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High Order Generalized Impedance Boundary Conditions in

Electromagnetic Scattering Problems

M. Duruflé, H. Haddar and P. Joly

INRIA-Rocquencourt, Domaine de Voluceau, BP 105, F-78153 Le Chesnay Cédex

Abstract

We briefly review the use and the derivation of Generalized Impedance Boundary Con-
ditions (GIBC) in the case of thin dielectric coating and in the case of strongly absorbing
medium, within the context of electromagnetic scattering problem at a fixed frequency. We
then numerically test the validity and accuracy of these boundary conditions in the case of
high absorption. A numerical treatment of the corner singularity is proposed to recover the
accuracy of the GIBC for singular geometries.

1 Introduction

The use of Generalized Impedance Boundary Conditions (GIBC) in the mathematical modeling
of wave propagation phenomena has gained a wide attention in recent decades (see for instance
[19]). It is applied in electromagnetism to scattering problems from obstacles that are partially or
totally penetrable. The general idea is to replace the use of an “exact model” inside (the penetra-
ble part of) the obstacle by approximate boundary conditions (also called equivalent or effective
conditions) in order to reduce the cost of numerical computations.

In this article, we shall focuse on two type of electromagnetic time harmonic scattering prob-
lems involving the presence of a small length scale. The advantage of the approximate models is
to avoid the use of computational meshes constrained by this small scale.

• The scattering of electromagnetic waves by perfectly conducting obstacles coated with a thin
layer of dielectric material. Due to the small thickness of the coating (typically with respect
to the wavelength), the effect of the layer on the exterior field is, as a first approximation,
local (see for instance, [19, 11, 8, 4], [16] for the high frequency limit, [1, 2] for periodic
coatings and [13, 12] for an extension to the time dependent problem).

• The scattering of electromagnetic waves by highly conducting materials. In such a case, this
is the well-known skin effect that creates a “thin layer” phenomenon. The high conductivity
limitates the penetration of the wave to a boundary layer whose depth is inversely propor-
tional to the square root of its magnitude. Then, here again, the effect of the obstacle is,
as a first approximation, local. The research on effective boundary conditions for highly
absorbing obstacles began with Leontovich [5], was then pursued by Rytov [18] (see also
[19]) and more recently, using different approaches in [7].

This article is at the same time a review and a continuation of previous works [12, 14, 15]
that provides a numerical justification of the use of GIBCs. After having introduced our two
model problems in section 2, we give and compare in section 3 the expressions of the GIBCs for
each problem and for various orders of approximation (the notion of order is defined in section 2).
These conditions require smoothness assumptions on the geometry of the obstacle. In section 4, we
present the principles of scaled asymptotic-expansions method that allow us to derive the GIBCs.
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Section 5 is devoted to the numerical validation of the obtained GIBCs in the case of the high
conductivity. From the numerical point of view these boundary conditions have the advantage
to be variational (section 5.1) and therefore suitable for finite element approximation (see also
[21] for an integral equation approach). In section 5.2, we numerically verify the theoretical
results regarding the order of the GIBC in the case of regular bounaries. Section 5.3 is devoted
to boundaries with corner singularities. We numerically show how the GIBC accuracy can be
deteriorated in this case. We also show how the combination between local mesh refinement and
the use of GIBC restores the accuracy order.

2 Two model problems

Let Ω be an open bounded domain of R3 with connected complement and regular boundary
Γ := ∂Ω, occupied totally or partially by a penetrable material. We are interested in approximating
the scattered field in R3\Ω̄ in the situations where a boundary layer, whose width is small compared
to the incident wave length, is present near Γ. Two typical situations can be responsible of this
boundary layer effect.

(a) Thin coating: in this case the penetrable region is a coating of small width δ (the domain
Ωδ, see Figure 1) that is limitated by a perfectly conducting material. The boundary layer
here is then due the smallness of the physical width of the penetrable region.

(b) Highly conducting materials: in this case the penetrable region is the hole domain Ω but
due to the high conductivity σδ there is a rapid exponential decay of the wave inside Ω.
The boundary layer here is then due to the physical properties of the material, its width is
proportional to δ := 1/

√

µωσδ, where ω is the frequency of the incident wave and µ is the
relative magnetic permeability.

In these two situations, the effect of the thin layer on the scattered wave outside Ω can be
approximated by the use of a local boundary condition on Γ (GIBC). If the error between exact
and approximated solutions is O(δk+1) than the GIBC is called to be of order k.

Let us assume for simplicity that the exterior domain (R3 \ Ω) is homogeneous and that the
time and space scales are chosen such that the wave speed is 1 in this medium. We also assume
that the time dependence is harmonic with a frequency ω > 0, i.e. the electromagnetic field is of
the form

Eδ(x, t) = Re
{

Eδ(x) exp(iωt)
}

, Hδ(x, t) = Re
{

Hδ(x) exp(iωt)
}

.

Denoting by (Eδ
e , Hδ

e ) = (Eδ, Hδ)|R3\Ω, then

iωEδ
e − curlHδ

e = 0, iωHδ
e + curlEδ

e = 0, in R
3 \ Ω, (1)
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where this total field can be decomposed into the sum of an incident field (Einc, Hinc) and a
scattered one (Eδ

e,s, H
δ
e,s) that satisfies the Silver-Müller radiation condition:

lim
|x|→∞

x̂ × (E × x̂) − H × x̂ = 0 (2)

uniformly with respect to x̂ := x/|x|. Let n denotes a regular normal field on Γ. Then,

Eδ
e × n = Eδ

i × n, Hδ
e × n = Hδ

i × n on Γ, (3)

where (Eδ
i , Hδ

i ) denotes the electromagnetic field inside Ω. Depending on cases (a) and (b) the
equations satisfied by this field are different. Let µ, ε and σ respectively denote the relative
magnetic permeability, the relative electric permittivity and the conductivity inside Ωδ in case (a)
and Ω in case (b). In case (a) these quantities are assumed to be independent of δ and















(iωε + σ)Eδ
i − curlHδ

i = 0, in Ωδ,

iωµHδ
i + curl Eδ

i = 0, in Ωδ,

Eδ
i × n = 0 on Γδ,

(4)

whereas in case (b) the conductivity depends on δ and is set to σ := σδ = 1/(µωδ2), and

{

(iωε + 1
µωδ2 )Eδ

i − curlHδ
i = 0, in Ω,

iωµHδ
i + curlEδ

i = 0, in Ω.
(5)

3 Expression of the GIBCs

We denote by (Eδ,k
e , Hδ,k

e ) the desired approximation of order O(δk+1) of the exact electromagnetic
field (Eδ

e , Hδ
e ). It satisfies the standard Maxwell equations in the exterior domain

iωEδ,k
e − curl Hδ,k

e = 0, iωHδ,k
e + curlEδ,k

e = 0, in R
3 \ Ω, (6)

and is the sum of the incident field (Einc, Hinc) and a scattered one that satisfies the radiation
condition (2). The interface conditions on Γ and Maxwell’s equation inside Ω satisfied by the
exact solution are replaced by a GIBC of order k on Γ that can be written in the form

Eδ,k
e × n + i(µω) Dδ,k

(

n × (Hδ,k
e × n)

)

= 0, (7)

where n denotes the normal to Γ directed to the interior of Ω of and where Dδ,k is a local boundary
operator acting on tangential vector fields on Γ. The order of this operator increases with the
desired order of accuracy. We shall restrict ourselves to GIBCs leading to operators of order ≤ 2.
Before giving the expression of this operator for different values of k (that can be interpreted as
successive approximations of the H-to-E map for the Maxwell equations inside Ω), we need to first
introduce some notation related to surface operators on Γ.

We denote by ∇Γ the surface gradient on Γ and −divΓ its adjoint with respect to L2(Γ) inner
product. We then define the surface curl of a tangential vector V and the surface vector curl of a
scalar function u defined on Γ by

curlΓ V := divΓ (V × n) and ~curlΓ u := (∇Γ u) × n.

The curvature tensor C is defined by C := ∇Γn. We recall that C is symmetric and C n = 0.
We denote by c1 and c2 the eigenvalues of C (namely the principal curvatures associated with
tangential eigenvectors τ1, τ2), then g := c1c2 and h := 1

2 (c1 + c2) are respectively the Gaussian
and mean curvatures of Γ. To these curvatures we associate

H = h IΓ and G = g IΓ,
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where IΓ(xΓ) denotes the projection operator on the tangent plane to Γ at xΓ.

Expression of Dδ,k in the case of thin coatings (a). In his case, setting ε̃ := ε + σ
iω

, we have
the following expressions for k = 0, 1, 2, (see [12])



















Dδ,0 = 0,

Dδ,1 = δ
(

1 − 1
(ε̃µ)ω2

~curlΓ curlΓ

)

,

Dδ,2 = δ
(

(1 − δ(C −H)) − 1
(ε̃µ)ω2

~curlΓ (1 − δh)curlΓ

)

.

(8)

Expression of Dδ,k in the case of high conductivity (b). In his case we have the following
expressions for k = 0, 1, 2, 3, (see [15])































Dδ,0 = 0,

Dδ,1 =
(√

2
2 − i

√
2

2

)

δ,

Dδ,2 = Dδ,1 + i δ2(C −H),

Dδ,3 = Dδ,2 −
(√

2
4 + i

√
2

4

)

δ3
(

C2 −H2 + (εµ)ω2 + ∇Γ divΓ + ~curlΓ curlΓ

)

.

(9)

As one can notice from comparing both cases, the limit problem is the same (perfect conductor
boundary conditions), however, the expression and nature of Dδ,k greatly differ for higher order
approximations. For instance, in the case of thin coating, a surface wave operator appears starting
from the first order. But it is only at the third order that one can see an effect of the wave
propagation along the scatterer boundary in case of high absorption. Also in this case, one can see
that the second order operator appearing in the expression of Dδ,3 has no fix sign, which causes
difficulties in the mathematical study of the well-posedness of the approximate problem [15].

We refer to [15] for the mathematical justification of the order of these conditions in case (b).
The error analysis in case (a) can be easily deduced by using similar arguments.

Let us finally mention that there are other possible GIBCs of order k, that differ from the ones
given above only by O(δk+1) terms. Even if they theoretically lead to the same accuracy, their
adaptivity to a given numerical solver may be different (see [14, 12, 21]). We presented here the
expressions that are directly obtained from the procedure hereafter detailed. It turns out that
they are also suitable to a finite element implementation as presented in section 5.

4 Formal construction of the approximations

The construction of the approximations can be obtained from power series expansions in δ of the
solutions inside Ω, after a scaling with respect to the normal coordinate to Γ. More precisely, for
a sufficiently small given positive constant ν̄ (ν̄ = δ in case (a)) we define

Ων̄ = {x ∈ Ω ; dist(x, ∂Ω) < ν̄},

and to any x ∈ Ων̄ we uniquely associate the parametric coordinate (xΓ, ν) ∈ Γ × (0, ν̄) through

x = xΓ + ν n, x ∈ Ων̄ . (10)

Then the exact solution has the following expansions:

∣

∣

∣

∣

∣

Eδ
e (x) = E0

e (x) + δE1
e (x) + δ2E2

e (x) + · · · for x ∈ R3 \ Ω,

Hδ
e (x) = H0

e (x) + δH1
e (x) + δ2H2

e (x) + · · · for x ∈ R3 \ Ω,
(11)
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where Eℓ
e, Hℓ

e , ℓ = 0, 1, · · · are functions defined on R3 \ Ω and

∣

∣

∣

∣

∣

Eδ
i (x) = E0

i (xΓ, ν/δ) + δE1
i (xΓ, ν/δ) + δ2E2

i (xΓ, ν/δ) + · · · for x ∈ Ων̄

Hδ
i (x) = H0

i (xΓ, ν/δ) + δH1
i (xΓ, ν/δ) + δ2H2

i (xΓ, ν/δ) + · · · for x ∈ Ων̄
(12)

where x, xΓ and ν are as in (10). In case (b), Eℓ
i (xΓ, η), Hℓ

i (xΓ, η) : Γ × R+ 7→ C and

∣

∣

∣

∣

∣

∣

lim
η→∞

Eℓ
i (xΓ, η) = 0 for a.e. xΓ ∈ Γ,

lim
η→∞

Hℓ
i (xΓ, η) = 0 for a.e. xΓ ∈ Γ.

(13)

These conditions ensure that Eℓ
i and Hℓ

i are exponentially decreasing inside the obstacle. In case
(a) these functions are only defined for η ≤ 1 and are such that

Eℓ
i (xΓ, 1) × n = 0 for a.e. xΓ ∈ Γ, (14)

which is obtained from the perfect conductor condition on Γδ. The set of equations satisfied by the
terms of these expansions can be found from equating the terms of same order with respect δ after
inserting them into the equations of the problem. This identification process is based on using the
expression the curl operator in parametric coordinate. For instance, it is shown in [12, 15] that

curl V =

[(

1

j(ν)
(I + νM)∇Γ

)

· (Ṽ × n)

]

n +

[

1

j(ν)
(I + νM)∇Γ (Ṽ · n)

]

× n

−

[

1

j(ν)
(C + νG)Ṽ

]

× n − ∂ν(Ṽ × n),

for regular functions V defined on Ων̄ , where Ṽ is defined on Γ× (0, ν̄) by Ṽ (xΓ, ν) = V (xΓ + ν n),
and where the tangential operator M is defined on Γ by MC = G, and j(ν) := det(I + ν C) =
1 + 2νh + ν2g.

The obtained set of equations allows an inductive characterization of the asymptotic expansion
terms. In addition, analytic formulas of Eℓ

i and Hℓ
i in terms of η and the boundary tangential

values of Hk
e on Γ, k ≤ ℓ − 1, can be established (however this technical task becomes more and

more involving as k increases). These expressions are used in setting up the GIBCs.

Getting the GIBC expressions. The GIBC of order k is obtained by considering the truncated
expansion

Ẽδ,k :=

k
∑

ℓ=0

δℓ Eℓ
e and H̃δ,k :=

k
∑

ℓ=0

δℓ Hℓ
e

as an approximation of order k + 1 of respectively Eδ
e and Hδ

e . Using the first interface condition
in (3), one has

Ẽδ,k|Γ(xΓ) × n =

k
∑

ℓ=0

δℓ Eℓ
i (xΓ, 0) × n for xΓ ∈ Γ. (15)

Substituting the computed expressions of Eℓ
i (xΓ, 0) into (15) then leads to a boundary condition

of the form
Ẽδ,k × n + i(µω)Dδ,k(n × (H̃δ,k × n)) = δk+1 gδ

k on Γ (16)

where ‖gδ
k‖L2

t(Γ) is uniformly bounded with respect to δ and where Dδ,k is some boundary operator

(the one previously given for k = 0, 1, · · · ) The GIBC of order k that defines Eδ,k
e and Hδ,k

e is then
obtained by neglecting the right-hand side of (16).

Let us mention that once (Eδ,k
e , Hδ,k

e ) are computed, one can also get an approximation of
order O(δk+1) of the field inside the medium through an analytic formula. This formula is a direct
consequence of the analytic expressions of Eℓ

i (see [15]).
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5 Numerical discussion in the case of high absorption

We discuss in this section the numerical accuracy of the GIBCs and their validity for singular
geometries. We shall restrict ourselves to the case (b) and to axi-symmetric obstacles which
authorizes the use of the 3-D axisymmetric Hcurl spectral isoparametric Qℓ finite elements [10].
The numerical method uses a variational formulation and a Fourier expansion in the azimuthal
variable as detailed in the next section. To simulate the radiation condition at infinity we used
the integral representation of the solution on an artificial boundary at a finite distance from the
scatterer (see [17] for more details)

5.1 Variational formulation and Fourier decomposition.

In order to simplify the notation we shall simply denote by (E, H) the electromagnetic field that
satisfy (6-7). The variational formulation we use is a classical Hcurl formulation for the electric
field E. It is written after introducing the current

J := n × H on Γ

as an additional unknown (a source term for the Maxwell equations inside this domain). For a
given J this condition is easily included into the variational formulation. We then rewrite the
GIBC for E × n and J to complete the obtained system of equations. The GIBCs of order 1 to 3,
can be synthetically written in the form

E × n + β n × J + γ [∇Γ (divΓ (n × J)) − n ×∇Γ (divΓ (J)] = 0, on Γ (17)

where β is a matrix and γ is a constant. The unknown J ∈ V (Γ) where (the subscript t referring
to tangential functions) V (Γ) = L2

t (Γ) in the cases where γ = 0 and V (Γ) = H1
t (Γ), the subspace

of L2
t (Γ) fields with square integrable surfacic gradient, otherwise.

The variational formulation associated with (17) can be written in the form

∣

∣

∣

∣

∣

∣

∣

∣

∫

Γ

E × n · ϕ̄ dΓ +

∫

Γ

β(n × J) · ϕ̄ dΓ

− γ

∫

Γ

[ divΓ(n × J) divΓ(ϕ̄) + divΓ(n × ϕ̄) divΓ(J) ] dΓ = 0, ∀ ϕ ∈ V (Γ).

(18)

In the case on an axi-symmetric obstacle Ω, the resolution of the 3-D problem can be reduced
into the resolution of a series of 2-D problems that we chooze here to present in some details.
Let (r, θ, z) be the cylindrical coordinate system, we assume that the boundary Γ is generated by
rotating with respect to the z axis a curve Γg of the plane θ = constant, parameterized by:

M(ξ) = (r(ξ), z(ξ)) ξ ∈ I ⊂ R.

Let ∆(ξ) :=
√

|r′(ξ)|2 + |z′(ξ)|2 then, dΓ = r(ξ)∆(ξ)dθdξ = r(ξ)dθds(ξ) where ds(ξ) := ∆(ξ)dξ is
the curvilinear measure along Γg. The tangent vectors τ1(ξ) and τ2(ξ) associated with principal
curvatures of Γ and the inward normal n(ξ) form an orthonormal basis of R3 and are given by

τ1(ξ) =
1

∆(ξ)





r′(ξ) cos θ
r′(ξ) sin θ

z′(ξ)



 τ2(ξ) =





− sin θ
cos θ

0



 n(ξ) =
1

∆(ξ)





−z′(ξ) cos θ
−z′(ξ) sin θ

r′(ξ)





The principal curvatures c1(ξ) and c2(ξ) are given by

c1(ξ) =
(r′′z′ − z′′r′)(ξ)

∆(ξ)3
and c2 = −

z′(ξ)

r(ξ)∆(ξ)
.
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Let (J1(ξ, θ), J2(ξ, θ)) such that J(ξ, θ) = J1τ1 + J2τ2, is a tangential vector field then

divΓ J =
1

∆(ξ)

∂J1

∂ξ
+

r′(ξ)

r(ξ)∆(ξ)
J1 +

1

r(ξ)

∂J2

∂θ
=

∂J1

∂s
+

r′(ξ)

r(ξ)∆(ξ)
J1 +

1

r(ξ)

∂J2

∂θ
.

The axisymmetric configurations allows us to apply Fourier series transform with respect to the θ
variable. More precisely, we seek the solution in the form

E(r, θ, z) =

+∞
∑

m =−∞
Êm(r, z) e−imθ J(ξ, θ) =

+∞
∑

m =−∞
Ĵm(ξ) e−imθ .

For each m, the fields (Em, Jm) satisfy a 2D problem in cylindrical coordinates (r, z) where Em is
searched in a 2D H(curl)-like space ([10]) adapted to particular coordinates and Jm is searched
in H1(Γg)

2 (we explain here the case k = 3). In particular, introducing the curvilinear operator

divm
s J :=

∂J1

∂s
+

r′

r∆
J1 −

im

r
J2,

one easily sees that (18) results into

∫

Γg

(Êm × n) · v̄ r ds +

∫

Γg

β(n × Ĵm) · v̄ r ds

− γ

∫

Γg

(

divm
s (n × Ĵm) divm

s (v̄) + divm
s (n × v̄) divm

s (Ĵm)
)

r ds = 0

for all v ∈ H1(Γg)
2. While the electric field is approximated with Hcurl spectral isoparametric Qℓ

finite element, the current density is discretized using standard isoparametric continuous Pℓ finite
elements. Let us mention that we get a good approximation of the curvature terms (hidden in the
matrix β) as soon as ℓ ≥ 2 .

5.2 Validation of the GIBCs for smooth boundaries.

In our numerical experiments, we compute an approximate solution Eδ,k (k refers to the order of
the GIBC) with the method presented in section 5.1. The polynomial order ℓ = 7 of the finite
element approximation is large enough and the computational mesh is fine enough so that the
discretization errors can be seen as negligible. We compute a reference solution Eδ after having
meshed the interior of the obstacle. The mesh is constructed in such a way that the boundary
layer effect is correctly taken into account. The accuracy of the GIBC is tested by representing
the error fiunctional

Error := ‖curlEδ − curlEδ,k‖L2(D\Ω̄)/‖curlEδ‖L2(D\Ω̄)

in terms of δ, where D is our bounded domain of computations.

We choose a (non convex) peanut geometry as an example of C1 domain: see Figure 3-left (in
each picture, we shall superpose to the obstacle geometry, the distribution of the current density
modulus for a given scattering experiment). We compute the diffraction of an incident plane
wave propagating along the axis of revolution of the obstacle. In this case only the two harmonic
modes m = 1 and m = −1 (cf section 5.1) have to be computed. This wave propagates from top to
bottom, according to Figure 3-left. In the first simulation a moderate frequency is used: ω = 0.2 π,
which corresponds to a wavelength two times smaller than the height of the scatterer. As shown
by the error curves in Figure 3-right, one gets a convergence rate that roughly corresponds to the
theoretical O(δk+1) for a GIBC of order k. More precisely one gets O(δ3.8) for k = 3, O(δ2.9)
for k = 2 and O(δ2.5) for k = 1. In the second example shown in Figure 4, we increased the
frequency: ω = π. In this case one observes that the GIBC of order 1 and order 2 give similar
precision (till 3 digits): an improvement between k = 1 and k = 2 would be observed only with

7



smaller values of δ. However, the condition of order 3 improves significantly the precision. This
is (more or less) expected since when the wavelength is very small as compared with the smallest
radius of curvature of the surface, the corrections due to geometrical terms are not significant:
the wave “locally sees” the obstacle as a flat boundary, for which the curvature is 0 (therefore the
conditions of order 1 and order 2 are the same in this case). The improvement observed in the
case of the third order GIBC is due to the surface wave operator.
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Figure 3: Left: |Re(J)| on the boundary Γ. Right: error curves in terms of δ (log-log scale).
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Figure 4: Left: |Re(J)| on the boundary Γ. Right: error curves in terms of δ (log-log scale).

5.3 The treatment of singular boundaries.

When the boundary is not smooth, the error analysis in [15] fails. One has even to be cautious in
the definition of the GIBC of order 3 for non smooth boundaries [20]. To overcome this difficulty
we propose to combine the use of local mesh refinement around the singularity and the use of
GIBC in the region with regular boundary. The coupling between the two is done by introducing
a fictitious regular boundary inside the absorbing medium at the singularity regions that links the
regular parts of Γ so that their union gives a C1 surface Γ̃. The GIBC is then applied on Γ̃ and
the small region around the singularity is treated as a part of the computational volume domain:
see Figure 5-right as an example.
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In the sequel we shall compare the results obtained from a naive treatment of the singularity,
consisting on applying (at the discrete level) the GIBC on Γ as in the case of regular surfaces,
with the results obtained after applying the numerical treatment explained above. The error
curves associated to this treatment are labeled by adding the word “modified”.

R

α

Figure 5: Left: the diedron-disk geometry. Right: example of a mesh including a small part (in
green) of the absorbing medium.

The considered object is a “sharp ring” generated by rotating a diedron-disk around the z axis
(see Figure 6-left). The incident plane wave propagates as in section 5.2. In our first experiment
we take R = π and α = 30 degrees. The pulsation is chosen equal to ω = 1, so that the
wavelength is two times smaller than the height of the scatterer. As shown by the error curves in
Figure 6-right, the GIBC of order 1 or 3 fails to give the same convergence rate as in the case of
smooth boundary. Let us notice, that both conditions give a convergence rate in O(δ0.9), and no
improvement is observed when the GIBC of order 3 is used instead of order 1, for δ small enough.
However, after applying the numerical treatment of the singularities, one significantly improves
the accuracy: we get a convergence rate in O(h2.7) for the GIBC of order 1, and a convergence
rate in O(δ4.4) for GIBC of order 3.
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Figure 6: Left: |Re(J)| on the boundary Γ. Right: error curves in terms of δ (log-log scale).

Increasing the angle α reduces the singular behavior of the exact solution at the corner. Hence, for
α = 90 degrees (see Figure 7-left), the standard GIBCs behaves slightly better that in the previous
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case (same convergence rate in O(δ1.2) for the GIBCs), but their accuracy is still poor as compared
with the case of regular geometries (especially for the third order one). Once again, the modified
ones roughly restore the expected accuray (the measured convergence rate are respectively O(δ2.3)
O(δ2.7) for orders 1 and 3). Due to the weaker singularity of the obstacle, the improvement due
to the treatment of the singularity is less spectacular than in our first experiment.
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Figure 7: Left: |Re(J)| on the boundary Γ. Right: error curves in terms of δ (log-log scale).

However, when the frequency is increased, ω = 2π, one recovers the same type of improvement
than observed with the sharper geometry at lower frequency (see Figure 8).
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Figure 8: Left: |Re(J)| on the boundary Γ. Right: error curves in terms of δ (log-log scale).
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