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Recursive T matrix algorithm for resonant multiple scattering :

Applications to localized plasmon excitations
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A matrix balanced version of the Recursive Centered T Matrix Al-

gorithm (RCTMA) applicable to systems possessing resonant inter-

particle couplings is presented. Possible domains of application in-

clude systems containing interacting localized plasmon resonances,

surface resonances, and photonic jet phenomena. This method is of

particular interest when considering modifications to complex sys-

tems. The numerical accuracy of this technique is demonstrated

in a study of particles with strongly interacting localized plasmon

resonances.
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1. Introduction

It has been well established that certain kinds of recursive T matrix algorithms (known

as RCTMA)1,2 are numerically stable and can be used to solve the Foldy-Lax multiple-

scattering equations for particles exhibiting “modest” inter-particle couplings. By “modest

couplings”, we refer to situations in which the order of orbital number of the Vector Spherical
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Wave Functions (VSWFs) necessary to describe the field scattered by each particle in an

aggregate of particles are not too much larger than that necessary for describing isolated

particles. The “modest coupling” criteria apply to a host of multiple scattering situations,

including systems of dielectric particles comparable in size to the wavelength and for most

packing fractions including dense packing. The modest coupling criteria can also apply to

metallic particles under certain conditions.

Like any multiple scattering technique not employing matrix balancing, the RCTMA can

encounter numerical difficulties in certain extreme situations of strongly coupled resonant

phenomenon. In this work, we present a matrix balanced form of the Recursive Centered T

Matrix Algorithm (or RCTMA) that can readily be employed even in the presence of strong

(i.e. resonant) inter-particle couplings. The rather extreme situation of “strong couplings”

studied here will generally require carefully micro-scaled engineered systems where high

Q-factor resonances can occur for particles illuminated in isolation, and in which the parti-

cles are sufficiently closely spaced that neighboring particles modify the resonance response

properties. Examples of strong inter-particle couplings can be found in particles exhibiting

plasmon resonances, surface resonances, or even photonic jet phenomenon.

In section 2, the notation is introduced in a brief review of the relevant multiple-scattering

theory. Section 3 describes an analytic matrix balancing procedure used to ‘well-condition’

the multiple scattering system of equations. A matrix balanced RCTMA is derived in section

4. Essential formulas for applications are summarized in section 5. Their applications are

then demonstrated by applying matrix balanced RCTMA calculations to study systems of

interacting localized plasmon excitations. Some known and novel aspects of interacting

localized plasmon excitations are presented herein.

2. Multiple-scattering theory - VSWF approach

Let us consider an arbitrary incident electromagnetic field incident on a collection of three-

dimensional particles (as shown in fig.1). The particles are considered as ‘individual’ scat-

terers if they can be placed in a circumscribing sphere lying entirely within the homogeneous

medium (actually this constraint can frequently be relaxed, cf.3).

The electromagnetic field incident on an N -particle system, Ei, is developed in terms

of the transverse regular VSWFs developed about some point O arbitrarily chosen as the
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Fig. 1. Schematic of an field incident on a collection of scatterers centered on x1,x2, ...,xN . The radii of

the respective circumscribing spheres are denoted R1, R2, ..., RN .

system ‘origin’:

Ei (r) = E0

∞∑

n=1

n∑

m=−n

{Rg [Mnm (kr)] a1,n,m +Rg [Nnm (kr)] a2,n,m}

= E0

2∑

q=1

∞∑

p=1

Rg [Ψq,p (kr)] aq,p ≡ E0Rg
[
Ψt (kr)

]
a (1)

where E0 is a real parameter determining the incident field amplitude. Eq.(1), introduces a

condensed notation for the VSWFs, Mnm and Nnm: Ψ1,p (kr) ≡ Mn,m (kr) and Ψ2,p (kr) ≡
Nn,m (kr). The notation Rg [ ] stands for “the regular part of” and distinguishes these

regular VSWFs from the “irregular” scattered VSWFs (cf. appendix A). In the second line

of eq.(1), the two subscripts (n,m) are replaced by a single subscript p defined such that

p (n,m) ≡ n(n+ 1) −m and has the inverse relations4:

n(p) = Int
√
p m(p) = −p + n(n+ 1) . (2)

The last line of eq.(1), adopts the compact matrix notation allowing the suppression of the

summation symbols.5 The superscripted ( t ) stands for the transpose of a column ‘matrix’

of composed of VSWFs into a row ‘matrix’ of these functions.

For points external to all individual circumscribing spheres, the total field, Et (r) can

be written as the sum of the incident field, and a set of ‘individual’ scattered fields, E
(j)
s ,
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centered respectively on each of the particle centers:

Et (r) = Ei (r) +
N∑

j=1

E(j)
s (rj)

= E0Rg
[
Ψt (kr)

]
a + E0

N∑

j=1

Ψt (krj) f
(j)
N (3)

where each scattered field, E
(j)
s , is developed, with coefficients f

(j)
N , on a basis of outgoing

VSWFs defined with respect to the associated particle center, denoted xj . The spherical

coordinates relative to each scatterer are denoted rj ≡ r − xj .

The crucial idea of Foldy-Lax multiple-scattering theory is that there exists an excitation

field, E
(j)
exc (r), associated with each particle which is the superposition of the incident field

and the field scattered by all the other particles in the system (excluding the field scattered

by the particle itself).6 From this definition, the excitation field of the jth particle can be

written

E(j)
exc (rj) ≡ E0Rg

[
Ψt (krj)

]
e
(j)
N ≡ Ei (r) +

N∑

l=1,l 6=j

E(l)
s (rl)

= E0Rg
[
Ψt (krj)

]
[
J (j,0)a +

N∑

l=1,l 6=j

H(j,l) f
(l)
N

]
(4)

where e
(j)
N are the coefficients of the excitation field in a regular VSWF basis centered on the

jth particle. In the second line of eq.(4), we have used the translation-addition theorem1,4,5)

and introduced the notation where J (j,0) ≡ J (kxj) is a regular translation matrix and

H(j,l) ≡ H [k (xj − xl)] is an irregular translation matrix. Analytical expressions for the

matrix elements of J (kxj) and H (kxj) are given in refs.1,4.

The other key idea of multiple scattering theory is that the field scattered by the object,

f
(j)
N , is obtained from the excitation field e

(j)
N via the 1-body T matrix, T

(j)
1 , derived when

one considers the particle to be immersed in an infinite homogeneous medium. This relation

is then expressed as

f
(j)
N = T

(j)
1 e

(j)
N (5)

[The index 1 on the T
(j)
1 indicates that this T matrix concerns an isolated particle, henceforth

referred to as a ‘1-body’ T matrix.] Employing eq.(5) in eq.(4), one obtains a Foldy-Lax set
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of equations for the excitation field coefficients1,5:

e
(j)
N = J (j,0)a+

N∑

l=1,l 6=j

H(j,l) T
(l)
1 e

(l)
N j = 1, ..., N (6)

For numerical applications where one is obliged to solve the equations on a truncated

VSWF basis, it is advantageous to work with a set of formally equivalent equations involving

the scattering coefficients f
(j)
N . This set of equations is derived by multiplying each of eqs.(6)

from the left by T
(j)
1 and using eq.(5) to obtain

f
(j)
N = T

(j)
1 J (j,0)a+ T

(j)
1

N∑

l=1,l 6=j

H(j,l) f
(l)
N j = 1, ..., N (7)

In the RCTMA, one calculates the centered multiple scattering transition matrices, T
(j,k)
N ,

which directly yield the scattered field coefficients in terms of the field incident on the system

through the expression

f
(j)
N =

N∑

k=1

T
(j,k)
N a(k) with a(k) ≡ J (k,0) a (8)

In this equation, we have introduced the column matrix a(j) which contains the coefficients

of the field incident on the entire system developed on a VSWF basis centered on the jth

particle.

3. Basis set truncation and matrix balancing

Although the multiple scattering formulas of the previous section are expressed as matrix

equations on VSWF basis sets of infinite dimension, the finite size of the scatterers natu-

rally restricts the dimension of the dominate VSWF contributions. In order to discuss this

phenomenon analytically, we consider the case of spherical scatterers. For non-spherical

scatterers, the matrix balancing procedure described below should be applied to the circum-

scribing spheres of the particles.

The Mie solution for a sphere of radius Rj immersed in a homogeneous host medium, can

be cast in the form of a 1-body T matrix that is diagonal in a VSWF basis centered on the

particle: [
T

(j)
1

]

q,p;q′,p′
= δq,q′δp,p′T1 (j, n(p), q) (9)

where the T
(j)
1 (n(p), q) correspond to the Mie coefficients and depend on q and n (cf. eq.(1)).
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With the objective of matrix balancing, it is helpful to express the Mie coefficients of the

scatterers in terms of the Ricatti Bessel and Hankel functions, respectively ψn (z) ≡ zjn (z)

and ξn (z) ≡ zhn (z), and their logarithmic derivatives

Φn (z) ≡ ψ′
n (z)

ψn (z)
Ψn (z) ≡ ξ′n (z)

ξn (z)
(10)

The T matrix elements of eq.(9) for a sphere of dielectric contrast ρj ≡ kj/k can then be

cast in the convenient form7:

T (j, n, 1) =
ψn (kRj)

ξn (kRj)

µj

µ
Φn (kRj) − ρjΦn (ρjkRj)

ρjΦn (ρjkRj) − µj

µ
Ψn (kRj)

≡ ψn (kRj)

ξn (kRj)
T (j, n, 1)

T (j, n, 2) =
ψn (kRj)

ξn (kRj)

µ
j

µ
Φn

(
ρ

j
kRj

)
− ρjΦn (kRj)

ρ
j
Ψn (kRj) − µj

µ
Φn (ρjkRj)

≡ ψn (kRj)

ξn (kRj)
T (j, n, 2) (11)

where k is the wavenumber in the external medium. The normalized T matrix coefficients,

T (j, n, q), of eq.(MieT) contain a rich resonant structure. The ratios ψn (kRj) /ξn (kRj)

on the other hand have an exponentially decreasing behavior for large, n ≫ kRj as is

demonstrated in fig.2 for kR = 10. One can remark from figure 2 that |ψn (kR) /ξn (kR)|
become quite small beyond nmax = kR + 3 and its value at n = 14 is ∼ 2 10−4. Although

these factors permit an appropriately truncated VSWF basis set to contain essentially all

the physical information necessary for accurate calculations, they also tend to produce ill-

conditioned linear systems when one is obliged to enlarge the VSWF space far beyond

≈ kR + 3 in order to account for strong coupling phenomenon.

A solution to the above problem is to ‘balance’ the matrix manipulations in section 4

below by defining “normalized” scattering and incident coefficients:

[
f

(j)
]

q,p
≡ ξn(p) (kRj)

[
f (j)

]
q,p

[
a(j)

]
q,p

≡ ψn(p) (kRj)
[
a(j)

]
q,p

(12)

For notational purposes, it is convenient to define diagonal matrices
[
ψ(j)

]
and

[
ξ(j)

]
with

Ricatti-Bessel functions along their diagonals, namely
[
ψ(j)

]
q′,p′;q,p

≡ δq,q′δp,p′ψn(p) (kRj) and
[
ξ(j)

]
q′,p′;q,p

≡ δq,q′δp,p′ξn(p) (kRj). This notation allows normalized or ‘balanced’ versions of

the one-body and many-body T -matrices to be defined respectively as

T
(j)

1 ≡
[
ξ(j)

]
T

(j)
1

[
ψ(j)

]−1
and T

(j,k)

N ≡
[
ξ(j)

]
T

(j,k)

N

[
ψ(k)

]−1
(13)
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Fig. 2. Plot of the spherical Bessel to Hankel function ratio, ψn (kR) /ξn (kR) occurring in the Mie

coefficients when kR = 10.

In terms of these normalized quantities, eq.(8) then reads

f
(j)

N =
N∑

k=1

T
(j,k)

N a(k) j = 1, ..., N (14)

In the next section, these ‘normalized’ T
(j)

1 and T
(j,k)

N are used to derive a matrix balanced

version of the recursive T matrix algorithm.

4. Derivation of a matrix balanced recursive algorithm

In this section, we derive a matrix balanced version of the Recursive Centered T Matrix

Algorithm (RCTMA) using purely algebraic manipulations. The recursive algorithm can be

invoked once we have a solution for the T
(j,k)

N−1 matrices of a N ≥ 1 particle system. If we

wish to solely use the recursive algorithm to solve a system, we initiate the recursive process

with a single particle solution described by T
(1,1)

1 ≡ T
(1)

1 .

One then considers an arbitrarily positioned particle being added to the system. The

excitation field on a particle N added to the system can be expressed as the superposition

of three fields. The first contribution is simply the field incident on the system, the second

contribution results from the scattering of the incident field by the N −1 cluster of particles

onto the particle N , and finally the third contribution comes from field scattered by the

particle N onto the N − 1 cluster and which returns to the N th particle as an excitation

field. Invoking the translation-addition theorem and eq.(8), these three contributions can
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be expressed in matrix form as1

e
(N)
N = a(N) +

N−1∑

j,k=1

H(N,j) T
(j,k)
N−1 a

(k) +

N−1∑

j,k=1

H(N,j)T
(j,k)
N−1 H

(k,N) f
(N)
N (15)

Defining now the normalized irregular translation matrices and excitation coefficients

respectively as

H
(j,k) ≡

[
ψ(j)

]
H(j,k)

[
ξ(k)

]−1
and e

(j)
N ≡

[
ψ(j)

]
e
(j)
N (16)

the normalized form of eq.(15) can be written

e
(N)
N = a(N) +

N−1∑

j,k=1

H
(N,j)

T
(j,k)

N−1 a
(k) +

N−1∑

j,k=1

H
(N,j)

T
(j,k)

N−1H
(k,N)

f
(N)

N (17)

where we also used the definitions in eqs.(12) and (13).

Recalling that the excitation field is linked to the scattered field by the 1-body T -matrix

via eq.(5), and invoking the definitions of eq.(12) and (16) we can write

e
(j)
N =

[
T

(j)

1

]−1

f
(j)

N (18)

Employing this relation for particle N on the LHS of eq.(17) and rearranging we obtain

{[
T

(N)

1

]−1

−
N−1∑

j,k=1

H
(N,j)

T
(j,k)

N−1H
(k,N)

}
f

(N)

N

= a(N) +
N−1∑

j,k=1

H
(N,j)

T
(j,k)

N−1 a
(k) . (19)

We now take the normalized T
(N,N)

N matrix to be expressed as

T
(N,N)

N =

{[
T

(N)

1

]−1

−
N−1∑

j,k=1

H
(N,j)

T
(j,k)

N−1H
(k,N)

}−1

(20)

With this assignment, we multiply both sides of eq.(19) by T
(N,N)

N and obtain an expression

consistent with equation (14):

f
(N)

N = T
(N,N)

N a(N) + T
(N,N)

N

N−1∑

j,l=1

H
(N,j)

T
(j,k)

N−1 a
(k)

= T
(N,N)

N a(N) +

N−1∑

l=1

T
(N,k)

N a(k) =

N∑

l=1

T
(N,k)

N a(k) (21)
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where we have assigned the matrix T
(N,k)

N , k 6= N as

T
(N,k)

N = T
(N,N)

N

N−1∑

j=1

H
(N,j)

T
(j,k)

N−1 (22)

One completes the description of the scattering by the system by remarking that the field

scattered by the other particles in the system are the superposition of the field that would

be scattered by the N − 1 cluster in the absence of the N th particle, plus the field scattered

from the N − 1 particle originating as a scattered field emanating from the N th particle.

Using again the translation-addition theorem, the field coefficients of f
(j)

N can in turn be

expressed in a form consistent with equation (14) as

f
(j)

N =

N−1∑

l=k

T
(j,k)

N−1 a
(k) +

N−1∑

k=1

T
(j,k)

N−1H
(k,N)

f
(N)

N

=
N−1∑

l=1

T
(j,k)

N−1 a
(k) +

N−1∑

k=1

T
(j,k)

N−1H
(k,N)

T
(N,N)

N a(N)

+

N−1∑

l=1

N−1∑

k=1

T
(j,l)

N−1H
(l,N)

T
(N,k)

N a(k)

= T
(j,N)

N a(N) +
N−1∑

k=1

T
(j,k)

N a(k) =
N∑

k=1

T
(j,k)

N a(k) (23)

where we invoked eq.(21). In the second and third lines we have defined the T
(j,N)

N and T
(j,l)

N

matrices such that

T
(j,N)

N =
N−1∑

k=1

T
(j,k)

N−1H
(k,N)

T
(N,N)

N (24a)

T
(j,k)

N = T
(j,k)

N−1 +

N−1∑

l=1

T
(j,l)

N−1H
(l,N)

T
(N,k)

N (24b)

At this point, all the T
(j,k)

N matrices have been obtained and the matrix manipulations

in eqs.(20), (22) and (24) can then be repeated to add as many particles to the system as

desired.

A. Relationship with system matrix inversions

Although the recursive algorithm is quite efficient for systems with relatively small numbers

of particles, for systems with many particles, one may prefer to try and solve an entire

N -particle system directly. A balanced linear system for the entire system corresponding to
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our recursive algorithm can be obtained by applying the relation of eq.(5) to the left hand

side of eq.(7), then multiplying both sides of the resulting equations by the
[
ψ(j)

]
matrix

and finally rearranging to obtain a system of balanced linear equations for the unknown

scattering coefficients:

[
T

(j)

1

]−1

f
(j)

N −
N∑

k=1,k 6=j

H
(j,k)

f
(k)

N = a(j) j = 1, ..., N (25)

where we used eqs.(12) and (13). The system of linear equations in eq.(25) can in principle

be directly solved by inverting the balanced system matrix:





f
(1)

N

f
(2)

N

...

f
(N)

N




=





[
T

(1)

1

]−1

−H(1,2) · · · −H(1,N)

−H(2,1)
[
T

(2)

1

]−1

· · · −H(2,N)

...
...

. . .
...

−H(N,1) −H(N,2) · · ·
[
T

(N)

1

]−1





−1 



a(1)

a(2)

...

a(N)




(26)

Once we have inverted this system, one can associate each block with a corresponding T
(j,k)

N

matrix as shown below as




f
(1)

N

f
(2)

N

...

f
(N)

N




=





T
(1,1)

N T
(1,2)

N · · · T
(1,N)

N

T
(2,1)

N T
(2,2)

N · · · T
(2,N)

N

...
...

. . .
...

T
(N,1)

N T
(N,2)

N · · · T
(N,N)

N









a(1)

a(2)

...

a(N)




(27)

which is the same form as the desired solutions given in eq.(14).

5. Summary and applications to localized plasmon excitations

In this section, we will apply the RCTMA to solve systems exhibiting strong interactions

between localized plasma resonances. We begin this section by summarizing the balanced

recursive algorithm. We then recall some useful formulas for extracting physical quanti-

ties from the T matrix. Finally, we carry out some illustrative calculations for strongly

interacting systems.

A. Summary of the balanced RCTMA algorithm

In order to implement the RCTMA, one must first solve the 1-body T -matrices, T
(1)
1 ,T

(2)
1 ,...,

T
(Ntot)
1 , for all the particles in the system. Normalized versions of the 1-body T matrices
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and the irregular translation matrices1,4, H(j,k), are then calculated via

T
(j)

1 ≡
[
ξ(j)

]
T

(j)
1

[
ψ(j)

]−1
H

(j,k) ≡
[
ψ(j)

]
H(j,k)

[
ξ(k)

]−1
(28)

where the diagonal matrices
[
ψ(j)

]
q,q′,p,p′

= δq,q′δp,p′ψn(p) (kRj) and
[
ξ(j)

]
q,q′,p,p′

=

δq,q′δp,p′ξn(p) (kRj) respectively have Ricatti-Bessel and Ricatti-Hankel functions on the di-

agonal. (Rj being the radius of the circumscribing sphere of the jth scatterer).

The balanced recursive algorithm is that the solution for the T
(N,N)
N matrix is obtained

from the T matrices of the N − 1 system, T
(j,k)
N−1, via the matrix inversion in eq.(20). All

the other matrices T
(j,k)

N with j 6= N or k 6= N are then obtained via matrix multiplications

and additions via equations (22) and (24). This process is then repeated as many times as

desired.

B. Physical quantities

When the incident field is a plane wave, it is convenient to express physical quantities in

terms of cross sections. Appealing to the far-field approximation of the field, the extinction

and scattering cross sections of clusters of N objects can be respectively expressed8,9

σext = − 1

k2
Re

[
N∑

k=1

a(j),†f
(j)
N

]
and σscat =

1

k2

N∑

j,k=1

f
(j),†
N J (j,k)f

(k)
N (29)

It is also possible to produce analytical expression for local field quantities like indi-

vidual absorption cross sections. For lossy scatterers in a lossless host medium, one can

obtain individual particle absorption cross sections by integrating the Poynting vector on a

circumscribing sphere surrounding the particle to obtain the formula as

σ(j)
a = − 1

k2
Re

{
f

(j),†
N e

(j)
N

}
− 1

k2

∣∣∣f (j)
N

∣∣∣
2

(30)

In an analogous fashion, optical forces on the particles can be calculated by integrating

the Maxwell tensor on a circumscribing sphere surrounding the particle10,11. It is frequently

convenient to characterize the optical force by vector ‘cross sections’, −→σ opt, defined such

that the time averaged optical force on particles immersed in a liquid dielectric of refraction

index nmed can be expressed as

Fopt = ‖Sinc‖
nmed

c
−→σ opt (31)
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where ‖Sinc‖ =
∥∥1

2
Re{E∗

inc ×Hinc}
∥∥ is the incident irradiance. The binding force and its

associated cross section, σb, between two particles separated by a relative position vector

rpos ≡ r2 − r1, can be defined as

Fb ≡ 1

2
(F2 − F1) · r̂pos ≡ ‖Sinc‖

nmed

c
σb (32)

C. Interacting localized plasmon excitations

For those conductors, such as the noble metals, that support surface plasmon resonances,

one can usually observe localized plasmon resonances in sufficiently small particles. These

resonances are typically dominated by absorption if the particles are sufficiently small with

respect to the incident wavelength and by scattering for larger particles. We chose to study

silver spheres 50 nm in diameter immersed in air (for which both scattering and absorption

are non-negligible).

The study is carried out for wavelengths ranging from the near ultra-violet through the

visible (300 to 850 nm). We ignore the relatively modest finite size corrections to damping12

and simply adopt the bulk dielectric constant of silver from ref.13 and extrapolate between

the experimental values. The extinction, scattering and absorption cross sections for these

particles are readily obtained from Mie theory and are displayed in figure 3 as a function of

frequency. These spheres are quite small with respect to visible wavelengths, (size parameters

in the 300↔800 nm wavelength range go through kR = 0.52 ↔ 0.20) and the isolated particle

cross sections are obtained to high precision with nmax = 4. One can also see from figure 3

that the strength of the plasmon resonance for these particles is about half due to absorption

and about half due to scattering.

One of the principal sources of interest of the localized plasmon resonances is their ca-

pacity to produce large field enhancements in regions much smaller than the incident field

wavelength. This property is demonstrated in fig.4a) with a 2D and 1D plot of the electric

field intensity in and near an isolated 50 nm diameter silver sphere illuminated near its

resonance peak (λ0 = 365 nm with NAg = 0.077 + 1.6i). The plots in Fig.4 are performed

in a plane containing the center of the sphere and perpendicular to kinc (the polarization

lies along the horizontal axis). The dimensionless extinction and scattering ‘efficiencies’,

Q = σ/(πR2), at this frequency are are respectively Qext = 14.48 and Qscat = 6.76.

We now use the balanced recursive technique to calculate the optical response of a dimer

composed of 50 nm diameter silver spheres whose surfaces are separated by 1 nm. Although
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Fig. 3. Total cross section ‘efficiencies’, Q ≡ σ/(πR2) for an isolated 50 nm diameter sphere.

the T matrix calculated by RCTMA contains information for arbitrary incident fields, we

study the physically interesting case of a plane wave perpendicular to the axis separating

the particles. As is widely known, the response then depends strongly on the polarization

of the incident light. In figures 5a) and 5c), the extinction and scattering cross sections

per particle are presented when the polarization is respectively perpendicular and parallel

to the symmetry axis. From figure 5c), one sees that the cross section for the parallel to

axis polarization presents a two sphere coupled resonance that is strongly red-shifted with

respect to the isolated particle resonance. The polarization perpendicular to this axis on

the other hand presents only slight modifications with respect to an isolated sphere.

The optical binding force cross sections for these same polarizations are respectively plot-

ted in figures 5b) and 5d). While the binding force for the polarization perpendicular to the

particle axis (cf.5c)) is slightly repulsive, the force for polarization parallel to the resonance

can be highly attractive with the dimensionless |Qb| attaining amplitudes of three orders

of magnitude. There has already been experimental and theoretical evidence supporting

the existence of optical force couplings in particles with plasmon excitations14 although such

high precision calculations at such small separations seems not to have been presented before

now.

This dimer system dramatically illustrates the ‘strong’ coupling category since correct

calculations require that the VSWF space be enlarged far beyond the predominantly dipolar

response characterizing the particles in isolation. The normalized cross sections per particle

are given in the table 1 for different values of the VSWF space truncation. Although it was
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Fig. 4. Electric field intensity ||Et||2/||Einc||2 in an isolated 50 nm diameter sphere (λ0 = 365 nm,

NAg = 0.077+1.6i). In a) is presented a 2D (hot) plot of the electric field intensity in a plane perpendicular

to the wavevector and containing the origin of the sphere (the horizontal axis lies along the polarization

direction). Fig b) is a 1D plot of the field intensity along the line in this plane containing the direction of

electric field polarization.

necessary to go to ∼ nmax = 30 to achieve 4 digit precision in all the cross sections, the table

indicates that results were already quite good at nmax = 20.

A base 10 logarithmic intensity field map for a two silver sphere dimer illuminated with

light polarized along the symmetry axis (frequency near the coupled sphere resonance maxi-

mum (λ0 = 467 nm and NAg = 0.048+2.827i) is presented in figs.6a) and figs.6b) which are

respectively a 2D plot (in the same plane as figure 4) and a 1D plot along the symmetry axis.

The size parameter of the individual spheres is kR = 0.34 and the isolated cross sections at

this frequency are Qext = 0.136 and Qscat = 0.0963. As can be seen in fig.6, the fact that one

had to go so far beyond the dipolar response has a dramatic effect on the field inside and

near the the particles. Notably, the fields inside the particles are no longer quasi-constant

as was the case for isolated particles.
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Fig. 5. Dimensionless cross section ‘efficiencies’ per particle, Q = σ/(2πR2) and binding force ‘efficiencies’

for a dimer of 50 nm diameter spheres (1 nm separation). In a) and b) the polarization is perpendicular to

the symmetry axis and in c) and d) it is parallel to the symmetry axis.

nmax 5 10 15 20 25 30 35 40

Qext/2 4.60 15.53 17.38 17.20 17.14 17.13 17.13 17.13

Qscat/2 3.51 10.62 11.30 11.04 10.98 10.97 10.97 10.97

Qb -417 -3639 -5530 -5918 -6000 -6015 -6018 -6018

Table 1. Dimensionless cross section ‘efficiencies’ per particle in function of the VSWF truncation, nmax.

Qext = σext/(2πR
2), Qscat = σscat/(2πR

2) and Qb = σb/(πR
2). The system is a dimer composed of

D = 50 nm diameter silver spheres (1 nm separation) at (λ0 = 467 nm and NAg = 0.048 + 2.827i)

An important word of caution should be made at this point. Although 1 nm separation

may appear to ‘nearly’ touching, the coupled resonance is in fact quite sensitive to exact

separation details when resonant particles are so closely separated. For example, at a sep-

aration distance of 0.5 nm for the silver dimer, the coupled plasmon resonance is displaced

to λ0 ≃ 516 nm as compared with λ0 ≃ 467 nm for a 1 nm separation, and the multipole

order has to be pushed to nmax ≃ 50 to achieve four digit accuracy in the cross sections.

Nanometer scale separations are not necessarily theoretical idealizations however as recent
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Fig. 6. Logarithmic scale plots of the field intensity for a two sphere dimer with (λ0 = 467 nm and incident

light polarized along the sphere axis (NAg = 0.048 + 2.827i). In a) is a 2D plot in the plane containing the

centers of the spheres and the polarization vector while b) is a 1D Logarithmic plot along the symmetry

axis of the spheres. Figures. c) and d) are the same as a) and b) respectively but for a 5 sphere chain of

spheres at its resonance maximum (λ0 = 561 nm and NAg = 0.0564 + 3.685i). (cf. figure 7).
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experiments with DNA separators have demonstrated15. Nevertheless, in applications like

DNA separators, one may well have to consider the strong optical forces between these

particles on account of the exceptionally strong attractive optical forces efficiencies of these

resonances. For instance, the binding force efficiency at 0.5

mathrmnm separation was calculated at Qb = −20174 for λ0 ≃ 515.6 nm (cf. Qb = −6018

for 1 nm separation at λ0 ≃ 467 nm). The question of perfect spheres exactly in contact

however seems untenable from an experimental standpoint and quite difficult from a the-

oretical standpoint on account of the singular behavior of the contact point. Theoretical

‘separations’ of 1Å for instance require multipole truncations of the order of nmax & 120

before convergence is achieved, but the idea of ‘perfect’ spheres separated by atomic scales

has clearly gone beyond domain of applicability of our mesoscopique physical model in any

case.

It is also important to verify that the recursive algorithm works for more complicated

systems. Towards this end, we illustrate in figure 7, the results of calculations for a system

composed a line of 5 identical silver spheres spheres separated by 1 nm. For the binding

force, we now present Qb,1 which is the binding optical force between outermost spheres and

their nearest neighbor and Qb,2 which is the binding force between central sphere and each of

its nearest neighbors. It is interesting to remark that addition of other spheres in the chain

dramatically lessens the strong binding force interactions between spheres even though the

fields between the spheres (cf. fig.5) can still be almost as high as the dimer case.

We remark that the interactions have continued to red-shift and widen the coupled

“chain” resonance. This chain resonance peaks at ≈ 561 nm and NAg ≃ 0.0564 + 3.685i

(Qext/5 = 14.416 and Qscat/5 = 12.543). It is clear from figure 7c) that the extinction

cross section of the chain resonance is increasingly dominated by scattering rather than

absorption. The number of VSWF orders necessary for high precision was also seen to de-

crease slightly for the chain. The calculation of fig.7 was carried out with nmax = 20 since

calculations at nmax = 24 produced negligible differences on this scale.

Despite the dominance of scattering, a considerable amount of absorption is still present

in the 5 sphere chain. Furthermore, from the field maps in figures 6c) and 6d), one can see

that the central sphere has the highest field internal field intensities, and one consequently

expects increased absorption in the central sphere. This supposition can readily be confirmed

quantitatively by using eq.(30) to calculate the absorption in each individual sphere. The
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Fig. 7. Total cross section and binding ‘efficiencies’ for a line of 5 ‘touching’ silver spheres 50 nm in diameter

(1 nm separation). In a) and b) the polarization is perpendicular to the symmetry axis and in c) and d) it

is parallel to the symmetry axis.

results are given in table 2.

Qa,1 Qa,2 Qa,3 Qa,4 Qa,5

0.8346 2.333 3.030 2.333 0.8346

Table 2. Individual absorption efficiencies Qa,j ≡ σa,j/(πR
2) in a five sphere chain at λ0 = 561 nm and

NAg = 0.0564 + 3.685i

We conclude this section with some calculations systems concerning larger chains of

particles. One can remark that the chain coupled resonance continued to red-shift and

widen when passing from the dimer to the five particle chain. Results for the extinction and

scattering cross sections chains of 10 and 20 sphere chains are presented in figure 8 for the

same polarizations and incident directions as considered previously.

One readily sees that ultraviolet and perpendicular responses per particle seem to have

stabilized for large chains. The collective chain response on the other hand continued to
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broaden and slightly red shift as one passed from 10 to 20 sphere chains and it is an interesting

point for future studies to examine the evolution of this phenomenon for even longer chains

and to study the impact of defaults in the chains.
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Fig. 8. Total extinction and scattering cross section efficiencies per particle in chains of 10 and 20 particles.

In a) the polarization is perpendicular to the symmetry axis and in b) it is parallel to the symmetry axis.

6. Conclusions

The balanced recursive algorithm can give useful and highly accurate information in systems

with large numbers of strongly interacting resonances. This has been demonstrated herein

for the case of localized plasmon resonances and the studies presented here suggest that

chains of closely spaced localized plasmons can have potentially interesting applications

with respect to frequency shifting and broadening. Although not demonstrated here, this

technique also proves useful for treating closely spaced systems possessing surface resonances

of ‘whispering gallery’ type.

It is worth remarking that matrix balancing seems to be a useful method to employ in

almost any Foldy-Lax equation solution scheme, be that for direct system matrix inversion,

iterative techniques or linear system solutions. In fact, some modern matrix inversion pro-

grams actually integrate numerical matrix balancing into their algorithms. Nevertheless,

since the matrix balancing in Foldy-Lax equations can be obtained analytically at relatively
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low computational cost, it seems beneficial to carry out this balancing explicitly rather than

relying on purely numerical treatments.

The matrix balanced RCTMA has potentially interesting applications for other kinds of

resonance phenomenon, notably whispering Gallery modes. Such studies are currently un-

derway. Furthermore, the ability of the matrix balanced RCTMA to study defaults and small

modifications in large complicated systems is particularly promising and will be employed

in subsequent studies.
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Appendix A: Vector spherical wave functions

The vector spherical wave functions can be readily written in terms of the Vector spherical

harmonics (VSHs) and outgoing spherical Hankel functions :

Ψ1,p (kr) ≡ Mnm(kr) ≡ h+
n (kr)Xnm(θ, φ)

Ψ2,p (kr) ≡ Nnm(kr) ≡ 1

kr

[√
n (n + 1)h+

n (kr)Ynm(θ, φ) +
[
krh+

n (kr)
]′

Znm(θ, φ)
]

(A1)

In the same manner, the regular VSWFs are obtained by replacing the spherical Hankel

functions in eq.(A1) by spherical Bessel functions. Our adopted definition of the VSHs is

Ynm(θ, φ) ≡ r̂ Ynm(θ, φ) Znm(θ, φ) ≡ r∇Ynm(θ, φ)√
n(n + 1)

Xnm(θ, φ) ≡ Znm(θ, φ)∧ r̂ (A2)

where the Ynm(θ, φ) are the scalar spherical harmonics.

References

1. B. Stout, J.-C. Auger, and J. Lafait, “A transfer matrix approach to local field calcu-

lations in multiple scattering problems,” J. Mod. Opt. 49, 2129–2152 (2002).

2. J.-C. Auger and B. Stout, “A recursive centered T-Matrix algorithm to solve the multi-

ple scattering equation : numerical validation,” J. Quant. Spect. & Rad. Trans. 79-80,

533–547 (2003).

3. A. Doicu and T. Wriedt, Light Scattering by Systems of Particles (Springer, 2006).

4. L. Tsang, J. A. Kong, and R. T. Shin, Theory of Microwave Remote Sensing (John

Wiley & Sons, 1985).



21

5. W. C. Chew, Waves and Fields in Inhomogeneous Media (IEEE Press, New York,

1994).

6. M. Lax, “Multiple Scattering of Waves,” Rev. Mod. Phys. 23, 287–310 (1951).

7. B. Stout, C. Andraud, S. Stout, and J. Lafait, “Absorption in multiple scattering

systems of coated spheres,” J. Opt. Soc. Am. A 20, 1050–1059 (2003).

8. B. Stout, J.-C. Auger, and J. Lafait, “Individual and aggregate scattering matrices and

cross sections : conservation laws and reciprocity,” J. Mod. Opt. 48, 2105–2128 (2001).

9. D. W. Mackowski, “Calculation of total cross sections in multiple-sphere clusters,” J.

Opt. Soc. Am. A 11, 2851–2861 (1994).

10. O. Moine and B. Stout, “Optical force calculations in arbitrary beams by use of the

vector addition theorem,” J. Opt. Soc. Am. B 22, 1620–1631 (2005).

11. M. I. Mishchenko, L. D. Travis, and A. Lacis, Scattering, Absorption and Emission of

Light by Small Particles (Cambridge University Press, 2002).

12. C. F. Bohren and D. R. Huffman, Absorption and Scattering of Light by Small Particles

(Wiley-Interscience, New York, 1983).

13. E. . D. E. Gray, American Institute of Physics Handbook 3rd edition (Mcgraw-Hill Tx,

1972).

14. Z. Li, M. K all, and H. Xu, “Optical forces on interacting plasmonic nanoparticles in a

focused Gaussian beam,” Phys. Rev. B 77, 085,412 (2008).

15. S. Bidault, F. J. G. Abajo, and A. Polman, “Plasmon-Based Nanolenses Assembled on

a Well-Defined DNA Template,” J. AM. Chem. S. 130, 2750-2751 (2008).


	Introduction
	Multiple-scattering theory - VSWF approach
	Basis set truncation and matrix balancing
	Derivation of a matrix balanced recursive algorithm
	Relationship with system matrix inversions

	Summary and applications to localized plasmon excitations
	Summary of the balanced RCTMA algorithm
	Physical quantities
	Interacting localized plasmon excitations

	 Conclusions
	Vector spherical wave functions
	References

