
HAL Id: hal-00385519
https://hal.science/hal-00385519

Submitted on 19 May 2009

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

SYNTHESIS OF SUPERVISED CONTROLLER
BASED ON BOOLEAN CONSTRAINTS AND

BOOLEAN AUTOMATA
Pascale Marangé, Abdelouahed Tajer, François Gellot, Véronique

Carré-Ménétrier

To cite this version:
Pascale Marangé, Abdelouahed Tajer, François Gellot, Véronique Carré-Ménétrier. SYNTHESIS OF
SUPERVISED CONTROLLER BASED ON BOOLEAN CONSTRAINTS AND BOOLEAN AU-
TOMATA. 12th IFAC Symposium on Information Control Problems in Manufacturing (INCOM 2006),
May 2006, France. pp.CD. �hal-00385519�

https://hal.science/hal-00385519
https://hal.archives-ouvertes.fr

SYNTHESIS OF SUPERVISED CONTROLLER BASED ON BOOLEAN CONSTRAINTS AND
BOOLEAN AUTOMATA

P. Marangé, A. Tajer, F. Gellot, V. Carré-Ménétrier

Centre de Recherche en STIC, Moulin de la Housse B.P. 1039, 51687 REIMS Cedex 2,
FRANCE. Tel: +33.3.26.91.32.26, Fax: +33.3.26.91.31.06

{ abdelouahed.tajer, pascale marange, francois.gellot, veronique.carre}@univ-reims.fr

Abstract: In order to establish a method to synthesis controllers, an essential step is the
modelling of both plant and constraints. However, this step remains a very complex task.
To mitigate this difficulty and facilitate modelling, we present a methodology for plant
modelling based on rules; as well as a user friendly methodology for constraints
modelling based on logical equations in the traditional Boolean algebra. Then, we present
an adaptation of the Kumar algorithm synthesis adequated to these new modelling. To
conclude, we show that our synthesis approach can constitute a help in controller
development and to be diverted from its first function to be used in controller validation.
Copyright © 2006 IFAC

Key word: Boolean Automata, plant model, constraint model, supervisory control theory,
Boolean algebra, validation, controller development.

1. INTRODUCTION

The automation process complexity increases the
requirements for designers in terms of operational
safety as well as program design reliability. Two
approaches are possible: the validation approach and
the synthesis approach. We focus on the synthesis
approach which consists in building a controller in
which the properties required for the system are
taken into account from the beginning of the
designing process. This work make it possible to
characterize the necessary steps to move to
a Grafcet specification (IEC, 2002) to the
implementation of the corresponding controller. To
formalize these steps, we chose to base our approach
(Carré and Zaytoon, 2002) on tools/methods with
solid formal bases, such as the automaton and the
supervisory control theory (SCT) (Wonham and
Ramadge, 1987). This formal context was meant to
prove the feasibility of this approach while initially
not taking into consideration the difficulties involved
in its use. Our work thus led to the development of a
global synthesis and of an implementation solution
of: reactivate controllers as close as possible to the
requirements of Grafcet, of the process model to be
controlled and of the constraints to be respected on
the process evolutions. We showed the approach
applicability on several examples in (Carré and
Zaytoon, 2002), and (Tajer, 2005). However, the

plant and the constraints modelling proved to be a
complex task because the SCT recommends event
and rudimentary automata models. In addition, the
combinative explosion inherent in this type of
models limited the use of our synthesis approach to
simple systems in terms of number of inputs/outputs.
To mitigate these problems, this approach is based on
structured and advanced models while using for the
plant the Boolean models containing rules, and for
the constraints the logical equations in the traditional
Boolean algebra. In order to help the designers
develop the controller and refine the starting models
they are given the possibility to visualize ant analyse
the deadlocking sequences as well as the suggested
corrections (Tajer, 2005). The methodology
employed for the plant can be considered as an
adaptation of Chandra’s approach (Chandra and
Kumar, 2001) as is the structure implemented here.
For the constraints, a modelling by logical equations
in the traditional Boolean algebra between the
inputs/outputs of the controller is adopted. It is the
model user-friendliness and ability to reduce the
combinative explosion which is sought here. The
scheme takes into account these remarks and presents
the approach into as a whole.
After the modelling phase, the controller described in
the Grafcet is converted into an automaton of stable
situations GSS. To take into account the new models

of plant and constraints, an adapted synthesis
algorithm is proposed according to the principles
stated by SCT and Kumar, thus generating the
supervisor representing the acceptable maximum
behaviour of the process. Then, an intersection
operation makes it possible to obtain an automaton
corresponding to the common behaviour between
automaton of the stable situations and the supervisor
Boolean automaton. To integrate the user into the
loop of controller development and thus to make the
approach less sensitive to modelling errors, it is
suggested to carry out the construction in either
automatic, or semi-automatic mode. In the latter
mode, the user can visualize either the evolution
traces of the controller leading to a deadlock, or a list
of constraints not respected at the level of the
controller.

Extraction Automaton of the
Stable Situations

Synthesis of the acceptable
maximum behaviour

Intersection

Automata of the Stable
Situations

Supervisor automata

Grafcet Finite state Automata
and logical equations

Modelling of the
desired controller

Plant and constraint modelling

Rules of plant and constraint
modelling

Definition of the Grafcet
(SFC) model [IEC 91]

Designer

Procedure of
preparation to
the controller

generation

Not verified
constraint

Analyse of
correction

Deadlocking
Analyse

Analyse of Intersection Automata

Deadlocks

Evolutions trace leading to deadlocking

List of not respected
constraints

Automatic
treatment?

NO

Intersection automata

Construction of the automata corresponding to
the optimal establishment of the controller

Controller
Execution

Process in
Execution

Events

Controller Automata

YES

Actions

Intersection Automata

Corrections and/or refinement
of the starting models?

Fig.1. Formal approach synthesis starting from
controller specifications expressed in Grafcet

In section 2, we present the methodology of plant
modelling, in section 3 the constraints modelling by
Boolean equations are presented. In section 4, we
briefly give the steps of the synthesis algorithm of
the supervisor. In section 5 we develop a help for the
designer in developing a controller.
As an illustration, this work will be based on an
application designed to automatically sort out cases
of two different sizes. The system is composed of a
conveyor (conveyor 1) bringing the cases, two
double rod cylinders (V1, V2), two simple rod
cylinders (V3, V4), and two conveyors (conveyor 2
and 3) for allowing the cases evacuation. The first
conveyor takes the cases along one after the other.
According to the size of the cases, the push rod made
up of cylinder V1 and V2, places the cases in front of
cylinder V3 or V4.

Fig.2. Case sorting system
In the subsequent sections, we will use the following
variables: vi0 for the input positions of cylinder vi, vi1

for the output positions of cylinder vi, cp11 for the
sensor of small cases and cp12 for the sensor of large
cases. The system outputs are defined by:
GO_OUT1(2): order to release the cylinder V1 (V2),
GO_IN1(2): order to retreat the cylinder V1 (V2),
GO3(4): order to release simple rod cylinder V3
(V4). From there, we define input and output vectors
as: E = {v10, v11, v20, v21, v30, v31, v40, v41, cp11, cp12},
Z = {GO_OUT1,GO_OUT2,GO_IN1,GO_IN2,GO3,GO4}.

2. PLANT MODELLING

The precise description of the plant behaviour is a
complex operation because the evolutions of a
physical system are asynchronous and
nondeterministic. To compensate for the difficulties
of a global modelling, we chose a modular approach
allowing us to express simple causalities between the
plant elements under normal functioning.
Consequently, such a model can be derived from
using an automaton that accepts the control actions,
and can react by changing the logical values of the
Grafcet inputs. Considering the systems complexity
an adequate methodology is required for modelling
the plant. This methodology is based on occurrence
rules and precedence relations. These rules define the
interactions between controllable or uncontrollable
events. The precedence relation specifies the links
between uncontrollable events. The user defines the
rules and relations which are translated into automata
compatible with our synthesis approach. We looked
at a normal functioning without considering the
possible defects and risks of operation

2.1. Formal framework

To preserve the benefit of the formal framework
proposed by the supervisory control theory (Wonham
and Ramadge, 1987), plant modelling is carried out
under the form of automata describing the physically
possible evolutions caused by simple events under
normal process operation. To reflect the interactions
between the Grafcet controller and the plant, we
chose the interpretation of Balemi (Balemi et al.,
1993), where the controllable events Σc represents the
inputs process and the uncontrollable events Σu their
outputs. The controller can consequently force the
input process at any moment and the generation of
events is initiated jointly by the process and/or the
controller. This interpretation is specific so as to
reconcile the nature of continuous actions and input
variables of Grafcet with the event related feature of
the model theory. Thus, we retained the following
correspondence: a controllable event corresponds
either to activation ↑ Z or to deactivation ↓ Z of a
controller Grafcet, while an uncontrollable event is
associated with the rising edge ↑ E or with the falling
edge ↓ E with an input variable Grafcet. The Σc and
Σu sets are written then Σc = ↑ Z ∪ ↓ Z and Σu = ↑ E
∪ ↓ E.

2.2. Occurrence rules and precedence relations

To determine the occurrence rules, it is necessary (i)
to fix the initial conditions of the system, (ii) to
determine all the events related to the plant element,
(iii) to define with rules the influence of the
controllable events on the uncontrollable events.

Each rule expresses a "cause/consequence"; the
cause relates the controllable event to the
consequence (uncontrollable event). For each
occurrence rule with the same cause, it is then
necessary to establish with preceding relations, the
chronology between the consequent uncontrollable
events. The occurrence rules and the precedence
relations obtained will make it possible thereafter to
determine, starting from the initial state, the
controllable and the uncontrollable evolutions in the
element automaton plant to model.

Table 1: V1 movement parameters

For example, the complete model consists of four
automata describing respectively the movement of
each cylinder (example cylinder V1: figure 3.c).
These models take into account the cylinder
technology. For the movement of the double rod
cylinder V1, there are two controllable events
(GO_OUT1; GO_IN1) and two uncontrollable events
(v10 ; v11.). In the initial situation, the cylinder is on
the input position and no order is sent to the plant. To
define the occurrence rules, it is necessary to observe
the consequences of the orders sent. The GO_OUT1
order makes it possible the cylinder to move towards
the line and to leave its output position. The
chronology of the uncontrollable events is the
following: a reset of v10 then an activation of v11. The
parameters are presented in table 1.

2.3. Plant automaton construction

The automaton structure adopted to Discrete Events
Systems (DES) introduced in (Ramadge, 1989), is
less explicit because the states do not bring all the
information about the system. It is interesting to
enrich the model in terms of input and output vectors
associated with the automaton in each state. Indeed,
the input and output vectors give information both on
the plant state and the controller state. For this reason
we propose to define an automaton model with
Boolean state (Wang, 2000). The automaton can be
defined by a 4-tuple G = (P, ∑, δ, p0), where ∑=
∑u∪∑c is the set of events describing the transition.
These transitions are characterized by controlled
events ∑c or uncontrolled events ∑u, δ is the
transition function that is defined by δ: P×∑→P, the
initial state: p0 of the automaton G and eventually P
the set of state of G that is defined by:
P = {[p1,…, pn] / pj ∈{0,1}, j = 1,…, n}⊆ IBn
P defines a set of n-dimensional Boolean vectors
states. Each component of the vector state can have a
value 0 or 1. The number of maximum states of the
model automaton is decided by the number of state
variables, i.e. for n variable there are 2n states. In
Boole algebra, the set IB is defined by ({0. 1}, ∧, ∨, ¬).
In accordance with the semantics recommended by
our approach, E and Z are two vectors associated in a
state p with the automaton G such as E = [e1..., em]

and Z = [z1..., zs] when m is the number of the system
inputs and s the number of the system outputs. E
represents the inputs vector associated with a given
state; Z represents the outputs vector associated with
this state. The set of the states of G is defined by:

P = {[[z1,…, zs], [e1,…, em]] /
zj, ei∈{0,1}*{0,1},j=1,...,s; i=1,…,m, n=s+m} ⊆ IBn.

2.4. The proposed construction model

The plant automaton construction is based on rules
and relations which are carried out according to the
four following steps:

1. Building the table with 2n states (n is the number
of inputs/outputs of the systems) describing all the
possible combination between inputs/outputs of the
systems (figure 3.a).

2. Deleting the logical inconsistencies between the
inputs (sensors). Here, we are not interested in the
logical inconsistencies related to the controllable
events but those related to the reactions
(uncontrollable events) of the plant compared to
these events (figure 3.b). For the cylinder example,
the position sensors cannot be true at the same time.

3. Building the automaton equivalent to the
diagram of the controllable evolutions. The diagram
is given starting from the truth table representing the
remaining states after the suppression of the logical
inconsistencies. For each combination, the
occurrence of a controllable event allows to change
the output variable which leads to a new state (figure
3.c).

4. Completing the automaton with the
uncontrollable evolutions. This operation consists in
using the occurrence rules, the precedence relations
and initial conditions (figure 3.d).
This method of modelling is carried out for each part
of the system. The complete model of plant is then
obtained by an asynchronous composition of all the
elementary models. The different steps of the
approach are illustrated by the example in figures 3.a,
3.b, 3.c, and 3.d.
For the V1 movement, the first step consists in
establishing 24 combinations between GO_OUT1,
GO_IN1, v11 and v10. The second step consists in
removing 4 logical inconsistencies. It is the case
when v10 = v11 = 1 (figure 3.a).
The automaton of the controllable evolutions is
determined starting from the truth table thus
expressing all the possible evolutions between the
states. These evolutions are only defined by
controllable events ↑ GO_OUT, ↓GO_OUT1,
↑ GO_IN1, ↓GO_IN1. We note that GO_OUT1 or
GO_IN1  can take value 1 in activation and 0 in
deactivation (figure 3.b).
With the precedence relations, the last step gives the
final automaton presented in figure 3.c. For example,
starting from the initial state (2) the outgoing
possible controllable events are ↑ GO_OUT1 and
↑ GO_IN1. Occurrence of the controllable event
↑ GO_IN1 led to the state 6 and that of ↑ GO_OUT1
to state 10. The relation of precedence corresponding
to this event is defined by the uncontrollable event
↓ v10 making it possible to reach state 8. The
appearance of event ↑ v11 then leads the plant to state
9. In the same way, the other uncontrollable

Initial
conditions Occurrence rules Precedence rules

_ 1GO IN ↑ GO_IN1 → ↓ v10
↑ GO_IN1→ ↑ v11

↓ v10 precede ↑ v11

1_ OUTGO ↑ GO_OUT1 → ↓ v11
↑ GO_OUT1 → ↑ v10

↓ v11 precede ↑ v10

11v ↓ GO_IN1 →↑ v11 nothing

v10 ↓ GO_OUT1 → ↑ v10 nothing

 states GO_OUT1 GO_IN1 p10 p11
0 0 0 0 0
1 0 0 0 1

2* 0 0 1 0
3 0 0 1 1
4 0 1 0 0
5 0 1 0 1
6 0 1 1 0
7 0 1 1 1
8 1 0 0 0
9 1 0 0 1

10 1 0 1 0
11 1 0 1 1
12 1 1 0 0
13 1 1 0 1
14 1 1 1 0
15 1 1 1 1

(*) État initial

Logical Incoherence

Logical Incoherence

Logical Incoherence

Logical Incoherence

 p10/p11
GO_OUT1/GO_IN1

00 01 11 10

00 0 1
01 4 5 6
11 12 13 14
10 8 9 10

2 10
↑ AVANCER1

↓ AVANCER1

6

↓
R

EC
U

LE
R1

↑
R

EC
U

LE
R1

14
↑ AVANCER1

↓ AVANCER1

↑
R

EC
U

LE
R1

↓
R

EC
U

LE
R

1

8 0
↑ AVANCER1

↓ AVANCER1

12
2

↓
R

EC
U

LE
R1

↑
R

EC
U

LE
R1

4
↑ AVANCER1

↓ AVANCER1↑
R

EC
U

LE
R1

↓
R

EC
U

LE
R

1

9 1
↑ AVANCER1

↓ AVANCER1

13

↓
R

EC
U

LE
R1

↑
R

EC
U

LE
R1

5
↑ AVANCER1

↓ AVANCER1 ↑
R

EC
U

LE
R1

↓
R

EC
U

LE
R

1

-a-
-b-

state GO_OUT1 GO_IN1 v10 v11
0 0 0 0 0
1 0 0 0 1

2* 0 0 1 0
3 0 0 1 1
4 0 1 0 0
5 0 1 0 1
6 0 1 1 0
7 0 1 1 1
8 1 0 0 0
9 1 0 0 1

10 1 0 1 0
11 1 0 1 1
12 1 1 0 0
13 1 1 0 1
14 1 1 1 0
15 1 1 1 1

(*) Initial state

Logical inconsistencies

Logical inconsistencies

Logical inconsistencies

Logical inconsistencies

 v10/v11

GO_OUT1/GO_IN1

00 01 11 10

00 0 1
01 4 5 6
11 12 13 14
10 8 9 10

2 10
↑ GO_OUT1

↓ GO_OUT1

6

↓
G

O
IN

1

↑
G

O
_I

N
1

14
↑ GO_OUT1

↓ GO_OUT1

↑
G

O
_I

N
1

↓
G

O
IN

1

8 0
↑ GO_OUT1

↓ GO_OUT1

12
2

↓
G

O
IN

1

↑
G

O
_I

N
1

4
↑ GO_OUT1

↓ GO_OUT1 ↑
G

O
_I

N
1

↓
G

O
IN

1

9 1
↑ GO_OUT1

↓ GO_OUT1

13

↓
G

O
IN

1
1

↑
G

O
_I

N
1

5
↑ GO_OUT1

↓ GO_OUT1 ↑
G

O
_I

N
1

↓
G

O
IN

1

-b-

↑ v10

↓ v10

↑ v11

↓ v11

2 10
↑ GO_OUT1

↓ GO_OUT1

6

↓
G

O
IN

1

↑
G

O
_I

N
1

14
↑ GO_OUT1

↓ GO_OUT1

↑
G

O
_I

N
1

↓
G

O
IN

1

8 0
↑ GO_OUT1

↓ GO_OUT1

12

↓
G

O
IN

1

↑
G

O
_I

N
1

4
↑ GO_OUT1

↓ GO_OUT1 ↑
G

O
_I

N
1

↓
G

O
IN

1

9 1
↑ GO_OUT1

↓ GO_OUT1

13

↓
G

O
IN

1

↑
G

O
_I

N
1

5
↑ GO_OUT1

↓ GO_OUT1 ↑
G

O
_I

N
1

↓
G

O
IN

1

↑ v11

↑ v10

↓ v10

↓ v11

↑ v11 ↑ v11 ↑v10

↑ v10

-d-

-c--a-

Figure 3. V1 movement automaton
evolutions will be added to the basic automaton.
The automata models of the other cylinders are
established in an identical way. The complete plant
automaton obtained by the asynchronous product of
the elementary models is composed then of 15552
states and 163295 transitions.

3. CONSTRAINTS MODELLING

The constraints to be modelled are of two types:
safety constraints (what should not be done) and
liveness constraints (what it is necessary to do).To
integrate constraints consists in inhibiting actions
and/or arranging and sequencing the orders sent to
the process. We recommend for these constraints
modelling, the use of logical equations which are
functions of Grafcet inputs/outputs (Tajer, 2005).
The use of the logical equations instead of automaton
reduces the combinative explosion. Works also use
this formal framework (Roussel et al., 2003) by
considering an algebraic approach on the binary
digits and taking into account the temporal properties
that we do not consider.
The use of the Boolean logical equations has the
advantage of expressing the constraints in an explicit
and flexible way, in a language well-known to the
users. These writing constraints are determined
simply by using the implication connector of “If…
Then…” between the events (inputs/outputs). This
implication can express the two types of constraints
of safety and liveness but with a static characteristic.
For example, in our approach, the cylinder dynamics
is not considered.
For example, for the V1 movement, the cylinder
cannot go in and go out at the same time i.e., the
simultaneous sending of the two orders GO_OUT1
and GO_IN1 is prohibited. If we use the automaton
to express this specification, the latter is expressed
by three states (see figure 4.a). It is to be compared
with the logical equation of figure 4.b. obtained
through the following implication: “If GO_OUT1=1
Then GO_IN1 = 0” or “If GO_IN1=1 Then
GO_OUT1=0”. This can be also written under the
form of a logical expression which is the
complement of AND logic between GO_OUT1 and
GO_IN1.
Thereafter, we define two other constraints. As in the
constraint (1), the cylinder V2 cannot go in and go
out at the same time. The second one refers to

prohibition for the cylinder V2 cannot go out if a
small case is present. The 3 constraints are defined
by: GO_OUT1 ∧ GO_IN1 = 0 (1), GO_OUT2 ∧
GO_IN2 = 0 (2), GO_OUT2 ∧ cp11 = 0 (3).

0 1

2

↑GO_OUT1

↓GO_OUT1

↓GO_IN1 ↑GO_IN1
Σ-{↓GO_OUT1,

↑GO_IN1}
Σ-{↓GO_IN1,
↑GO_OUT1}

Σ-{↑GO_IN1,
↑GO_OUT1}

SPEC: ¬(GO_OUT1∧GO_IN1) (1)

In other words : (GO_OUT1∧GO_IN1) = 0.

a) State automata b) Logical equation

Fig. 4. Constraint: No to GO_OUT1 and to GO_IN1
at the same time

4. SUPERVISOR SYNTHESIS

4.1. Principe

In this part, we seek to synthesize a supervisor using
the Boolean automaton models (G = (P, ∑, δ, p0))
and logical equations for the constraints K. The
theory of supervision according to RW consists in
prohibiting a controllable event in certain states to
prevent the system from going towards states that do
not meet the specifications.
One of the most important concepts in the
supervision theory is the controllability (Ramadge
and Wonham, 1987). Within our framework the
principle of controllability is:

(∀p∈ P, such as p verifies K)
∀σ ∈ Σu such as δ (p,σ) verifies K
Then K is controllable

The specification K is controllable if and only if at
any state that satisfies K, the occurrence of any
uncontrollable event σ will not lead to a state that
does not satisfy K.
In the case of an automaton modelling, one of the
most used algorithms for this objective is the Kumar
algorithm (Kumar, 1991). Taking into account
modelling based on automata in Boolean state.
Existing publishes allow for a synthesis known as
symbolic system to obtain a supervisor based on
Boolean automata (Gunnarsson, 1997). However, in
our step, we show how to adapt the algorithm of
Kumar to our Boolean models, allowing to preverse
the initial logic of the synthesis approach.

4.2. Synthesis Algorithm

This algorithm receives as inputs a Boolean
automaton G representing the total model of the
process, a set of logical specifications representing

the constraints of safety and liveness as well as the
initial structure of the resulting automaton given by
(Σ, {q0}, δ, q0). The reader will find the formalism of
this algorithm in (Tajer, 2005).We point out here
briefly the three steps of the algorithm:
The first step processes the controllable events
related to the activation or the deactivation of a
controller output z (↑ ↓z). If, as a set Ks, the logical
equations associated s are true, then the
corresponding evolution is not forbidden and the
corresponding transition is added to the unit from the
transition ∆.
The second step, starting from a state running p,
consists in building if they do not exist yet, the
evolutions of SUP characterized by uncontrollable
events. These uncontrollable events correspond to
the reactions of the plant compared to the control
commands. In this step, there are two evolutions:
• The first evolution consists in identifying the
forbidden states leading towards prohibited states
where the constraints K are not true.
• The second evolution consists in identifying the
weakly forbidden states. It presents all the states
from which there are a sequence of uncontrollable
events w making it possible to reach a defended
state.
The last step which consists, first in deleting all the
forbidden states, the weakly forbidden ones as well
as the transitions upstream and downstream that are
associated to them. Then the states, not accessible
starting from the initial state, are withdrawn from the
automaton obtained.

5. HELP TO CONTROLLER DEVELOPMENT

5.1. Introduction

Until now, the work that we undertook, aimed at
implementing a controller while following an
automatic logic synthesis. Hence, this masked for the
designer the deadlocks processed and the corrections
carried out before the implementation. The idea was
to show the corrections on original Grafcet at the
time of the controller execution (figure 1).
It is at the intersection level between the controller
automaton and the supervisor automaton, which is
deadlocking information in real execution and the
corrections (inhibition of actions) made to the
controller taking into account the constraints.
It is by exploiting the region of the intersection
automaton, that the following stage guarantees that
the automaton to be established is not only
deterministic and reactive, but represents also the
minimal restriction of the behaviour of Grafcet,
guaranteeing born conformity to the specified
constraints and not to block the system.
For simpler systems, the designer request is different
and is directed rather towards a request for assistance
to the controller design. The required objectives do
not really relate any more to the concepts of
controller optimality and sedentary approach, but
taking the designer into account in the loop of the
controller development. Consequently, new services
can be proposed to the designer as for example the
visualization of the deadlocking sequences which are
completely masked in the automatic approach. This

makes it possible for the designer to act on the
reasons for deadlocking for example modifying the
controller, relating constraints or refining the plant
model. The new synthesis iterations can be then
carried out starting from the corrected models to
finally generate a correct controller model (Tajer,
2005). We will speak then about the step of semi-
automatic synthesis of the controller.
Consequently, it is a question of exploiting the
information of the intersection automaton to detect
(i) deadlocks and (ii) the corrections introduced
taking into account the constraints. Two cases which
can occur at the end of the intersection operation:
• The controller respects the specifications imposed
on the system, then the designer can establish the
controller synthesized in a P.L.C. in full safety, it is
thus certain that there is no risk for the operative
material, the operators or the products.
• The intersection procedure detects:

o Deadlocking situations, the designer
analyzes the situation blocking thanks to elaborate
information starting from the region of the
intersection automaton and acts consequently to
modify for example the controller, to relax
constraints or to refine the plant mode.

o The non respect of the designer intentions.
Indeed, there exists, in the automaton intersection,
some corrections generated to take into account the
constraints imposed on the system.
The designer will visualize a constraints list that is
not respected at the level of his original controller
and will infer some possible modifications. A new
iteration of the procedure will then be carried out
starting from some corrected models.

5.2. Application

Figure 5.a presents an evolution trace leading to a
deadlock in real execution. Indeed, no event makes it
possible to leave the region r18 built by the procedure
of intersection between the controller automaton and
the supervisor automaton. The deadlocking situation
is thus characterized by the controller situation: steps
X102, X300, and X400 activate: figure 5.b and the
situation of the supervisor: state q4: figure 5.c. At the
level of the controller steps, the only order sent to the
plant is GO_OUT2. At the supervisor level, order
GO_OUT2 is prohibited, orders ↑GO_OUT1,
↑GO_IN1, ↑GO_IN2, ↑GO3 are authorized. The
deadlock identified is thus logical because the
intersection between the orders sent to the plant and
the orders authorized by the supervisor is empty.
The event that led to deadlocks is the arrival of the
small case (↑cp11). Because the constraints (3)
specified by the designer, prohibited to leave cylinder
P2 (order GO_OUT2) in the event of the presence of
a small case, is not true. It is thus impossible that the
receptivity associated the transition (3) from Grafcet
G1 be passable because order GO_OUT2 is
prohibited thus v21 cannot occur, thus the system is
blocked. It should be noted that this deadlocking
occurs only in the event of the presence of small
case. We are in the typical situation where the plant
is in an incompatible state with the sensitized
transition. In conclusion, the designer can slacken the
constraint because he considers it too restrictive or

400

401

402

GO4

 X102.v21.v11

 v41

v40

″ Retreat of cylinder P4″

Grafcet G1: Controller
of case positioning

Grafcet G2: Controller of
evacuation of the small case

300

301

302

GO3

X111.v11.v20

 v31

v30

“Retreat of cylinder P3”

Grafcet G3: Controller of evacuation
of the long case

Q : state of process.
Y : situation of the order
E : state of the inputs vector

E0={1,0,1,0,1,0,1,0,0,0},E1={1,0,1,0,1,0,1,0,0,1}, E5={0,0,1,0,1,0,1,0,0,1},
E9={0,1,1,0,1,0,1,0,0,1}, E13={0,1,1,0,1,0,1,0,0,0},E18={0,1,1,0,1,0,1,0,1,0},

Statey0={100,200,300}, Statey1={101,200,300}, Statey3={102,200,300},

{(q0, y0, E0)} {(q3, y1, E01)} {(q8, y1, E1)} ↑cp12 ↑GO_OUT1 ↓v10 {(q27, y1, E5)}

{(q69, y3, E9)} {(q3, y3, E9)} {(q0, y3, E13)} {(q4, y3, E18)}

↓cp12
↑cp11

↑v11

r0
r1 r5

r9 r13 r18

-a-

-c-

-b-

Supervisor automata

GO_OUT1

100

101

102

103

104 GO_IN1

GO_IN2

GO_OUT2

GO_OUT1 111

112

cp12. X300 ./cp11 cp11. X400 ./cp12

v20. v11 v20. v11

v21. v11

v20. v11

v20. v10

v20. v10

GO_OUT1

(1)

(2)

(3)

(4)

(5)

(6)

(7)

(8)

q36

q0

q89
q16

q32

q78

q22
↑v30 ↑v40

↑cp11

↑GO_OUT1

↑GO_OUT2

↑GO3

↑GO_IN1

↑GO_IN2
q4

q3

↑cp12

Fig. 5. Example of case storing
modify its Grafcet G1 to take into account this
particular condition.

6. CONCLUSION

Using the supervisory control theory in our synthesis
step made it necessary for us to use the automata to
model the plant and the constraints. This modelling
led, to both a design difficulty, and a combinative
explosion problem. Indeed when using the algorithm
of Kumar (Kumar, 1991), the complexity to generate
the supervisor automaton is the worst case
proportional to NnMk, (N being the states number of
each process automaton, n is the automata number,
M is the states number in each constraint and k the
constraints number).
To compensate for these difficulties, we presented an
advanced model of plant and constraints. We used a
structured model containing rules for the plant, and a
model based on logical equations in the Boolean
algebra for the constraints. To take into account these
new models, we used a new adequate synthesis
algorithm. The algorithm complexity is expressed by
k2n (where K is the number of constraints and n the
number of variables), that makes it possible to reduce
the combinative explosion in terms of states and
transition numbers. The next table illustrate this
subject.

 Table 2: Algorithm comparison

The number of states generated by this approach is
proportional to |GSS|*2nk*2Σu/2 where GSS represent
the number of states of the Automaton of the Stable
Situations resulting from the controller specification
expressed in Grafcet (figure 1).
We showed that this approach could be diverted from
its first function which is known as controller
synthesis and thus can be used as a procedure for
controller validation. As well as, it’s possible to use
it at the teaching problems of industrial automatisms
where the students are confronted with the use of real
plant allowing them to test control laws while using
industrial material.

REFERENCES

Balemi S., G.J. Hoffmann, P. Gyugyi, H. Wong-Toi,
G.F. Franklin, “Supervisory control of a rapid
thermal multiprocessor”, IEEE Transactions on
Automatic Control, vol. 38, n°7, p. 1040-1059,
1993

Carré-Ménétrier V., Zaytoon J., “Grafcet:
behavioural resulting and control synthesis”,
European Journal of Control, vol. 8, n°4,
p.375-401, 2002.

Chandra V., Kumar R., “A Discrete Event Systems
Modelling Formalism Based one Event
Occurrences Rules and Precedence”, IEEE
Transactions one Robotics and Automation, vol.
17, n°6, 2001.

Gunnarsson J. Symbolic Methods and Tools for
Discrete Event Dynamic Systems, PhD Thesis,
Linkoping University, 1997

International Electrotechnical Commission,
“Preparation of function charts for control
systems". Publication 848, 2002

Kumar R., “Supervisory Synthesis Techniques for
Discrete Event Dynamical Systems”, Thesis for
Ph. D. Degree, University of Texas, 1991.

 Ramadge P.J., Wonham W.M., “Supervisory control
of discrete events system”, Proceeding IEEE,
Special issues on discrete events systems, 77(1):
pp81-98, January 1989

Roussel J.M., Medina A., Faure J.M., “Synthèse d’un
programme de commande d’un système logique
à partir de l’expression algébrique de ses
spécifications”, Actes MSR’03, pages 77-93, 6-8
octobre 2003, Metz

Tajer A., “Contribution aux approches formelles de
synthèse de commande spécifiée par Grafcet”,
Thèse de doctorat de l’université de Reims
Champagne Ardenne, novembre 2005

Wang Y., “Supervisory control of Boolean discrete-
Event Systems”, M.A.Sc. Thesis, Dept. of
Electl. & Cmptr Engrg., Univ. of Toronto, June
2000

Wonham W. M., Ramadge P.J., “On the supremal
controllable sublanguage of has given
language”, SIAM J Control Optimization, flight
25, n°3, p.637-659, 1987

 Algorithm using
Boolean automata

Kumar algorithm using
rudimentary automata

States 1571 16524

Transition 21456 153432

