error analysis of finite volume methods, the consistency error which has

to be studied is the error on the numerical fluxes across each of the edges and dual edges in

the mesh. Therefore consistency errors are naturally defined on the diamond cells.

DEFINITION 7.1. We define the consistency errors on D for any v ∈ (H2(Ω))2 and for

any p ∈ H1(Ω)

Rv
D

(z) = η(z)Dv(z) − ηDDDPm,γ(v)P
T

c v, if z ∈ D,

Rp
D

(z) = PD

mp − p(z), if z ∈ D.

Recall that the edges σ and σ∗ are the diagonals of D = Dσ,σ∗ . Let us introduce the following

consistency errors on the numerical fluxes, for i ∈ {v, p}:

Ri
σ,K = −Ri

σ,L =
1

mσ

∫

σ

Ri
D(s)~nσKds,

Ri
σ∗,K∗ = −Ri

σ∗,L∗ =
1

mσ∗

∫

σ∗

Ri
D(s)~nσ

∗
K

∗ds,

Ri
σ = |Ri

σ,K| = |Ri
σ,L|,

Ri
σ∗ = |Ri

σ∗,K∗ | = |Ri
σ∗,L∗ |.

We note the L2-norm of the consistency error as follows, for i = v, p:

‖Ri
σ‖2

2 =
∑

Dσ,σ∗∈D

mD|Ri
σ|2, ‖Ri

σ∗‖2
2 =

∑

Dσ,σ∗∈D

mD|Ri
σ∗ |2.

Step 1. We denote by eT = Pm,gP
T

c u − uT the discrete error on the velocity and

eD = PD
mp − pD the discrete error on the pressure. Recall that g = γ(u). Then, we have

∀K ∈ M

divK(−2ηDDDuT + pDId) = fK,

− 1

mK

∫

K

div(2η(x)Du(x))dx +
1

mK

∫

K

∇p(x)dx = fK.

Therefore, we deduce

mKdivK(−2ηDDDeT + eDId) =mKdivK(−2ηDDDPm,gP
T

c u + P
D

mpId)

+

∫

K

div(2η(x)Du(x))dx −
∫

K

∇p(x)dx.
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Using Definition 7.1, it becomes

mKdivK(−2ηDDDeT + eDId) = 2
∑

D∈DK

mσR
u
σ,K +

∑

D∈DK

mσR
p
σ,K.

In the same way, we have ∀ K∗ ∈ M
∗

mK∗

(
divK

∗

(−2ηDDDeT + eDId)
)

= 2
∑

D∈DK∗

mσ∗Ru
σ∗,K∗ +

∑

D∈DK∗

mσ∗Rp
σ∗,K∗ .

Finally, the couple (eT , eD) ∈ E0 × RD satisfies:





divM(−2ηDDDeT + eDId) = RM,

divM
∗

(−2ηDDDeT + eDId) = RM
∗ ,

divD(eT ) − λh2
D

∆DeD = RD,∑

D∈D

mDeD = 0,

(7.1)

where

RK =
2

mK

∑

D∈DK

mσR
u
σ,K +

1

mK

∑

D∈DK

mσR
p
σ,K, ∀ K ∈ M,

RK∗ =
2

mK∗

∑

D∈DK∗

mσ∗Ru
σ∗,K∗ +

1

mK∗

∑

D∈DK∗

mσ∗Rp
σ∗,K∗ , ∀ K∗ ∈ M

∗

RD = divD(Pm,gP
T

c u) − λh2
D
∆D

P
D

mp, ∀ D ∈ D.

Remark that we have
∑

D∈D

mDRD = 0. Theorem 6.1 implies that there exists ẽT ∈ E0,

ẽD ∈ RD and C > 0 such that :

|||∇DẽT |||2 + ‖ẽD‖2 ≤ C
(
|||∇DeT |||2 + ‖eD‖2

)
, (7.2)

and

|||∇DeT |||22 + ‖eD‖2
2 ≤ CB(eT , eD; ẽT , ẽD). (7.3)

Thanks to Definition (6.1) of B ans to (7.1), we have B(eT , eD; ẽT , ẽD) = JRT , ẽT KT +
(RD, ẽD)D. We note I := JRT , ẽT KT and T := (RD, ẽD)D. Using the fact that ẽK

∗ = 0
for any K∗ ∈ ∂M

∗ and the definition of I , we have

I =
1

2

∑

K∈M

∑

D∈DK

mσ(Rp
σ,K + 2Ru

σ,K, ẽK)

+
1

2

∑

K∗∈M∗∪∂M∗

∑

D∈DK∗

mσ(Rp
σ∗,K∗ + 2Ru

σ∗,K∗ , ẽK
∗).

Reordering the summation over the set of diamond cells and using the fact that Ri
σ,K =

−Ri
σ∗,K∗ for i = u, p, we deduce

I =
1

2

∑

Dσ,σ∗∈D

mσ(Rp
σ,K + 2Ru

σ,K, ẽK − ẽL)

+
1

2

∑

Dσ,σ∗∈D

mσ∗(Rp
σ∗,K∗ + 2Ru

σ∗,K∗ , ẽK
∗ − ẽL

∗).
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Using Definition 3.3 of the discrete gradient and the Cauchy-Schwarz inequality, we obtain

I = −
∑

Dσ,σ∗∈D

mD

sin(αD)

[
(Rp

σ,K + 2Ru
σ,K,∇DẽT ~τ K,L) − (Rp

σ∗,K∗ + 2Ru
σ∗,K∗ ,∇DẽT ~τ K

∗,L∗)
]

≤|||∇DẽT |||2
C

sin(αT )
[‖Ru

σ‖2 + ‖Ru
σ∗‖2 + ‖Rp

σ‖2 + ‖Rp
σ∗‖2] .

Furthermore, Corollary 5.3 and Lemma 5.5 imply

‖divD(Pm,gP
T

c u)‖2 ≤ C size(T )‖u‖H2 .

Applying the Cauchy-Schwarz inequality to (divD(Pm,gP
T

c u), ẽD)D, we get

(divD(Pm,gP
T

c u), ẽD)D ≤ C size(T )‖u‖H2‖ẽD‖2. (7.4)

Reordering the summation over s ∈ S in the term T1 := −(λh2
D

∆DPD
mp, ẽD)D, we have

T1 = −λ
∑

D∈D

mDẽDh2
D
∆D

P
D

mp = λ
∑

s=D|D′∈S

(h2
D

+ h2
D′)(PD

′

m p − P
D

mp)(ẽD
′ − ẽD).

The Cauchy-Schwarz inequality implies:

|T1| ≤ λ




∑

s=D|D′∈S

(h2
D

+ h2
D′)(PD

′

m p − P
D

mp)2




1

2




∑

s=D|D′∈S

(h2
D

+ h2
D′)(ẽD

′ − ẽD)2




1

2

≤ 2 size(T )λ|ẽD|h




∑

s=D|D′∈S

(PD
′

m p − P
D

mp)2




1

2

.

Using Lemmas 5.3 and 5.8, we obtain

|T1| ≤ C size(T )‖ẽD‖2‖∇p‖2. (7.5)

Remark that T = (divD(Pm,gP
T

c u), ẽD)D + T1, thanks to (7.4) and (7.5), we deduce

|T | ≤ C size(T )‖ẽD‖2 (‖u‖H2 + ‖∇p‖2) .

To sum up, (7.3) becomes

|||∇DeT |||22 + ‖eD‖2
2 ≤ C

sin(αT )
|||∇DẽT |||2 [‖Ru

σ‖2 + ‖Ru
σ∗‖2 + ‖Rp

σ‖2 + ‖Rp
σ∗‖2]

+ C size(T )‖ẽD‖2 (‖u‖H2 + ‖∇p‖2) .

Finally, using (7.2), we deduce

|||∇DeT |||22 + ‖eD‖2
2 ≤C(‖Ru

σ‖2 + ‖Ru
σ∗‖2 + ‖Rp

σ‖2 + ‖Rp
σ∗‖2)(|||∇DeT |||2 + ‖eD‖2)

+ C size(T ) (‖u‖H2 + ‖∇p‖2) (|||∇DeT |||2 + ‖eD‖2).
(7.6)

It remains to estimate the consistency errors.

7.2. Analysis of the consistency error.
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7.2.1. Estimate of Rv
σ . The consistency error Rv

D
can be split into four different con-

tributions Rv,η
D

, Rv,Dv
D

, Rv,z
D

and Rv,bd
D

coming, respectively, from the errors due to the

approximation with respect to the space variable of the flux η(.)Dv(.), to the approximation

of the gradient, to the approximation of the viscosity and to the discretization of the boundary

data:

Rv
D(z) = Rv,η

D
(z) + Rv,Dv

D
+ Rv,z

D
+ Rv,bd

D
, (7.7)

where, for z ∈ D,

Rv,η
D

(z) = η(z)Dv(z) − 1

mD

∫

D

η(x)Dv(x)dx,

Rv,Dv
D

=
1

mD

∫

D

η(x)(Dv(x) − DD
P

T

c v)dx,

Rv,z
D

=

(
1

mD

∫

D

η(x)dx − ηD

)
DD

P
T

c v,

Rv,bd
D

= ηDDD
P

T

c v − ηDDDPm,γ(v)P
T

c v.

In order to control Rv
σ and Rv

σ∗ , let us estimate separately the different terms in the right

hand side of (7.7).

PROPOSITION 7.1 (Error due to the discrete gradient). Assume that η satisfies (2.3). For

any mesh T on Ω, there exists a constant C > 0, depending only on reg(T ) and C̄η, such

that for any function v in (H2(Ω))2, we have

|||Rv,Dv
D

|||2 ≤ C size(T )|||∇v|||H1 .

Proof. Using the inequality (2.3) we get

|||Rv,Dv
D

|||22 ≤ C̄
2
η|||Dv − DD

P
T

c v|||22.

Remark 2.1 implies that

|||Dv − DD
P

T

c v|||2 ≤ |||∇v −∇D
P

T

c v|||2,

and then, applying Lemma 5.4, we get the result. ¤

PROPOSITION 7.2 (Error due to the viscosity variation). Assume that η satisfies (2.4).

For any mesh T on Ω, there exists a constant C > 0, depending only on reg(T ) and Cη , such

that for any function v in (H2(Ω))2, we have

|||Rv,z
D

|||2 ≤ C size(T )|||∇v|||H1 .

Proof. The Jensen inequality gives

|||Rv,z
D

|||22 ≤
∑

D∈D

mD

1

mD

(∫

D

∫

D̄

|η(x) − η(z)|2 dµD̄(z)dx

)
|||DD

P
T

c v|||2F .

Thanks to (2.4) and Proposition 5.1 we have

|||Rv,z
D

|||22 ≤ C2
η

∑

D∈D

(∫

D

∫

D̄

|x − z|2 dµD̄(z)dx

)
|||DD

P
T

c v|||2F ≤ C size(T )2|||∇D
P

T

c v|||22.
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Finally, Corollary 5.2 gives the result. ¤

PROPOSITION 7.3 (Error due to the boundary data). Assume that η satisfies (2.3). For

any mesh T on Ω, there exists a constant C > 0, depending only on reg(T ) and C̄η, such

that for any function v in (H2(Ω))2, whose trace is denoted by g = γ(v), we have

|||Rv,bd
D

|||2 ≤ C size(T )‖g‖
( eH

3

2 (∂Ω))2
≤ C size(T )‖v‖H2 .

Proof. Inequality (2.3) and Proposition 5.1 imply

|||Rv,bd
D

|||22 ≤ C̄η|||DD(PT

c v − Pm,gP
T

c v)|||22 ≤ C|||∇D
(
P

T

c v − Pm,gP
T

c v
)
|||22,

and finally, Lemma 5.5 gives the result. ¤

PROPOSITION 7.4 (Error due to the approximate flux). Assume that η satisfies (2.3) and

(2.4). For any mesh T on Ω, there exists a constant C > 0, depending only on reg(T ), Cη

and C̄η, such that for any function v in (H2(Ω))2, we have

∑

Dσ,σ∗∈D

mD

[
1

mσ

∫

σ

|||Rv,η
D

(s)|||2Fds +
1

mσ∗

∫

σ∗

|||Rv,η
D

(s)|||2Fds

]
≤ C size(T )2|||∇v|||2H1 .

Proof. We apply the Jensen inequality

|||Rv,η
D

(s)|||2F ≤ 1

mD

∫

D

|||η(s)Dv(s) − η(x)Dv(x)|||2Fdx.

Thus, we get

|||Rv,η
D

(s)|||2F ≤ 2

mD

∫

D

|η(s) − η(x)|2 |||Dv(x)|||2Fdx

+
2

mD

∫

D

|η(s)|2 |||Dv(s) − Dv(x)|||2Fdx.

Inequalities (2.3) and (2.4) imply

|||Rv,η
D

(s)|||2F ≤ size(T )2
2C2

η

mD

∫

D

|||Dv(x)|||2Fdx

+
2C̄

2
η

mD

∫

D

|||Dv(s) − Dv(x)|||2Fdx.

Suming over the diamond cells, for the first integral, we get

∑

D∈D

mD size(T )2
2C2

η

mD

∫

D

|||Dv(x)|||2Fdx = 2C2
η size(T )2|||Dv|||22

≤ 2C2
η size(T )2|||∇v|||2H1 .

We integrate the second one on σ and apply Lemma 5.1

1

mDmσ

∫

σ

∫

D

|||Dv(s) − Dv(x)|||2Fdxds ≤ C
h3

D

mσmD

∫

D

|∇(Dv(y)|2dy.

Note that we use here an extension of Lemma 5.1 to the matrix framework. It follows

∑

Dσ,σ∗∈D

mD

1

mDmσ

∫

σ

∫

D

|||Dv(s) − Dv(x)|||2Fdxds ≤ C size(T )2|||∇v|||2H1 .
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As a result, we obtain

∑

Dσ,σ∗∈D

mD

1

mσ

∫

σ

|||Rv,η
D

(s)|||2Fds ≤ C size(T )2|||∇v|||2H1 .

We use the same computation for the similar term on the dual edge σ∗. ¤

Now, we can control Rv
σ and Rv

σ∗ , as follows

COROLLARY 7.1. Assume that η satisfies (2.3) and (2.4). For any mesh T on Ω, there

exists a constant C > 0, depending only on reg(T ), Cη and C̄η, such that for any function v
in (H2(Ω))2, we have

‖Rv
σ‖2 + ‖Rv

σ∗‖2 ≤ C size(T )|||∇v|||H1 .

Proof. Thanks to (7.7), we get

∑

Dσ,σ∗∈D

mD|Rv
σ|2 ≤

∑

Dσ,σ∗∈D

mD

1

mσ

∫

σ

|||Rv,η
D

(s)|||2Fds+ |||Rv,Dv
D

|||22 + |||Rv,z
D

|||22 + |||Rv,bd
D

|||22.

We conclude using Propositions 7.1, 7.2, 7.3 and 7.4. We proceed in the same way for the

estimate of Rv
σ∗ . ¤

7.2.2. Estimate of Rp
σ. Now, we can control Rp

σ and Rp
σ∗ , as follows

COROLLARY 7.2. For any mesh T on Ω, there exists a constant C > 0, depending only

on reg(T ), such that for any function p in H1(Ω), we have

‖Rp
σ‖2 + ‖Rp

σ∗‖2 ≤ C size(T )‖∇p‖2.

Proof. We use Lemma 5.2 on a edge σ and a half diamond cell D1 such that Dσ,σ∗ = D1∪D2

with D1 ∩ D2 = σ for Rp
D

(s)~nσK: for i = 1, 2

|Rp
σ|2 =

∣∣∣∣
1

mσ

∫

σ

Rp
D

(s)~nσKds

∣∣∣∣
2

≤ ChDi

mσ

∫

Di

|||∇(Rp
D

(z)~nσK)|||2Fds +
C

hDi
mσ

∫

Di

|(Rp
D

(z)~nσK)|2dz

≤ ChDi

mσ

∫

D

|∇Rp
D

(z)|2dz +
C

hDi
mσ

∫

D

|Rp
D

(z)|2dz.

Thanks to (3.1) we have
mDhDi

mσ

≤ 1

2
size(T )2 and

mD

hDi
mσ

≤ C. We deduce

∑

Dσ,σ∗∈D

mD|Rp
σ|2 ≤ C size(T )2

∑

D∈D

∫

D

|∇Rp
D

(z)|2dz + C
∑

D∈D

∫

D

|Rp
D

(z)|2dz.

Finally, Proposition 5.4 gives

∑

Dσ,σ∗∈D

mD|Rp
σ|2 ≤ C size(T )2‖∇p‖2

2.

We proceed in the same way for the estimate of Rp
σ∗ . ¤
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7.3. Proof of Theorem 7.1. We may now collect all the previous results in order to

conclude the proof of Theorem 7.1, that we started in Subsection 7.1.

Proof.

Having denoted by eT = Pm,gP
T

c u−uT the error on the velocity and eD = PD
mp−pD

the error on the pressure, we have obtained the inequality (7.6)

|||∇DeT |||22 + ‖eD‖2
2 ≤C(‖Ru

σ‖2 + ‖Ru
σ∗‖2 + ‖Rp

σ‖2 + ‖Rp
σ∗‖2)(|||∇DeT |||2 + ‖eD‖2)

+ C size(T ) (‖u‖H2 + ‖∇p‖2) (|||∇DeT |||2 + ‖eD‖2).

Corollaries 7.1 and 7.2 imply

|||∇DeT |||2 ≤ C size(T ) and ‖eD‖2 ≤ C size(T ). (7.8)

Estimate of ‖u − uT ‖2. We have

‖u − uT ‖2 ≤ ‖u − Pm,gP
T

c u‖2 + ‖Pm,gP
T

c u − uT ‖2.

Lemma 5.7 and the discrete Poincaré inequality (Theorem 5.2) imply

‖u − uT ‖2 ≤ C size(T )|||∇u|||H1 + C|||∇DPm,gP
T

c u −∇DuT |||2.

Finally, (7.8) gives the estimate of ‖u − uT ‖2.

Estimate of |||∇u −∇DuT |||2. We have

|||∇u −∇DuT |||2 ≤|||∇u −∇D
P

T

c u|||2 + |||∇D
P

T

c u −∇DPm,gP
T

c u|||2
+ |||∇DPm,gP

T

c u −∇DuT |||2.

Finally, Lemmas 5.4, 5.5 and (7.8) imply the estimate of |||∇u −∇DuT |||2.

Estimate of ‖p − pD‖2. Using (7.8), we obtain

‖P
D

mp − pD‖2 ≤ C size(T ).

We conclude thanks to Proposition 5.4 that the estimate of ‖p − pD‖2. ¤

8. Numerical results. We show here some numerical results obtained on a rectangular

domain Ω =]0, 1[2. Error estimates are given on four different tests with a stabilization

coefficient forced to be λ = 10−3.

In the first one, the exact solution is the Green-Taylor vortex on a quadrangle and triangle

mesh (see Figure 8.1(a)). The second one is a polynomial function on a non-conformal square

mesh (see Figure 8.2(a)). The third and fourth tests are performed using a discontinuous

viscosity function.

The exact solution (u, p) and the viscosity η being chosen, we define the source term

f and the boundary data g in such a way that (2.1) is satisfied. In Figures 8.1, 8.2, 8.3

and 8.4, we compare the L2-norm of the error obtained with the DDFV scheme, for the

pressure
‖P

D

c p − pD‖2

‖P
D

c p‖2

, for the velocity gradient
|||∇DP

T

c u −∇DuT |||2
|||∇DP

T

c u|||2
and for the velocity

‖P
T

c u − uT ‖2

‖P
T

c u‖2
respectively, as functions of the size of the mesh size(T ) in a logarithmic

scale. In the numerical tests, we have smooth pressure, thus we use the center-value projection

on Ω:

P
D

c p = ((p(xD))D∈D) .
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8.1. Test 1 (Green-Taylor vortex) - Constant viscosity. Let us consider the following

exact solution:

u(x, y) =

(
1
2 sin(2πx) cos(2πy)

− 1
2 cos(2πx) sin(2πy)

)
, p(x, y) =

1

8
cos(4πx) sin(4πy),

and the viscosity is

η(x, y) = 1.

The mesh considered is a quadrangle mesh (see Figure 8.1(a)).

(a) Quadrangle and triangle mesh.
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FIG. 8.1. Test 1, Green-Taylor vortex, on a quadrangle and triangle mesh.

For smooth solution and viscosity, as predicted by Theorem 7.1, we observe a first order

convergence for the L2-norm of the velocity gradient and of the pressure, which seems to

be optimal. We obtain a second order convergence for the L2-norm of the velocity. This

superconvergence of the L2-norm is classical for finite volume method, however its proof

still remains an open problem.

8.2. Test 2 (polynomial function) - Non constant viscosity. The exact solution on the

second test are the following polynomial functions:

u(x, y) =

(
1000x2(1−x)22y(1−y)(1−2y)

−1000y2(1−y)22x(1−x)(1−2x)

)
, p(x, y) = x2 + y2 − 2

3
,
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and the viscosity is

η(x, y) = 2x + y + 1.

We use the non conformal square mesh, arbitrarily locally refined on the left bottom

corner, as shown on Figure 8.2(a).

(a) Locally refined rectangular mesh.
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FIG. 8.2. Test 2, polynomial function, on a non conformal rectangular mesh.

Note that the convergence rates obtained in this numerical test are greater than the the-

oretical one given in Theorem 7.1 This is related to some uniformity of the mesh away the

refinement area. For the velocity, its gradient and the pressure, we numerically obtain con-

vergence rates equal to 1.9, 1.3 and 2 respectively for the DDFV scheme. Furthermore, let us

emphasize that the convergence rate is not sensitive to the presence of non conformal control

volumes.

8.3. Test 3 - Discontinuous viscosity. The exact solution on the third test are the fol-

lowing functions:

u(x, y) =

(
−πy

sin(π(x − 0.5))

)
, p(x, y) = 2.5(x − y).
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Here, we consider a discontinuous viscosity:

η(x, y) =

{
1 for x > 0.5

10−4 else.

We use the triangle mesh, shown on Figure 8.3(a).

(a) Triangle mesh.
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FIG. 8.3. Test 3, discontinuous viscosity on a triangle mesh.

With this viscosity, the assumptions of Theorem 7.1 are not satisfied. Nevertheless, the

numerical test shows that we have a first order convergence for velocity in H1
0 -norm and for

the pressure in L2-norm. It seems to come from the fact that Du is equal to zero accross

the discontinuity of the viscosity (x = 0.5) so that the jump of viscosity does not affect the

consistency properties of the numerical fluxes at the interface. We will see in the next test

case that it is not always the case.

8.4. Test 4 - Discontinuous viscosity. Let us consider the following exact solution:

u(x, y) =




{
y2 − 0.5y for y > 0.5

104(y2 − 0.5y) else.

0


 , p(x, y) = 2x − 1,



Stabilized DDFV schemes for Stokes problem 35

and the discontinuous viscosity:

η(x, y) =

{
1 for y > 0.5

10−4 else.

We use the non conformal quadrangle mesh, locally refined where the viscosity is discontin-

uous, shown on Figure 8.4(a).

(a) Non conformal quadrangle mesh.
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FIG. 8.4. Test 4, discontinuous viscosity on a non conformal quadrangle mesh.

Once more here the assumptions on the viscosity of Theorem 7.1 are not satisfyied and

the symmetric part of the gradient Du is discontinuous on the interface y = 0.5. We observe

that the scheme is still convergent but we have lost the first order convergence for the DDFV

scheme, as expected.

9. Conclusion. In this article, we propose stabilized DDFV schemes with Dirichlet

boundary conditions for the Stokes problem with variable viscosity. The DDFV scheme is

wellposed and we prove a first order convergence of it in the L2-norm for the velocity gradi-

ent, as well as for the velocity and for the pressure. These results are proven in the case where

the viscosity is smooth on the whole domain Ω. When the viscosity is no more smooth, we

still observe the convergence of the DDFV scheme. Nevertheless, the DDFV scheme is no

more first order convergent.

In practice, the viscosity may present discontinuities accross some interface, in multi-

phase flows, for instance. Such a viscosity function is no more Lipschitz continuous on the
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whole domain Ω. For anisotropic problems, in presence of discontinuities, a suitable modifi-

cation of the discrete gradient allows the authors of [5] to recover the first order convergence.

This approach can be adapted to the present work. We proved in [28] that the modified DDFV

scheme presents a better consistency of the fluxes at near the places where discontinuities of

the viscosity occur. Finally, the modified stabilized DDFV scheme is proved to be well-posed

and first order convergent on 2D general meshes, even for discontinuous viscosity.
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