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Jean Mairesse1 and Hoang-Thach Nguyen1

LIAFA, Université Paris Diderot - Paris 7, 75205 Paris Cedex 13
mairesse@liafa.jussieu.fr,hoang-thach.nguyen@liafa.jussieu.fr

Abstract. Consider a Markovian Petri net with race policy. The mark-
ing process has a “product form” stationary distribution if the probabil-
ity of viewing a given marking can be decomposed as the product over
places of terms depending only on the local marking. First we observe
that the Deficiency Zero Theorem of Feinberg, developped for chemical
reaction networks, provides a structural and simple sufficient condition
for the existence of a product form. In view of this, we study the classical
subclass of free-choice nets. Roughly, we show that the only such Petri
nets having a product form are the state machines which can alterna-
tively be viewed as Jackson networks.

1 Introduction

Queueing networks, Petri nets, and chemical reaction networks, are three math-
ematical models of “networks”, each of them with an identified community of
researchers.

In queueing, the existence of “product form” Markovian networks is one of
the cornerstones and jewels of the theory. Monographies are dedicated to the
subsect, e.g. Kelly [17] or Van Dijk [9]. Roughly, the interest lies in the equi-
librium behavior of a Markovian queueing network. The existence of such an
equilibrium is equivalent to the existence of a stationary distribution π for the
queue-length process. In some remarkable cases, π not only exists but has an ex-
plicit decomposable shape called “product form”. The interest is two-fold. First,
from a quantitative point of view, it makes the explicit computation of π possi-
ble, even for large systems. Second, the product form has important qualitative
implications, like the “Poisson-Input Poisson-Output” Theorems. Consequently
important and lasting efforts have been devoted to the quest for product form
queueing networks.

It is attractive and natural to try to develop an analog theory for Markovian
Petri nets, with the marking process replacing the queue-length process. There
is indeed a continueing string a research on this topic since the 90ies, e.g. [5, 6,
10, 12, 14, 15, 19]. Tools have been developped in the process which build on
classical objects of Petri net theory (e.g. closed support T-invariants). The most
accomplished results are the ones in [14].

In chemistry and biology, has emerged the model of chemical reaction net-
works. Such a network is specified by a finite set of reactions between species



of the type “2A + B → C”, meaning that two molecules of A can interact with
one molecule of B to create one molecule of C. The dynamics of such models is
either deterministic or stochastic, see [18].

Deterministic models are the most studied ones, they correspond to coupled
sets of ordinary differential equations. The most significant result is arguably
the Deficiency Zero Theorem of Feinberg [11]. Deficiency Zero is a structural
property which can be very easily checked knowing the shape of the reactions
in a chemical network. It does not refer to any assumption on the associated
dynamics. Feinberg Theorem states that if a network satisfies the Deficiency
Zero condition, then the associated deterministic dynamic model has remarkable
stability properties. An intermediate result is to prove that a set of non-linear
equations (NLE) have a strictly positive solution.

Stochastic models of chemical reaction networks correspond to continuous-
time Markov processes of a specific shape. Such models were considered in Chap-
ter 8 of the seminal book by Kelly [17]. There it is proved that if a set of
non-linear “traffic equations” (NLTE) have a strictly positive solution then the
Markov process has a product form.

How does Feinberg result connect with product form Markovian Petri nets ?

A first observation is that chemical reaction networks and Petri nets are two
different descriptions of the same object. This has been identified by different
authors in the biochemical community, see for instance [3] and the references
therein. Conversely, Petri nets were originally introduced by Carl Adam Petri to
model chemical processes, see [22].

A second observation was made recently by Anderson, Craciun, and Kurtz [2].
They observe that the NLE of Feinberg and the NLTE of Kelly are the same.
It implies that if a chemical network has deficiency zero, then the stochastic
dynamic model has a product form.

In the present paper, we couple the two observations together. The Deficiency
Zero condition provides a sufficient condition for a Markovian Petri net to have
a product form. The Deficiency Zero condition is equivalent to the criterion
known in the Petri net literature [14]. The advantage is that deficiency is easy
to compute and handle.

The class of Petri nets whose Markovian version have a product form is an
interesting one. It is therefore natural to study how this class intersects with the
classical families of Petri nets: state machines and free-choice Petri nets. We use
the simplicity of the Deficiency Zero condition to carry out this study.

The central result that we prove is, in a sense, a negative result. We show that
within the class of free-choice Petri nets, the only ones which have a product
form are closely related to state machines. We also show that the Markovian
state machines are “equivalent” to Jackson networks. The latter form the most
basic and classical example of product form queueing networks.

A conference version of the present paper appears in [20]. Compared with
[20], additional results have been proved: the equivalence between deficiency 0
and the condition of Haddad & al [14] (Prop. 3.9), and the results in Section 3.5.
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2 Model

We use the notation R∗ = R−{0}. The coordinate-wise ordering of Rk is denoted
by the symbol 6. We say that x ∈ Rk is strictly positive if xi > 0 for all i. We
denote by 1S the indicator function of S, that is the mapping taking value 1
inside S and 0 outside.

2.1 Petri nets

Our definition of Petri net is standard, with weights on the arcs.

Definition 2.1 (Petri net). A Petri net is a 6-tuple (P , T ,F , I, O, M0) where:

– (P , T ,F) is a directed bipartite graph, that is, P and T are non-empty and
finite disjoint sets, and F is a subset of (P × T ) ∪ (T × P) ;

– I : T → NP and O : T → NP are such that [I(t)p > 0 ⇔ (p, t) ∈ F ] and
[O(t)p > 0 ⇔ (t, p) ∈ F ] ;

– M0 belongs to NP .

The elements of P are called places, those of T are called transitions. The
5-tuple (P , T ,F , I, O) is called the Petri graph. The vectors I(t) and O(t), t ∈ T ,
are called the input bag and the output bag of the transition t. An element of NP

is called a marking, and M0 is called the initial marking.

Petri nets inherit the usual terminology of graph theory. Graphically, a Petri
net is represented by a directed graph in which places are represented by circles
and transitions by rectangles. The initial marking is also materialized: if M0(p) =
k, then k tokens are drawn inside the circle p. See Figure 1 for an example.

A Petri net is a dynamic object. The Petri graph always remains unchanged,
but the marking evolves according to the firing rule. A transition t is enabled in
the marking M if M ≥ I(t), then t may fire which transforms the marking from
M into

M ′ = M − I(t) + O(t) .

We write M
t−→ M ′. A marking M ′ is reachable from a marking M if there exists

a sequence of transitions t1, ..., tk, and a sequence of markings M1, ..., Mk−1,

such that M
t1−→ M1

t2−→ · · · tk−1−−−→ Mk−1
tk−→ M ′. We denote by R(M) the set of

markings which are reachable from M .

Definition 2.2 (Marking graph). The marking graph of a Petri net with
initial marking M0 is the directed graph with

– nodes: R(M0) , arcs: M → M ′ if ∃t ∈ T , M
t−→ M ′.

The marking graph defines the state space on which the marking may evolve.
Observe that the marking graph may be finite or infinite. In Section 2.3, we will
define a Markovian Petri net as a continuous-time Markovian process evolving
on the marking graph.
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The analysis of Petri nets relies heavily on linear algebra techniques, the
central object being the incidence matrix.

The incidence matrix N of the Petri net (P , T ,F , I, O, M0) is the (P × T )-
matrix N defined by:

Ns,t = O(t)s − I(t)s . (1)

Example. Figure 1 represents a Petri net with places {p1, p2, p3, p4} and transi-
tions {t1, t2, t3, t4}. The initial marking is M0 = (2, 1, 0, 1). The input and output
bags are:

I(t1) = (2, 0, 0, 0), O(t1) = (0, 2, 0, 0), I(t2) = (0, 2, 0, 0), O(t2) = (2, 0, 0, 0) ,
I(t3) = (1, 0, 1, 0), O(t3) = (0, 1, 0, 1), I(t4) = (0, 1, 0, 1), O(t4) = (1, 0, 1, 0) .

The weights different from 1 are represented on the arcs.

2 2

22

p1p3 p2 p4

t1

t3

t2

t4

Fig. 1. Petri net.

The reachable markings are M0, M1 = (0, 3, 0, 1), M2 = (3, 0, 1, 0), and
M3 = (1, 2, 1, 0) . The marking graph is represented on Figure 2.

M0 M1

M2 M3

t1

t2

t1

t2

t4t3 t4t3

Fig. 2. Marking graph.
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The incidence matrix of the Petri net is:

N =




−2 2 −1 1
2 −2 1 −1
0 0 −1 1
0 0 1 −1


 . (2)

2.2 Deficiency and weak reversibility

Coinsider a Petri net (P , T ,F , I, O, M0). If no two transitions have the same
input/output bags, we can identify each t with the ordered pair (I(t), O(t)).
The Petri net can then be viewed as a triple (P , T ⊂ NP × NP , M0 ∈ NP). (In
particular, the flow relation F is encoded in T .)

Petri nets have appeared with this presentation in different contexts and
under different names: vector addition systems (see for instance [23]), or chemical
reaction networks (see for instance [11, 2]).

In the chemical context, the elements of P are species. The marking is the
number of molecules of the different species. The elements of T are reactions. A
reaction (c, d) ∈ NP × NP is represented as follows:

∑

p∈P

cpp −→
∑

p∈P

dpp.

Example. The “chemical” form of the Petri net in Figure 1 is:

2p1 ⇄ 2p2 , p1 + p3 ⇄ p2 + p4 .

Let us now introduce two notions, deficiency and weak reversibility, which
are borrowed from the chemical literature.

Definition 2.3 (Reaction graph). Let (P , T ⊂ NP × NP , M) be a Petri net.
A complex is a vector u in NP such that: ∃v ∈ NP , (u, v) ∈ T or (v, u) ∈ T .
The set of all complexes is denoted by C. The reaction graph associated to the
Petri net is the directed graph with

– nodes: C, arcs: u → v if (u, v) ∈ T .

Let A be the node-arc incidence matrix of the reaction graph, that is the
(C × T )-matrix defined by

Au,t = −1{I(t)=u} + 1{O(t)=u} . (3)

Lemma 2.4. Consider a Petri net with set of complexes C. Let ℓ be the num-
ber of connected components of the reaction graph. The rank of the node-arc
incidence matrix satisfies:

rank(A) = |C| − ℓ . (4)
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Proof. Assume that ℓ = 1. Consider x ∈ RC − {(0, . . . , 0)} such that xA =
(0, . . . , 0). Let C be such that xC 6= 0. Consider D ∈ C. Since ℓ = 1, there exists
an undirected path (C = C0) −−C1 −− · · · −−(Ck = D) in the reaction graph.
Assume wlog that Ci → Ci+1 and let ti ∈ T be such that I(ti) = Ci, O(ti) =
Ci+1. By definition of A, we have (xA)ti

= xCi+1
− xCi

. So we have xCi
= xCi+1

for all i, and xC = xD. We have proved that

xA = (0, . . . , 0) =⇒ x ∈ R(1, . . . , 1) .

Conversely, by definition of A, we have (1, . . . , 1)A = (0, . . . , 0). We conclude that
rank(A) = |C|−1. For a general value of ℓ, we get similarly that rank(A) = |C|−ℓ.

⊓⊔

A central notion in what follows is the deficiency of a Petri net.

Definition 2.5 (Deficiency). With the above notations, the deficiency of the
Petri net is

δ = |C| − ℓ − rank(N) = rank(A) − rank(N) .

Of particular importance are the Petri nets with deficiency 0. This class
will be central in the study of Markovian Petri nets having a product form,
see Section 3. Such Petri nets are “extremal”, in a sense made precise by next
proposition.

Proposition 2.6. For all x ∈ RT :
[
Ax = 0

]
=⇒

[
Nx = 0

]
. (5)

In particular it implies that: rank(A) ≥ rank(N). Equivalently, the deficiency of
a Petri net is always greater or equal to 0.

The non-negativity of the deficiency appears in Feinberg [11], using a different
argument.

Proof. Using the definition of the matrix A, we can rewrite the condition Ax = 0:

∀c ∈ C,
∑

t:O(t)=c

xt −
∑

t:I(t)=c

xt = 0 , (6)

Now for each place s, we have:
∑

t∈T

Ns,txt =
∑

t∈T

[O(t)s − I(t)s]xt

=
∑

c∈C

( ∑

t:O(t)=c

csxt −
∑

t:I(t)=c

csxt

)
=

∑

c∈C

cs

( ∑

t:O(t)=c

xt −
∑

t:I(t)=c

xt

)
.

Using (6), this last sum is equal to 0.

The inequality rank(A) ≥ rank(N) is equivalent to dim ker(A) ≤ dim ker(N),
which follows immediately from (5). ⊓⊔

6



The second central notion is weak reversibility.

Definition 2.7 (Weak reversibility). A Petri net is weakly reversible (WR)
if every connected component of the reaction graph is strongly connected.

Weak reversibility is a restrictive property, see Section 4.3. It is important
to observe that a connected and weakly reversible Petri net is not necessarily
strongly connected. An example is given below.

p
∅ p

Elementary circuits of the reaction graph can be identified with the so-called
“minimal closed support T-invariants” of the Petri net literature (see [5]). In
particular, a Petri net is weakly reversible if and only if it is covered by minimal
closed support T-invariants. Such Petri nets are called Π-nets in [14].

WR, δ = 0 Not WR, δ = 0

WR, δ > 0 Not WR, δ > 0

Fig. 3. Deficiency zero and weak reversibility are independent.
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Weak reversibility and deficiency 0. Weak reversibility and deficiency 0 are two
independent properties. The Petri net of Figure 1 is weakly reversible and has
deficiency 0. If we remove one transition, t1 for instance, weak reversibility disap-
pears, yet the deficiency remains 0. The Petri net of Figure 4 is weakly reversible
and has deficiency 1. If we remove one transition, the new Petri net is neither
weakly reversible nor of deficiency 0.

Other examples of the four possible situations are given in Figure 3. The
upper-left Petri net is an instance of the famous “dining philosopher” model.
The Petri nets in Fig. 3 are live and bounded except for the upper-right one.

Algorithmic complexity. Weak reversibility and deficiency 0 are algorithmically
simple to check. Let us determine the time complexity of the algorithms with
respect to the size of the Petri net (number of places and transitions, and the
unary representation of weights).

Observe first that the number of complexes is bounded by 2T . Building the
reaction graph from the Petri graph can be done in time O(PT 2). A depth-first-
search algorithm on the reaction graph enables to check the weak reversibility
and to compute the number of connected components (ℓ). The DFS algorithm
runs in time O(PT ). Computing the rank of the incidence matrix can be done
in time O(PT 2) using a Gaussian elimination.

Globally the complexity is O(PT 2) for computing the deficiency as well as
for checking weak-reversibility.

2.3 Markovian Petri nets with race policy

A Petri net is a logical object with no physical time involved. There exist several
alternative ways to define timed models of Petri nets, see for instance [1, 4].
We consider the model of Markovian Petri nets with race policy. The rough
description is as follows.

With each enabled transition is associated a “countdown clock” whose pos-
itive initial value is set at random. When a clock reaches 0, the corresponding
transition fires. This changes the set of enabled transitions and all the clocks get
reinitialized. The initial values of the clocks are chosen independently, according
to an exponential distribution whose rate depends on the transition and on the
current marking. With probability 1, no two clocks reach zero at the same time
so the model is unambiguously defined. Enabled transitions are involved in a
“race”: the transition to fire is the one whose clock will reach zero first.

We now proceed to a formal definition of the model.

When I(t) = O(t), the firing of transition t does not modify the marking.
For simplicity, we assume from now on that I(t) 6= O(t) for all t.

Definition 2.8 (Markovian Petri net with race policy). A Markovian
Petri net (with race policy) is formed by a Petri net (P , T ,F , I, O, M0) and
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a set of rate functions (µt)t∈T , µt : R(M0) → R∗
+, satisfying

µt(M) =

{
κtΨ(M − I(t))Φ(M) if M > I(t)

0 otherwise
, (7)

for some constants κt ∈ R∗
+, t ∈ T , and some functions Ψ and Φ valued in R∗

+.
The marking evolves as a continuous-time jump Markov process with state space
R(M0) and infinitesimal generator Q = (qM,M ′)M,M ′ , given by

qM,M ′ =
∑

t:M
t−→M ′

µt(M) . (8)

The shape (8) for the infinitesimal generator is the transcription of the in-
formal description given at the beginning of the section.

The condition (7) for the rate functions (µt)t∈T is the same as the one in
[15] and [14, Section 2]. (In [14, Section 3], an even more general shape for the
rate function is considered.) Condition (7) is specifically cooked up in order for
the product form result of Theorem 3.2 to hold, which explains its artificial
shape. This general condition englobes two classical types of rate functions: the
constant rates and the mass-action rates.

Constant rates. In the Petri net literature, the standard assumption is that the
firing rates are constant:

∃κt ∈ R∗
+, ∀M ∈ R(M0), I(t) > M, µt(M) = κt . (9)

Mass-action rates. In the chemical literature, the rate is often proportional to
the number of different subsets of tokens (i.e. molecules) that can be involved in
the firing (i.e. reaction). More precisely:

∀M ∈ R(M0), I(t) > M, µt(M) = κt

∏

p:I(t)p 6=0

Mp!

(Mp − I(t)p)!
. (10)

Such rates are said to be of mass-action form and the corresponding stochastic
process has mass-action kinetics. To obtain (10) from (7), set Φ, Ψ−1 : NP →
R∗

+, x 7→ ∏
p xp!.

3 Product form results

We are interested in the equilibrium behavior of Markovian Petri nets. This
section presents the product form results which exist in the literature. We gather
results which were spread out, obtained independently either in the Petri net
community, or in the chemical one.
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Let Q be the infinitesimal generator of the marking process. An invariant
measure π of the process is characterized by the balance equations πQ = 0, that
is: ∀x ∈ R(M0),

π(x)
∑

t:x>I(t)

µt(x) =
∑

t:x>O(t)

π(x + I(t) − O(t))µt(x + I(t) − O(t)) . (11)

A stationary distribution is an invariant probability measure. It is characterized
by πQ = 0,

∑
x π(x) = 1. If π is an invariant measure and K =

∑
x∈R(M0)

π(x) <

+∞, then π/K = (π(x)/K)x is a stationary distribution.

When the marking graph is strongly connected, the marking process is irre-
ducible. It follows from basic Markovian theory that the stationary distribution
is unique when it exists (the ergodic case). When the state space is finite, irre-
ducibility implies ergodicity.

3.1 Non-linear traffic equations and Kelly’s Theorem

Definition 3.1 (Non-linear traffic equations). Consider a Markovian Petri
net with general rates. Let C be the set of complexes. We call non-linear traffic
equations (NLTE) the equations over the unknowns (xp)p∈P defined by: ∀C ∈ C,

∏

p:Cp 6=0

xCp

p

∑

t:I(t)=C

κt =
∑

t:O(t)=C

κt

∏

p:I(t)p 6=0

xI(t)p

p . (12)

(With the convention that the product over an empty set of indices equals 1.)

The NLTE can be viewed as a kind of balance equations (what goes in equals
what goes out) at the level of complexes. Their central role appears in next
theorem which is essentially due to Kelly [17, Theorem 8.1] (see also [2, Theorem
4.1]). In Kelly’s book, the setting is more restrictive, but the proof carries over
basically unchanged. For the sake of completeness, we recall the proof.

Theorem 3.2 (Kelly). Consider a Markovian Petri net. Assume that the NLTE
(12) admit a strictly positive solution (up)p∈P . Then the marking process of the
Petri net has an invariant measure π defined by: ∀x ∈ R(M0),

π(x) = Φ(x)−1
∏

p∈P

uxp

p . (13)

We say that π has a product form: π(x) decomposes as a product over the
places p of terms depending only on the local marking xp.

Observe that π(x) > 0 for all x in (13). In particular it implies that the
marking process is irreducible. On the other hand, the measure defined in (13)
may have a finite or infinite mass. When it has a finite mass, the marking process
is ergodic, and the normalization of π is the unique stationary distribution.
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In the case of mass-action rates (10), we get

∑

x∈R(M0)

π(x) =
∑

x∈R(M0)

∏

p∈P

u
xp

p

xp!
6

∑

x∈NP

∏

p∈P

u
xp

p

xp!
= exp(

∑

p

up) < +∞ .

So we are always in the ergodic case. For constant rates (9), if the state space
R(M0) is infinite, the ergodicity depends on the values of the constants κt.

Proof. It suffices to verify that π of the form (13) satisfies (11) when (up)p∈P is
a solution to (12).

In (11), by replacing π and µt with the right-hand sides of (13) and (7), we
obtain, after simplification:

∑

t:x>I(t)

κtΨ(x − I(t))Φ(x)Φ(x)−1
∏

p

uxp
p =

∑

t:x>O(t)

κtΨ(x − O(t))Φ(x + I(t) − O(t))Φ(x + I(t) − O(t))−1
∏

p

uxp+I(t)p−O(t)p

p

which is equivalent to

∑

x>C

∑

t:I(t)=C

κtΨ(x − C)
∏

p

uxp

p =
∑

x>C

∑

t:O(t)=C

κtΨ(x − C)
∏

p

uxp+I(t)p−Cp

p .

A sufficient condition for the above equality to hold is to have, for each C ∈ C,

∑

t:I(t)=C

κtΨ(x − C)
∏

p

uxp

p =
∑

t:O(t)=C

κtΨ(x − C)
∏

p

uxp+I(t)p−Cp

p ,

after simplification we get,

∏

p:Cp 6=0

uCp

p

∑

t:I(t)=C

κt =
∑

t:O(t)=C

κt

∏

p:I(t)p 6=0

uI(t)p

p .

This last set of equations means precisely that (up)p∈P is a solution to the NLTE.
⊓⊔

Theorem 3.2 is the core result. Below, all the developments consist in de-
termining conditions under which Theorem 3.2 applies. More precisely, we want
conditions on the model ensuring the existence of a strictly positive solution to
the NLTE and the finiteness of the measure π. The ideal situation is as follows:

– structural properties of the Petri net (i.e. independent of the firing rates)
ensure the existence of a strictly positive solution to the NLTE;

– conditions on the firing rates ensure the finiteness of the measure π.
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3.2 Linear traffic equations and Haddad & al’s Theorem

Solving the non-linear traffic equations is still a challenging task. We may avoid
a direct attack to these equations by considering a simpler system of equations
called the linear traffic equations.

Definition 3.3 (Linear traffic equations). We call linear traffic equations
(LTE) the equations over the unknowns (yC)C∈C defined by: ∀C ∈ C,

yC

∑

t:I(t)=C

κt =
∑

t:O(t)=C

κtyI(t) . (14)

Furthermore, if ∅ ∈ C, then y∅ = 1.

The NLTE and the LTE are clearly linked.

Lemma 3.4. If the NLTE (12) have a strictly positive solution u = (up)p∈P ,
then v = (vC)C∈C,

vC =
∏

p:Cp 6=0

uCp

p , (15)

is a strictly positive solution to the LTE (14).

For a partial converse statement, see Lemma 3.10. The following proposition
provides a simple and structural criterium for the existence of a strictly positive
solution to the LTE.

Proposition 3.5. The following statements are equivalent:

– ∃(κt)t∈T such that the equations (14) have a strictly positive solution.
– ∀(κt)t∈T , the equations (14) have a strictly positive solution.
– The Petri net is weakly reversible.

Proofs can be found in [5, Theorem 3.5] or [11, Corollary 4.2]. We recall the
argument from [5] which is simple and illuminating.

Proof. The reaction process is a continuous-time Markov process, analog to the
marking process, except that it is built on the reaction graph instead of the
marking graph. More precisely, the state space is the set of complexes C and the
infinitesimal generator Q̃ = (q̃u,v)u,v is defined by

q̃u,v =
∑

t:I(t)=u,O(t)=v

κt .

(The discrete-time version of this process was introduced in [15] under the name
“routing process”.) The key observation is that the LTE (14) are precisely the

balance equations yQ̃ = 0 of the reaction process. The result now follows using
standard Perron-Frobenius theory. ⊓⊔
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So weak reversibility is a necessary condition to have a strictly positive so-
lution to the NLTE, and to be able to apply Theorem 3.2. Unfortunately, it is
not a sufficient condition as shown by the following example.

Example. Let us consider a Markovian Petri net whose underlying Petri graph
is shown in Figure 4, and is equivalently defined by the chemical reactions:

p1 ⇄ p2 p3 ⇄ p4 p1 + p3 ⇄ p2 + p4 .

This is a weakly reversible Petri net, thus its LTE always have a strictly positive
solution regardless of the choice of the constants κt. The NLTE are:

κ1x1 = κ2x2 κ3x3 = κ4x4 κ5x1x3 = κ6x2x4 . (16)

The system (16) does not always have a strictly positive solution. For example,
set κ1 = κ2 = κ3 = κ4 = κ5 = 1, and κ6 = 2. Any solution to (16) must satisfy
either x1 = x2 = 0 or x3 = x4 = 0.

p2 p4

p1 p3

t5

t6

t2t1 t3 t4

Fig. 4. A weakly reversible Petri net.

Depending on the values of the constants (κt)t, the Markovian Petri net may
or may not have a product form invariant measure. Anticipating on Theorem
3.8, the deficiency of the Petri net has to be different from 0, and indeed we have
a deficiency which is equal to 1.

So now the goal is to find additional conditions on top of weak reversibility
to ensure the existence of a product form.

An early result in this direction appears in Coleman, Henderson and Tay-
lor [6, Theorem 3.1]. The condition is not structural (i.e. rate dependent) and
not very tractable. Next result, due to Haddad, Moreaux, Sereno, and Silva [14,
Theorem 9], provides a structural sufficient condition.

13



Proposition 3.6. Consider a Markovian Petri net (set of complexes C). As-
sume that the Petri net is weakly reversible. Let N be the incidence matrix of the
Petri net, see (1). Let A be the node-arc incidence matrix of the reaction graph,
see (3). Assume that there exists a Q-valued (C×P)-matrix B such that BN = A.
Then the marking process has an invariant measure π given by: ∀x ∈ R(M0),

π(x) = Φ(x)−1
∏

p∈P

( ∏

C∈C

v
BC,p

C

)xp
,

where v is a strictly positive solution to the LTE.

3.3 Deficiency zero and product form

Independently of the efforts in the Petri net community ([6, 14]), the following
result was proved on the chemical side by Feinberg [11, Theorem 5.1].

Theorem 3.7 (Feinberg). Consider a Markovian Petri net. Assume that the
Petri net has deficiency 0. Then the NLTE have a strictly positive solution if
and only if the network is weakly reversible.

By combining Theorems 3.2 and 3.7, we obtain the following result whose
formulation is original.

Theorem 3.8. Consider a Petri net which is weakly reversible and has de-
ficiency 0. Consider any associated Markovian Petri net. The NLTE have a
strictly positive solution (up)p and the marking process has a product form in-
variant measure:

π(x) = Φ(x)−1
∏

p∈P

uxp

p . (17)

If we assume furthermore that the rates are of mass-action type (10), then the
marking process is ergodic and its stationary distribution is:

π(x) = C
∏

p∈P

u
xp
p

xp!
,

where C =
(∑

x u
xp
p /xp!

)−1
.

The above result is interesting. Indeed, the “deficiency 0” condition is struc-
tural and very simple to handle. We now prove that the result in Theorem 3.8
is equivalent to the one in Proposition 3.6.

Proposition 3.9. Consider a Petri net. There exists a (C × P)-matrix B such
that BN = A (with the notations of Prop. 3.6) if and only if the Petri net has
deficiency 0.

14



Proof. The deficiency of the Petri net is 0 iff rank(N) = rank(A).
Assume first that there exists a matrix B such that BN = A. Since BN =

A, we have rank(A) 6 rank(N). By Proposition 2.6, we also have rank(A) >

rank(N). Therefore the Petri net has deficiency 0.

We now prove the converse result. Assume that the Petri net has deficiency
0. Set r = |C|− ℓ. We have rank(A) = rank(N) = r. Since rank(A) = r, we know
that there exists an invertible and Q-valued (T ×T )-matrix Q such that the first
r column vectors of AQ are linearly independant and the last (|T | − r) column
vectors are (0, . . . , 0)T . According to (5), the last (|T | − r) column vectors of
NQ are (0, . . . , 0)T . But rank(N) = r, so the first r column vectors of NQ must
be linearly independant.

Denote by AQ1, . . . , AQr, resp. NQ1, . . . , NQr, the first r column vectors of
AQ, resp. NQ. Since the two families are independent, we know that there exists
a Q-valued (C × P)-matrix B such that BNQi = AQi, for all i = 1, . . . , r. In
other words,

BNQ = AQ . (18)

Finally, right-multiplying both sides of (18) by Q−1, we obtain BN = A. ⊓⊔

The main results are summarized in the diagram of Figure 5.

Fig. 5. Deficiency 0, weak reversibility, and product form

3.4 A detailed example

Consider the Petri graph represented on the left of Figure 6. The corresponding
reaction graph is given on the right of the figure.
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pq

r

t2

t3

t1

2 2

2

2

2p p + q + r

2q

t1

t2 t3

Fig. 6. A Petri graph and its reaction graph.

The reaction graph is strongly connected so the Petri graph is weakly re-
versible. The incidence matrices N and A are given by (indices are ranked as
(p, q, r), (t1, t2, t3), and (2p, p + q + r, 2q)):

N =




−1 2 −1
1 −2 1
1 0 −1


 , A =




−1 1 0
1 0 −1
0 −1 1


 .

We check that rank(A) = rank(N) = 2, so the deficiency is 0. We are in the
scope of application of the results of Section 3.3.

Denote a marking M by the triple (Mp, Mq, Mr). Consider the two Petri
nets corresponding to the above Petri graph with two different initial markings:
(2, 0, 0) and (3, 0, 0).

The two Petri nets have a drastically different behaviour. The first one is live
and bounded, while the second one if live and unbounded. The sets of reachable
markings are, respectively,

R(2, 0, 0) =
{
(2, 0, 0), (1, 1, 1), (0, 2, 0)

}

R(3, 0, 0) =
{
(1, 2, 0), (0, 3, 1)

}
∪

{
(i, 3 − i, 2n + 1 − i), 0 ≤ i ≤ 3, n ≥ 1

}

For the initial marking (2, 0, 0), the marking graph is the elementary circuit
(2, 0, 0) −→ (1, 1, 1) −→ (0, 2, 0) −→ (2, 0, 0). For the initial marking (3, 0, 0),
the marking graph is represented in Figure 7. The dashed arrows correspond to
transition t1, the dash-and-dotted ones to t2, and the plain ones to t3.
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(0, 3, 1)

(1, 2, 0)

(0, 3, 3)

(1, 2, 3)

(2, 1, 1)

(3, 0, 0)

(0, 3, 2n − 1)

(1, 2, 2n − 2)

. . .

(0, 3, 2n + 1)

(1, 2, 2n)

(2, 1, 2n − 1)

(3, 0, 2n − 2)

. . .

(1, 2, 2n + 2)

(2, 1, 2n + 1)

(3, 0, 2n)

. . . . . .

Fig. 7. Marking graph with the initial marking (3, 0, 0).

Consider the Markovian Petri nets associated with the above Petri nets and
constant firing rates (κ1, κ2, κ3) for (t1, t2, t3). The NLTE over the unknowns
(xp, xq, xr) are given by

κ1x
2
p = κ2x

2
q , κ3xpxqxr = κ1x

2
p, κ2x

2
q = κ3xpxqxr .

A strictly positive solution to the NLTE is

( √
κ2√
κ1

, 1 ,

√
κ1κ2

κ3

)
.

Let R denote the set of reachable markings. According to Theorem 3.8, the
invariant measure π is given by

∀m = (mp, mq, mr) ∈ R, π(m) = κ
(mr−mp)/2
1 κ

(mp+mr)/2
2 κ−mr

3 . (19)

The invariant measure is expressed in exactly the same way for the two Petri
nets. But it corresponds to two very different situations.

For the initial marking (2, 0, 0), we have |R| = 3, the model is ergodic and
the unique stationary distribution p, obtained by normalization of (19), is given
by

p(2, 0, 0) = C−1κ2κ3, p(1, 1, 1) = C−1κ1κ2, p(0, 2, 0) = C−1κ1κ3 ,

with C = κ1κ2 + κ2κ3 + κ1κ3.

For the initial marking (3, 0, 0), we have |R| = ∞, and the model is ergodic
if and only if the following stability condition is satisfied

κ1κ2 < κ2
3 .

It is interesting to observe that we get a non-linear stability condition.
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3.5 Additional results

The statements of Proposition 3.6 and Theorem 3.8 differ in that they rely
respectively on the LTE and the NLTE. In particular, it seems at first glance
that Prop. 3.6 manages to bypass the NLTE. But it is not the case: the NLTE
are hidden in the matrix B, see below.

Lemma 3.10. Consider a weakly reversible Markovian Petri net. Assume that
there exists a Q-valued matrix B such that BN = A (notations of Prop. 3.6). Let
v = (vC)C∈C be a strictly positive solution to the LTE. Then u = (up)p∈P , up =∏

C∈C v
BC,p

C is a strictly positive solution to the NLTE.

Proof. For each transition t, we have:

∏

p

uI(t)p−O(t)p

p =
∏

p

u−Np,t

p =
∏

p

(∏

C

v
BC,p

C

)−Np,t

=
∏

C

v
−

P

p
BC,pNp,t

C =
∏

C

v
−AC,t

C

=
vI(t)

vO(t)
.

Then we have

[
u strictly positive sol. NLTE

]
⇐⇒ ∀C,

∑

I(t)=C

κt =
∑

O(t)=C

κt

∏

p

uI(t)p−O(t)p

p

⇐⇒ ∀C,
∑

I(t)=C

κt =
∑

O(t)=C

κt

vI(t)

vO(t)

⇐⇒
[
v strictly positive sol. LTE

]
.

The proof is completed. ⊓⊔

Let us comment on a specific point. Consider Theorem 3.8. The invariant
measure is defined in fonction of a specific strictly positive solution to the NLTE.
However, it is easily seen that the NLTE may have several strictly positive
solutions. Is this contradictory with the uniqueness of the stationary measure in
the ergodic case ? In the non-ergodic case, do we get several invariant measures ?
Next result answers these questions.

Lemma 3.11. Assume that the Petri net is weakly reversible and has deficiency
0. Let u, ũ be solutions to the NLTE and π, π̃ be the corresponding invariant
measures (given by (17)). Then there exists a constant K such that for all reach-
able marking x, π̃(x) = Kπ(x).

Proof. It suffices to show that

π(x − I(t) + O(t))

π(x)
=

π̃(x − I(t) + O(t))

π̃(x)
, (20)
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for all reachable marking x and for all enabled transition t of x. Define v =
(vC)C∈C , and ṽ = (ṽC)C∈C by

vC =
∏

p

uCp

p , ṽC =
∏

p

ũCp

p .

According to Lemma 3.4, v and ṽ are solutions to the LTE. Equality (20) holds
if and only if

∏

p

uO(t)p−I(t)p

p =
∏

p

ũO(t)p−I(t)p

p ⇐⇒ vO(t)

vI(t)
=

ṽO(t)

ṽI(t)
⇐⇒ ṽO(t)

vO(t)
=

ṽI(t)

vI(t)
.

The last equality is proved by Feinberg in [11, Proposition 4.1]. ⊓⊔

3.6 Algorithmic complexity

Let us compare Proposition 3.6 and Theorem 3.8 from an algorithmic point of
view.

In both cases, one needs to check weak reversibility. Using Proposition 3.5,
weak reversibility is equivalent to the existence of a strictly positive solution to
the LTE. This last point can be checked in time O(C3). Then the procedures
diverge.

– Proposition 3.6. We need to compute the matrix B satisfying BN = A. This
requires to solve C linear systems of dimension P×T . So the time-complexity
is O(CPT 2) using Gaussian elimination.

– Theorem 3.8. We have seen in Section 2.2 that the deficiency 0 condition can
be checked in time O(PT 2). Then one needs to compute a strictly positive
solution to the NLTE. This can be done as follows. Consider (15), apply the
logarithm operation on both sides and solve the linear system. The corre-
sponding time-complexity is O(PC2) (= O(PT 2) since |C| ≤ 2|T |).

We conclude that it is more efficient to determine the product form by using
the characterization in Theorem 3.8.

4 Markovian free-choice nets and product form

The class of Petri nets whose Markovian version have a product form is an
interesting one. It is therefore natural to study how this class intersects with the
classical families of Petri nets: state machines and free-choice Petri nets.

The central result of this section is, in a sense, a negative result. We show
that within the class of free-choice Petri nets, the only ones which are weakly
reversible are closely related to state machines. We also show that the Markovian
state machines are “equivalent to” Jackson networks. The latter form the most
basic and classical example of product form queueing networks.
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From now on, we consider only non-weighted Petri nets, that is Petri nets with
I, O : T → {0, 1}P . In this case, the input/output bags can be retrieved from
the flow relation F and we can define the Petri net as a quadruple (P , T ,F , M0).
We also identify complexes with subsets of P .

For a node x ∈ T ∪ P , set •x = {y : (y, x) ∈ F} and x• = {y : (x, y) ∈ F}.
For a set of nodes S ⊂ T ∪ P , set •S =

⋃
x∈S

•x and S• =
⋃

x∈S x•.

4.1 State machines

Definition 4.1 (State machine and generalized state machine). A non-
weighted Petri net N = (P , T ,F , M0) is a:

– State machine (SM) if for all transition t, |•t| = |t•| = 1;
– Generalized state machine (GSM) if for all transition t, |•t| ≤ 1, |t•| ≤ 1.

Definition 4.2 (Associated state machine). Given a generalized state ma-
chine N = (P , T ,F , M0), the associated state machine is N ′ = (P ′, T ,F ′, M ′

0)
in which:

– P ′ = P ∪ {p}, p /∈ P ,
– F ′ = F ∪ {(p, t), t ∈ T , |•t| = 0} ∪ {(t, p), t ∈ T , |t•| = 0} ,
– ∀x ∈ P , M ′

0(x) = M0(x), M ′
0(p) = 0 .

Figure 8 shows a SM, a GSM and its associated SM.

p

State machine Generalized SM Associated SM

Fig. 8. State machine, generalized state machine and associated state machine.

Lemma 4.3. The reaction graph and the Petri graph of a state machine are
isomorphic. The reaction graph of a GSM and the Petri graph of its associated
SM are isomorphic.

Proof. In a SM, each complex is just one place. Starting from the Petri graph and
replacing [p → t → q], p, q ∈ P , t ∈ T , by [p → q], we get the reaction graph.
For GSM, the mapping is the same with the empty complex corresponding to
the “new” place in the associated SM. ⊓⊔

20



Corollary 4.4. A SM is weakly reversible iff each connected component is strong-
ly connected. A GSM is weakly reversible iff in the associated SM, each connected
component is strongly connected.

In a SM, the complexes are the places. So the NLTE and the LTE coincide
exactly. For a GSM, the complexes are the places and the empty set. With the
convention y∅ = 1, we still have that the NLTE and the LTE coincide. Next
proposition follows.

Proposition 4.5. Consider a weakly reversible GSM. For every rates (κt)t, the
NLTE have a strictly positive solution.

Proof. In the weakly reversible case, the LTE have a strictly positive solution
for every choice of the rates, Proposition 3.5. Therefore the NLTE have a strictly
positive solution for every choice of the rates. ⊓⊔

The above proof does not require Feinberg’s Theorem 3.7. However, it turns
out that the deficiency is 0, which provides a second proof of Prop. 4.5 using
Theorem 3.7.

Proposition 4.6. Generalized state machines have deficiency 0.

Proof. Consider first a state machine. Let N be the incidence matrix, and let A
be the node-arc incidence matrix of the reaction graph, see (3). Using Lemma 4.3,
we get immediately that A = N . So, in particular, we have rank(A) = rank(N)
and the deficiency is 0.

Consider now a GSM N and its associated SM N ′. Call C (resp. C′), N (resp.
N ′) and ℓ (resp. ℓ′) the set of complexes, the incidence matrix and the number
of connected components of the reaction graph of N (resp. N ′).

Since N and N ′ have the same reaction graph (Lemma 4.3), we have:

|C| = |C′| , ℓ = ℓ′ . (21)

By construction of N ′, N ′ is N augmented with a row (xt)t∈T defined by

xt = 1{t•=∅} − 1{•t=∅} ,

(where t• and •t are defined in N ). We have rank(N ′) ≥ rank(N). On the other
hand, observe that ∀t ∈ T , xt = −∑

s∈P Ns,t, so N ′ = BN , where B is the
P ×P identity matrix augmented with the row (−1, . . . ,−1). Hence rank(N ′) =
rank(BN) ≤ rank(N). So:

rank(N ′) = rank(N) . (22)

Together (21) and (22) imply that N and N ′ have the same deficiency. Since
N ′ is a SM, it has deficiency zero, so N also has deficiency zero. ⊓⊔

By coupling Proposition 4.5 and Theorem 3.2, or alternatively Proposition
4.6 and Theorem 3.8, we get the result below.
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Corollary 4.7. Consider a Markovian weakly reversible GSM. The NLTE have
a strictly positive solution (up)p. The marking process admits a product form
invariant measure given by: ∀x ∈ R(M0),

π(x) = Φ(x)−1
∏

p∈P

uxp

p .

In the case of a SM, R(M0) is finite, the marking process is ergodic, and π can
be normalized to give a product form stationary distribution: ∀x ∈ R(M0),

π̃(x) = BΦ(x)−1
∏

p∈P

uxp

p ,

where B =
(∑

x∈R(M0)
Φ(x)−1

∏
p∈P u

xp

p

)−1
.

Corollary 4.7 is far from a surprising or new result, as we now show.

4.2 Jackson networks

The product form result for Jackson networks is one of the cornerstones of Marko-
vian queueing theory. It was originally proved by Jackson [16] for open networks
and by Gordon & Newell [13] for closed networks.

Consider a Markovian weakly reversible SM with constant rates (κt)t∈T . It
can be transformed into a Jackson network as follows:

– A place s becomes a simple queue, that is a single server Markovian queue
with an infinite buffer. The service rate at queue s is µs =

∑
t∈s• κt.

– The routing matrix P of the Jackson network is the stochastic matrix defined
as follows: ∀u, v ∈ P ,

Pu,v =

{
µ−1

u

∑
t:•t=u,t•=v κt if ∃t ∈ T , u → t → v

0 otherwise
.

– A token in place s becomes a customer in queue s.

Consider now a Markovian weakly reversible GSM with constant rates (κt)t∈T .
On top of the above transformations, we do the following:

– A transition t with •t = ∅ becomes an external Poisson arrival flow of rate
κt in queue t•.

The routing matrix P is now substochastic. Indeed, if the transition t is such
that t• = ∅, then

∑
v P•t,v < 1.

In the SM case, the Jackson network is closed, that is without arrivals from
the outside and without departures to the outside. In the GSM case with input
and output transitions, the Jackson network is open.
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The transformation from (G)SM to Jackson network is illustrated on Fig. 9.

κ2

κ1

κ3

State machine

κ1 + κ2 + κ3

p2

p1

p3

pi = κi/
P

j
κj

Jackson network

Fig. 9. From (generalized) state machine to Jackson network.

A Jackson network can be translated into a Markovian (G)SM using the
same construction in the reverse direction.

The two models are identical in a strong sense. Precisely, the marking process
of the state machine and the queue-length process of the Jackson network have
the same infinitesimal generator.

The classical product form results for Jackson networks (Jackson [16] and
Gordon & Newell [13]) are exactly the translation via the above transformation
of Corollary 4.7. In the open case, the weak-reversibility implies the classical
“without capture” condition of Jackson networks.

The above transformation from GSM to queueing network can also be per-
formed in the case of general rate functions of type (7). Queueing networks with
those rate functions are called Whittle networks in the literature. The existence
of product form invariant measures for these networks is a classical result, see
for instance [24] and the references therein.

4.3 Free-choice Petri nets

We study the family of live and bounded free-choice nets. This is an important
class of Petri nets realizing a nice compromise between modelling power and
tractability, see the dedicated monography of Desel & Esparza [8]. We show
that the only such Petri nets having a product form are, in a sense, the GSM.

Definition 4.8 (Free-choice Petri net). A free-choice Petri net is a non-
weighted Petri net (P , T ,F , M0) such that: for every two transitions t1 and t2,
either •t1 = •t2 or •t1 ∩ •t2 = ∅.

Some authors call the above an extended free-choice Petri net and have a
more restrictive definition for free-choice Petri nets.
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In Figure 10, the Petri net on the left is free-choice, while the one on the
right is not free-choice.

Fig. 10. Free-choice (left) and non free-choice (right) Petri nets.

Definition 4.9 (Cluster). The cluster of a node x ∈ P ∪ T , denoted by [x], is
the minimal set of nodes such that: (i) x ∈ [x] ; (ii) ∀t ∈ T : t ∈ [x] =⇒ •t ⊂
[x] ; (iii) ∀p ∈ P : p ∈ [x] =⇒ p• ⊂ [x] .

The clusters form a partition of the set of nodes, see [8, Proposition 4.5], and
therefore of the places. Moreover, we have the following.

Lemma 4.10. Consider a weakly reversible free-choice Petri net. The non-empty
complexes are disjoint subsets of P. The partition of P induced by the non-empty
complexes is the same as the partition of P induced by the clusters.

Proof. In a weakly reversible free-choice Petri net, the non-empty complexes
are also non-empty input bags, which are disjoint according to the definition of
free-choiceness.

It follows from the definition of clusters that every non-empty input bag
is entirely contained in a cluster. This cluster is unique because the clusters
partition the set of places. Let I be a non-empty complex (which is also a non-
empty input bag). Denote by [I] the cluster containing I. We have I• ⊂ [I], so
I ∪I• ⊂ [I]. Since the Petri net is free-choice, •t = I for all t ∈ I•. The set I∪I•

satisfies the three conditions of the definition of clusters, so we have [I] ⊂ I ∪I•.
We conclude that [I] = I ∪ I• and I is the set of places of the cluster [I].

Conversely, let [x] be a cluster such that [x] ∩ P 6= ∅. Let I be a non-empty
input bag contained in [x]. We have, using the above, [I] = I ∪ I• ⊂ [x]. By
minimality, [I] = [x] and [x] ∩ P = I. ⊓⊔

The above result is not true for a non-WR free-choice Petri net. Consider for
instance the Petri net represented in the upper-right part of Figure 3.

Under the assumptions of Lemma 4.10, the non-empty complexes are disjoint.
Thus each non-empty complex behaves as if it was a “big place”. Consider the
operation which reduces each non-empty complex to a single place. The resulting
Petri net is a generalized state machine. And this generalized state machine is
weakly reversible because the original free-choice Petri net was weakly reversible.
Let us define all this more formally.
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Definition 4.11 (Reduced generalized state machine). Let N = (P , T ,F ,
M0) be a weakly reversible free-choice Petri net with set of complexes C. We call
the reduced generalized state machine (RGSM) of N the GSM RN = (C \
{∅}, T , F̃ , M̃0) where:

– F̃ = {(•t, t), (t, t•), t ∈ T };
– M̃0 is defined by: ∀C ∈ C \ {∅}, M̃0(C) = minp∈C M0(p).

The Petri graph of RN is roughly the reaction graph of N reinterpreted as
a Petri graph.

Lemma 4.12. Let N be a weakly reversible free-choice Petri net and RN its
RGSM. The marking graph of RN is isomorphic to the one of N . If N and
RN are Markovian with the same rates then the two marking processes are
“identical”, meaning that they have the same infinitesimal generator.

Proof. Consider two places p and q belonging to the same complex. Since the
complexes are disjoint, Lemma 4.10, each time p gains (resp. loses) a token, so
does q. So the difference Mp − Mq is invariant over all the reachable markings
M . It has the following consequence.

Consider f : R(M0) → NC\∅ defined by f(M)C = minp∈C M(p). If M
t−→ M ′

in N then f(M)
t−→ f(M ′) in RN . So f(R(M0)) = R(M̃0) and the marking

graph of RN is the marking graph of N up to a renaming of the nodes.
Since the marking graphs are the same, the infinitesimal generators are also

identical if the two Petri nets have the same rates. ⊓⊔

One could introduce the RGSM associated with a non-WR free-choice Petri
net as in Definition 4.11. But in this case Lemma 4.12 does not hold, and the
two marking graphs have nothing in common. This is illustrated in Figure 11.

p

q r

q

r

p q + r

Fig. 11. A non-WR free-choice net and the associated RGSM.

Now let us compare the structural characteristics of the original free-choice
Petri net N and of the reduced generalized state machine RN .
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Lemma 4.13. Let N be a weakly reversible free-choice Petri net. The RGSM
RN is weakly reversible and has the same deficiency as N .

Proof. The weak reversibility of RN follows directly from the definition of re-
duced generalized state machines.

The Petri graph of RN is isomorphic to its reaction graph, Lemma 4.3. Now
by construction, N and RN have the same reaction graph. So the number of
complexes and the number of connected components of the reaction graph do
not change. Call N and N ′ the incidence matrices of N and RN respectively.
Let C be an arbitrary complex, let p, p′ be two places of C. For every transition
t, we have Np,t = Np′,t = N ′

C,t, which implies that rank(N) = rank(N ′). So the
two Petri nets have the same deficiency. ⊓⊔

Corollary 4.14. Weakly reversible free-choice Petri nets have deficiency 0.

Proof. This follows from Prop. 4.6 and Lemma 4.13. ⊓⊔

Now all the results for weakly reversible GSM can be applied to weakly
reversible free-choice Petri nets. We get the following.

Theorem 4.15. Let N be a Markovian free-choice Petri net. Then N is weakly
reversible if and only if its NLTE have a strictly positive solution.

In this case, the Petri net has deficiency zero. Let (up)p be a strictly positive
solution to the NLTE. The marking process has a product form invariant measure
π given by: ∀x ∈ R(M0),

π(x) = Φ(x)−1
∏

p∈P

uxp
p .

If ∅ /∈ C then the state space R(M0) is finite, the marking process is ergodic and
π can be normalized to give a product form stationary distribution: ∀x ∈ R(M0),

π̃(x) = BΦ(x)−1
∏

p∈P

uxp

p ,

where B =
(∑

x∈R(M0)
Φ(x)−1

∏
p∈P u

xp

p

)−1
.
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