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Abstract: In order to establish a method to synthesis controllers, an essential step is the 
modelling of both plant and constraints. However, this step remains a very complex task. 
To mitigate this difficulty and facilitate modelling, we present a methodology for plant 
modelling based on rules; as well as a user friendly methodology for constraints 
modelling based on logical equations in the traditional Boolean algebra. Then, we present 
an adaptation of the Kumar algorithm synthesis adequated to these new modelling. To 
conclude, we show that our synthesis approach can constitute a help in controller 
development and to be diverted from its first function to be used in controller validation. 
Copyright © 2006 IFAC 
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1. INTRODUCTION 

The automation process complexity increases the 
requirements for designers in terms of operational 
safety as well as program design reliability. Two 
approaches are possible: the validation approach and 
the synthesis approach. We focus on the synthesis 
approach which consists in building a controller in 
which the properties required for the system are 
taken into account from the beginning of the 
designing process. This work make it possible to 
characterize the necessary steps to move to                                                                                                                            
a Grafcet specification (IEC, 2002) to the 
implementation of the corresponding controller. To 
formalize these steps, we chose to base our approach 
(Carré and Zaytoon, 2002) on tools/methods with 
solid formal bases, such as the automaton and the 
supervisory control theory (SCT) (Wonham and 
Ramadge, 1987). This formal context was meant to 
prove the feasibility of this approach while initially 
not taking into consideration the difficulties involved 
in its use. Our work thus led to the development of a 
global synthesis and of an implementation solution 
of: reactivate controllers as close as possible to the 
requirements of Grafcet, of the process model to be 
controlled and of the constraints to be respected on 
the process evolutions. We showed the approach 
applicability on several examples in (Carré and 
Zaytoon, 2002), and (Tajer, 2005). However, the 

plant and the constraints modelling proved to be a 
complex task because the SCT recommends event 
and rudimentary automata models. In addition, the 
combinative explosion inherent in this type of 
models limited the use of our synthesis approach to 
simple systems in terms of number of inputs/outputs. 
To mitigate these problems, this approach is based on 
structured and advanced models while using for the 
plant the Boolean models containing rules, and for 
the constraints the logical equations in the traditional 
Boolean algebra. In order to help the designers 
develop the controller and refine the starting models 
they are given the possibility to visualize ant analyse 
the deadlocking sequences as well as the suggested 
corrections (Tajer, 2005). The methodology 
employed for the plant can be considered as an 
adaptation of Chandra’s approach (Chandra and 
Kumar, 2001) as is the structure implemented here. 
For the constraints, a modelling by logical equations 
in the traditional Boolean algebra between the 
inputs/outputs of the controller is adopted. It is the 
model user-friendliness and ability to reduce the 
combinative explosion which is sought here. The 
scheme takes into account these remarks and presents 
the approach into as a whole. 
After the modelling phase, the controller described in 
the Grafcet is converted into an automaton of stable 
situations GSS. To take into account the new models 



     

of plant and constraints, an adapted synthesis 
algorithm is proposed according to the principles 
stated by SCT and Kumar, thus generating the 
supervisor representing the acceptable maximum 
behaviour of the process. Then, an intersection 
operation makes it possible to obtain an automaton 
corresponding to the common behaviour between 
automaton of the stable situations and the supervisor 
Boolean automaton. To integrate the user into the 
loop of controller development and thus to make the 
approach less sensitive to modelling errors, it is 
suggested to carry out the construction in either 
automatic, or semi-automatic mode. In the latter 
mode, the user can visualize either the evolution 
traces of the controller leading to a deadlock, or a list 
of constraints not respected at the level of the 
controller. 
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Fig.1. Formal approach synthesis starting from 
controller specifications expressed in Grafcet 

In section 2, we present the methodology of plant 
modelling, in section 3 the constraints modelling by 
Boolean equations are presented. In section 4, we 
briefly give the steps of the synthesis algorithm of 
the supervisor. In section 5 we develop a help for the 
designer in developing a controller. 
As an illustration, this work will be based on an 
application designed to automatically sort out cases 
of two different sizes. The system is composed of a 
conveyor (conveyor 1) bringing the cases, two 
double rod cylinders (V1, V2), two simple rod 
cylinders (V3, V4), and two conveyors (conveyor 2 
and 3) for allowing the cases evacuation. The first 
conveyor takes the cases along one after the other. 
According to the size of the cases, the push rod made 
up of cylinder V1 and V2, places the cases in front of 
cylinder V3 or V4. 

 
 

Fig.2. Case sorting system 
In the subsequent sections, we will use the following 
variables: vi0 for the input positions of cylinder vi, vi1 

for the output positions of cylinder vi, cp11 for the 
sensor of small cases and cp12 for the sensor of large 
cases. The system outputs are defined by: 
GO_OUT1(2): order to release the cylinder V1 (V2), 
GO_IN1(2): order to retreat the cylinder V1 (V2), 
GO3(4): order to release simple rod cylinder V3 
(V4). From there, we define input and output vectors 
as: E = {v10, v11, v20, v21, v30, v31, v40, v41, cp11, cp12},  
Z = {GO_OUT1,GO_OUT2,GO_IN1,GO_IN2,GO3,GO4}. 

2. PLANT MODELLING 

The precise description of the plant behaviour is a 
complex operation because the evolutions of a 
physical system are asynchronous and 
nondeterministic. To compensate for the difficulties 
of a global modelling, we chose a modular approach 
allowing us to express simple causalities between the 
plant elements under normal functioning. 
Consequently, such a model can be derived from 
using an automaton that accepts the control actions, 
and can react by changing the logical values of the 
Grafcet inputs. Considering the systems complexity 
an adequate methodology is required for modelling 
the plant. This methodology is based on occurrence 
rules and precedence relations. These rules define the 
interactions between controllable or uncontrollable 
events. The precedence relation specifies the links 
between uncontrollable events. The user defines the 
rules and relations which are translated into automata 
compatible with our synthesis approach. We looked 
at a normal functioning without considering the 
possible defects and risks of operation 

2.1. Formal framework 

To preserve the benefit of the formal framework 
proposed by the supervisory control theory (Wonham 
and Ramadge, 1987), plant modelling is carried out 
under the form of automata describing the physically 
possible evolutions caused by simple events under 
normal process operation. To reflect the interactions 
between the Grafcet controller and the plant, we 
chose the interpretation of Balemi (Balemi et al., 
1993), where the controllable events Σc represents the 
inputs process and the uncontrollable events Σu their 
outputs. The controller can consequently force the 
input process at any moment and the generation of 
events is initiated jointly by the process and/or the 
controller. This interpretation is specific so as to 
reconcile the nature of continuous actions and input 
variables of Grafcet with the event related feature of 
the model theory. Thus, we retained the following 
correspondence: a controllable event corresponds 
either to activation ↑ Z or to deactivation ↓ Z of a 
controller Grafcet, while an uncontrollable event is 
associated with the rising edge ↑ E or with the falling 
edge ↓ E with an input variable Grafcet. The Σc and 
Σu sets are written  then Σc = ↑ Z ∪ ↓ Z and Σu = ↑ E 
∪ ↓ E. 

2.2. Occurrence rules and precedence relations 

To determine the occurrence rules, it is necessary (i) 
to fix the initial conditions of the system, (ii) to 
determine all the events related to the plant element, 
(iii) to define with rules the influence of the 
controllable events on the uncontrollable events. 



     

Each rule expresses a "cause/consequence"; the 
cause relates the controllable event to the 
consequence (uncontrollable event). For each 
occurrence rule with the same cause, it is then 
necessary to establish with preceding relations, the 
chronology between the consequent uncontrollable 
events. The occurrence rules and the precedence 
relations obtained will make it possible thereafter to 
determine, starting from the initial state, the 
controllable and the uncontrollable evolutions in the 
element automaton plant to model. 

Table 1: V1 movement parameters  
 

For example, the complete model consists of four 
automata describing respectively the movement of 
each cylinder (example cylinder V1: figure 3.c). 
These models take into account the cylinder 
technology. For the movement of the double rod 
cylinder V1, there are two controllable events 
(GO_OUT1; GO_IN1) and two uncontrollable events 
( v10 ; v11.). In the initial situation, the cylinder is on 
the input position and no order is sent to the plant. To 
define the occurrence rules, it is necessary to observe 
the consequences of the orders sent. The GO_OUT1 
order makes it possible the cylinder to move towards 
the line and to leave its output position. The 
chronology of the uncontrollable events is the 
following: a reset of v10 then an activation of v11. The 
parameters are presented in table 1. 

2.3. Plant automaton construction   

The automaton structure adopted to Discrete Events 
Systems (DES) introduced in (Ramadge, 1989), is 
less explicit because the states do not bring all the 
information about the system. It is interesting to 
enrich the model in terms of input and output vectors 
associated with the automaton in each state. Indeed, 
the input and output vectors give information both on 
the plant state and the controller state. For this reason 
we propose to define an automaton model with 
Boolean state (Wang, 2000). The automaton can be 
defined by a 4-tuple G = (P, ∑, δ, p0), where  ∑= 
∑u∪∑c is the set of events describing the transition. 
These transitions are characterized by controlled 
events ∑c or uncontrolled events ∑u,  δ is the 
transition function that is defined by δ: P×∑→P, the 
initial state: p0 of the automaton G and eventually P 
the set of state of G that is defined by:  
P = {[p1,…, pn] / pj ∈{0,1}, j = 1,…, n}⊆ IBn 
P defines a set of n-dimensional Boolean vectors 
states. Each component of the vector state can have a 
value 0 or 1. The number of maximum states of the 
model automaton is decided by the number of state 
variables, i.e. for n variable there are 2n states. In 
Boole algebra, the set IB is defined by ({0. 1}, ∧, ∨, ¬). 
In accordance with the semantics recommended by 
our approach, E and Z are two vectors associated in a 
state p with the automaton G such as E = [e1..., em] 

and Z = [z1..., zs] when m is the number of the system 
inputs and s the number of the system outputs. E 
represents the inputs vector associated with a given 
state; Z represents the outputs vector associated with 
this state. The set of the states of G is defined by: 

P = {[[z1,…, zs], [e1,…, em]] /  
zj, ei∈{0,1}*{0,1},j=1,...,s; i=1,…,m, n=s+m} ⊆ IBn. 

2.4. The proposed construction model 

The plant automaton construction is based on rules 
and relations which are carried out according to the 
four following steps: 

1. Building the table with 2n states (n is the number 
of inputs/outputs of the systems) describing all the 
possible combination between inputs/outputs of the 
systems (figure 3.a). 

2. Deleting the logical inconsistencies between the 
inputs (sensors). Here, we are not interested in the 
logical inconsistencies related to the controllable 
events but those related to the reactions 
(uncontrollable events) of the plant compared to 
these events (figure 3.b). For the cylinder example, 
the position sensors cannot be true at the same time. 

3. Building the automaton equivalent to the 
diagram of the controllable evolutions. The diagram 
is given starting from the truth table representing the 
remaining states after the suppression of the logical 
inconsistencies. For each combination, the 
occurrence of a controllable event allows to change 
the output variable which leads to a new state (figure 
3.c). 

4. Completing the automaton with the 
uncontrollable evolutions. This operation consists in 
using the occurrence rules, the precedence relations 
and initial conditions (figure 3.d). 
This method of modelling is carried out for each part 
of the system. The complete model of plant is then 
obtained by an asynchronous composition of all the 
elementary models. The different steps of the 
approach are illustrated by the example in figures 3.a, 
3.b, 3.c, and 3.d.  
For the V1 movement, the first step consists in 
establishing 24 combinations between GO_OUT1, 
GO_IN1, v11 and v10. The second step consists in 
removing 4 logical inconsistencies. It is the case 
when v10 = v11 = 1 (figure 3.a).  
The automaton of the controllable evolutions is 
determined starting from the truth table thus 
expressing all the possible evolutions between the 
states. These evolutions are only defined by 
controllable events ↑ GO_OUT,  ↓GO_OUT1, 
↑ GO_IN1, ↓GO_IN1. We note that GO_OUT1 or 
GO_IN1  can take value 1 in activation and 0 in 
deactivation (figure 3.b).  
With the precedence relations, the last step gives the 
final automaton presented in figure 3.c. For example, 
starting from the initial state (2) the outgoing 
possible controllable events are ↑ GO_OUT1 and 
↑ GO_IN1. Occurrence of the controllable event 
↑ GO_IN1 led to the state 6 and that of ↑ GO_OUT1 
to state 10. The relation of precedence corresponding 
to this event is defined by the uncontrollable event 
↓ v10 making it possible to reach state 8. The 
appearance of event ↑ v11 then leads the plant to state 
9. In the same way, the other uncontrollable  

Initial 
conditions Occurrence rules Precedence rules 

_ 1GO IN  ↑ GO_IN1 → ↓ v10 
↑ GO_IN1→ ↑ v11 

↓ v10  precede ↑ v11 

1_ OUTGO  ↑ GO_OUT1 → ↓ v11 
↑ GO_OUT1 → ↑ v10 

↓ v11 precede ↑ v10 

11v  ↓ GO_IN1 →↑ v11 nothing 

v10 ↓ GO_OUT1 → ↑ v10 nothing 



     

 states GO_OUT1 GO_IN1 p10 p11 
0 0 0 0 0 
1 0 0 0 1 

2* 0 0 1 0 
3 0 0 1 1 
4 0 1 0 0 
5 0 1 0 1 
6 0 1 1 0 
7 0 1 1 1 
8 1 0 0 0 
9 1 0 0 1 

10 1 0 1 0 
11 1 0 1 1 
12 1 1 0 0 
13 1 1 0 1 
14 1 1 1 0 
15 1 1 1 1 
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Figure 3. V1 movement automaton 
evolutions will be added to the basic automaton. 
The automata models of the other cylinders are 
established in an identical way. The complete plant 
automaton obtained by the asynchronous product of 
the elementary models is composed then of 15552 
states and 163295 transitions. 

3. CONSTRAINTS MODELLING 

The constraints to be modelled are of two types: 
safety constraints (what should not be done) and 
liveness constraints (what it is necessary to do).To 
integrate constraints consists in inhibiting actions 
and/or arranging and sequencing the orders sent to 
the process. We recommend for these constraints 
modelling, the use of logical equations which are 
functions of Grafcet inputs/outputs (Tajer, 2005). 
The use of the logical equations instead of automaton 
reduces the combinative explosion. Works also use 
this formal framework (Roussel et al., 2003) by 
considering an algebraic approach on the binary 
digits and taking into account the temporal properties 
that we do not consider.  
The use of the Boolean logical equations has the 
advantage of expressing the constraints in an explicit 
and flexible way, in a language well-known to the 
users. These writing constraints are determined 
simply by using the implication connector of “If… 
Then…” between the events (inputs/outputs). This 
implication can express the two types of constraints 
of safety and liveness but with a static characteristic. 
For example, in our approach, the cylinder dynamics 
is not considered. 
For example, for the V1 movement, the cylinder 
cannot go in and go out at the same time i.e., the 
simultaneous sending of the two orders GO_OUT1 
and GO_IN1 is prohibited. If we use the automaton 
to express this specification, the latter is expressed 
by three states (see figure 4.a). It is to be compared 
with the logical equation of figure 4.b. obtained 
through the following implication: “If GO_OUT1=1 
Then GO_IN1 = 0” or “If GO_IN1=1 Then 
GO_OUT1=0”. This can be also written under the 
form of a logical expression which is the 
complement of AND logic between GO_OUT1 and 
GO_IN1. 
Thereafter, we define two other constraints. As in the 
constraint (1), the cylinder V2 cannot go in and go 
out at the same time. The second one refers to 

prohibition for the cylinder V2 cannot go out if a 
small case is present. The 3 constraints are defined 
by: GO_OUT1 ∧ GO_IN1 = 0 (1), GO_OUT2 ∧ 
GO_IN2 = 0 (2), GO_OUT2 ∧ cp11 = 0 (3).  
 

0 1

2

↑GO_OUT1 

↓GO_OUT1 

↓GO_IN1 ↑GO_IN1 
Σ-{↓GO_OUT1, 

↑GO_IN1} 
Σ-{↓GO_IN1, 
↑GO_OUT1} 

Σ-{↑GO_IN1, 
↑GO_OUT1} 

SPEC: ¬(GO_OUT1∧GO_IN1) (1) 

In other words : (GO_OUT1∧GO_IN1) = 0. 
 

a) State automata b) Logical equation   
 

Fig. 4. Constraint: No to GO_OUT1 and to GO_IN1 
at the same time 

4. SUPERVISOR SYNTHESIS 

4.1. Principe 

In this part, we seek to synthesize a supervisor using 
the Boolean automaton models (G = (P, ∑, δ, p0)) 
and logical equations for the constraints K. The 
theory of supervision according to RW consists in 
prohibiting a controllable event in certain states to 
prevent the system from going towards states that do 
not meet the specifications.  
One of the most important concepts in the 
supervision theory is the controllability (Ramadge 
and Wonham, 1987). Within our framework the 
principle of controllability is: 

(∀p∈ P, such as p verifies K) 
∀σ ∈ Σu such as δ (p,σ) verifies K 
Then K is controllable 

The specification K is controllable if and only if at 
any state that satisfies K, the occurrence of any 
uncontrollable event σ will not lead to a state that 
does not satisfy K.  
In the case of an automaton modelling, one of the 
most used algorithms for this objective is the Kumar 
algorithm (Kumar, 1991). Taking into account 
modelling based on automata in Boolean state. 
Existing publishes allow for a synthesis known as 
symbolic system to obtain a supervisor based on 
Boolean automata (Gunnarsson, 1997). However, in 
our step, we show how to adapt the algorithm of 
Kumar to our Boolean models, allowing to preverse 
the initial logic of the synthesis approach. 

4.2. Synthesis Algorithm 

This algorithm receives as inputs a Boolean 
automaton G representing the total model of the 
process, a set of logical specifications representing 



     

the constraints of safety and liveness as well as the 
initial structure of the resulting automaton given by 
(Σ, {q0}, δ, q0). The reader will find the formalism of 
this algorithm in (Tajer, 2005).We point out here 
briefly the three steps of the algorithm: 
The first step processes the controllable events 
related to the activation or the deactivation of a 
controller output z (↑ ↓z). If, as a set Ks, the logical 
equations associated s are true, then the 
corresponding evolution is not forbidden and the 
corresponding transition is added to the unit from the 
transition ∆. 
The second step, starting from a state running p, 
consists in building if they do not exist yet, the 
evolutions of SUP characterized by uncontrollable 
events. These uncontrollable events correspond to 
the reactions of the plant compared to the control 
commands. In this step, there are two evolutions:  
• The first evolution consists in identifying the 
forbidden states leading towards prohibited states 
where the constraints K are not true.  
• The second evolution consists in identifying the 
weakly forbidden states. It presents all the states 
from which there are a sequence of uncontrollable 
events w making it possible to reach a defended 
state. 
The last step which consists, first in deleting all the 
forbidden states, the weakly forbidden ones as well 
as the transitions upstream and downstream that are 
associated to them. Then the states, not accessible 
starting from the initial state, are withdrawn from the 
automaton obtained.  

5. HELP TO CONTROLLER DEVELOPMENT 

5.1. Introduction 

Until now, the work that we undertook, aimed at 
implementing a controller while following an 
automatic logic synthesis. Hence, this masked for the 
designer the deadlocks processed and the corrections 
carried out before the implementation. The idea was 
to show the corrections on original Grafcet at the 
time of the controller execution (figure 1). 
It is at the intersection level between the controller 
automaton and the supervisor automaton, which is 
deadlocking information in real execution and the 
corrections (inhibition of actions) made to the 
controller taking into account the constraints.  
It is by exploiting the region of the intersection 
automaton, that the following stage guarantees that 
the automaton to be established is not only 
deterministic and reactive, but represents also the 
minimal restriction of the behaviour of Grafcet, 
guaranteeing born conformity to the specified 
constraints and not to block the system. 
For simpler systems, the designer request is different 
and is directed rather towards a request for assistance 
to the controller design. The required objectives do 
not really relate any more to the concepts of 
controller optimality and sedentary approach, but 
taking the designer into account in the loop of the 
controller development. Consequently, new services 
can be proposed to the designer as for example the 
visualization of the deadlocking sequences which are 
completely masked in the automatic approach. This 

makes it possible for the designer to act on the 
reasons for deadlocking for example modifying the 
controller, relating constraints or refining the plant 
model. The new synthesis iterations can be then 
carried out starting from the corrected models to 
finally generate a correct controller model (Tajer, 
2005). We will speak then about the step of semi-
automatic synthesis of the controller. 
Consequently, it is a question of exploiting the 
information of the intersection automaton to detect 
(i) deadlocks and (ii) the corrections introduced 
taking into account the constraints. Two cases which 
can occur at the end of the intersection operation: 
• The controller respects the specifications imposed 
on the system, then the designer can establish the 
controller synthesized in a P.L.C. in full safety, it is 
thus certain that there is no risk for the operative 
material, the operators or the products. 
• The intersection procedure detects: 

o Deadlocking situations, the designer 
analyzes the situation blocking thanks to elaborate 
information starting from the region of the 
intersection automaton and acts consequently to 
modify for example the controller, to relax 
constraints or to refine the plant mode. 

o The non respect of the designer intentions. 
Indeed, there exists, in the automaton intersection, 
some corrections generated to take into account the 
constraints imposed on the system. 
The designer will visualize a constraints list that is 
not respected at the level of his original controller 
and will infer some possible modifications. A new 
iteration of the procedure will then be carried out 
starting from some corrected models. 

5.2. Application  

Figure 5.a presents an evolution trace leading to a 
deadlock in real execution. Indeed, no event makes it 
possible to leave the region r18 built by the procedure 
of intersection between the controller automaton and 
the supervisor automaton. The deadlocking situation 
is thus characterized by the controller situation: steps 
X102, X300, and X400 activate: figure 5.b and the 
situation of the supervisor: state q4: figure 5.c. At the 
level of the controller steps, the only order sent to the 
plant is GO_OUT2. At the supervisor level, order 
GO_OUT2 is prohibited, orders ↑GO_OUT1, 
↑GO_IN1, ↑GO_IN2, ↑GO3 are authorized. The 
deadlock identified is thus logical because the 
intersection between the orders sent to the plant and 
the orders authorized by the supervisor is empty. 
The event that led to deadlocks is the arrival of the 
small case (↑cp11). Because the constraints (3) 
specified by the designer, prohibited to leave cylinder 
P2 (order GO_OUT2) in the event of the presence of 
a small case, is not true. It is thus impossible that the 
receptivity associated the transition (3) from Grafcet 
G1 be passable because order GO_OUT2 is 
prohibited thus v21 cannot occur, thus the system is 
blocked. It should be noted that this deadlocking 
occurs only in the event of the presence of small 
case. We are in the typical situation where the plant 
is in an incompatible state with the sensitized 
transition. In conclusion, the designer can slacken the 
constraint because he considers it too restrictive or  
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Fig. 5. Example of case storing 
modify its Grafcet G1 to take into account this 
particular condition. 

6. CONCLUSION 

Using the supervisory control theory in our synthesis 
step made it necessary for us to use the automata to 
model the plant and the constraints. This modelling 
led, to both a design difficulty, and a combinative 
explosion problem. Indeed when using the algorithm 
of Kumar (Kumar, 1991), the complexity to generate 
the supervisor automaton is the worst case 
proportional to NnMk, (N being the states number of 
each process automaton, n is the automata number, 
M is the states number in each constraint and k the 
constraints number).  
To compensate for these difficulties, we presented an 
advanced model of plant and constraints.  We used a 
structured model containing rules for the plant, and a 
model based on logical equations in the Boolean 
algebra for the constraints. To take into account these 
new models, we used a new adequate synthesis 
algorithm. The algorithm complexity is expressed by 
k2n (where K is the number of constraints and n the 
number of variables), that makes it possible to reduce 
the combinative explosion in terms of states and 
transition numbers. The next table illustrate this 
subject. 

 Table 2: Algorithm comparison 

The number of states generated by this approach is 
proportional to |GSS|*2nk*2Σu/2 where GSS represent 
the number of states of the Automaton of the Stable 
Situations resulting from the controller specification 
expressed in Grafcet (figure 1). 
We showed that this approach could be diverted from 
its first function which is known as controller 
synthesis and thus can be used as a procedure for 
controller validation. As well as, it’s possible to use 
it at the teaching problems of industrial automatisms 
where the students are confronted with the use of real 
plant allowing them to test control laws while using 
industrial material. 
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