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Abstract. To be written.

1 Introduction

For a long time, Maxwell’s equations were mainly solved in the time-harmonic domain. The evolu-
tion of radar techniques showed the limit of this formulation which can only treat monochromatic
sources. Both engineers and researchers were then motivated to use equations in the time domain
which can take into account large frequency sources in one resolution. The first and most popular
approximation of Maxwell’s equations in the time domain was provides by the Yee’s scheme [28],
commonly called FDTD (Finite Difference in the Time Domain) by enginees, which is basically a
centered second order finite difference approximation of Maxwell’s equation.

Although easy to implement, FDTD has some difficulties to treat complex geometries. In fact,
the staircase approximation of curved boundary can produce spurious reflections which can sub-
stantially pollute the solution. On the other hand, finite element methods (FETD) have the major
drawback of producing a n-diagonal (n can grow up to several tens in 3D) mass matrix which must
be inverted at each time-step, which is a serious handicap for FETD versus FDTD whose mass
matrix is the identity matrix. This mass matrix does not present any difficulty to time harmonic
problems, for which even the stiffness matrix must be inverted. For this reason, industry was re-
luctant to use FETD for a long time and FDTD remains the reference for Maxwell’s equations in
the time domain for 40 years!

The mass lumping technique is an efficient alternative to mass matrix inversion. However, this
technique was well known for lower order continuous (or H1) elements but not obvious for higher-
order approximations. A first step towards a general mass lumping technique was made by Hennart
et al. [19,20] and independently by Young [29] which proposed to use Gauss-Lobatto quadrature
formulas to get mass lumping for continuous quadrilateral or hexahedral finite elements. Besides
mass lumping, these formulas ensure to keep the order induced by the finite element approximation
[3]. First introduced for ODE or parabolic problems, this technique was extended to the wave
equation by Cohen et al. [11] and renamed spectral element methods [22]. The non trivial extension
of this technique to triangular and tetrahedral elements was later realized by Cohen et al [10] for
triangles up to third order and Mulder et al. [23] for higher-order triangles and tetrahedra.

The problem of the mass matrix inversion was solved for the wave equation and remained a
challenging problem for Maxwell’s equations. A first try was done by Haugazeau et al. [18] but
this approach remains restricted to first-order approximation. A second and natural step was to
extend spectral element techniques to edge (or H(curl)) elements. This was done by Cohen et
al. for orthogonal meshes for the first family [12] and for any mesh for the second family of edge
elements of any order [13]. The extension to triangular and tetrahedral meshes was realized by
Elmkies et al. [16,17] but lead to efficient approximations up to the second-order elements.

Due to the storage of the stiffness matrix, even by using mass lumping techniques, FETD
remained much more expensive than FDTD in terms of storage and, to a lesser extent, in com-
putational time. This ultimate problem was solved by using a mixed H(curl) − L2 formulation
of Maxwell’s equations based on H(curl)-conform definition of the curl operator in both spaces
[13]. This technique provides a local definition of the stiffness matrices which induces a substantial
gain of storage. It was later extended to acoustics [6] and linear elastodynamics [7]. A detailed
presentation of all these techniques can be found in [5].

Unfortunately, although H1 spectral elements and H1 and H(curl) triangular and tetrahedral
elements behave quite well for any mesh, H(curl) spectral elements present important parasitic



waves for very distorted meshes, which are often used in industrial problems. For this reason, dis-
continuous Galerkin methods appeared as an efficient alternative for Maxwell’s equations. First
introduced by Hesthaven [21] for tetrahedra, this approach was adapted by Cohen et al. [9] to
the spectral element point of view, which provided a low-storage as well as fast method to solve
Maxwell’s equations. This approach seemed to deal better with parasitic waves but eigenvalues
considerations showed that such waves were however present in this method. All these remarks
motivated us to discuss the numerical dissipation terms which can attenuate parasitic waves. This
discussion is the new part of our survey.

Our paper is divided into four parts. In a first section, we present the continuous formulations of
the Maxwell’s equations and different approaches for its approximation. In the second section, we
discuss the parasitic modes through an eigenvalue analysis. In the third section, we introduce dis-
sipative jump terms to get rid of parasitic modes. The last section is devoted to the approximation
of the time-harmonic problem by the methods described in the first section.

2 Different Approximations of the Problem

2.1 Formulations of the Continuous Problem

In this paper, we are interested in solving the so-called lossy Maxwell’s equations in anisotropic
which read

Find (E,H): Ω×]0, T [→ IR3 such that

ε
∂E

∂t
−∇×H + σE = −J , (1a)

µ
∂H

∂t
+ ∇×E = 0, (1b)

where J is a given function of time and space which can model a pulse or a plane wave. ε, σ
and µ are the permittivity, conductivity and permeability matrices which can take into account

anisotropic media.
To these equations, we add homogeneous initial conditions on (E,H) and the perfectly con-

ducting condition E × n = 0 on ∂Ω.
By plugging equation (1b) in (1a), this system can be expressed as the following unique equation

in E:

ε
∂2E

∂t2
−∇×

(
µ−1 (∇×E)

)
+ σ

∂E

∂t
= −J ′ (2)

where J ′ = ∂J/∂t.

2.2 General Issues

Some General Principles In this section, we introduce some basic principle which will be used
for the different approximations of the Maxwell’s problem descibed below.

1. Let us first define the fundamental space for Maxwell’s equations:

H0(curl, Ω) =
{
vh ∈

[
L2(Ω)

]3
such that ∇× vh ∈

[
L2(Ω)

]3
}

(3)

Functions of this functional space are characterized by the continuity of their tangential com-
ponent.



2. For any quadrilateral or hexahedral mesh, basis functions are defined on the reference element

K̂ which is the unit square in 2D and the unit cube in 3D. These functions (generally called

hat functions because indicated by a hat) are functions of x̂ ∈ K̂. Then, a basis functions in

any element Kj of a mesh Q is obtained by a transform based on F j such that F j(K̂) = Kj .
Obviously, this function depends on x = F j(x̂).
In our different approximations, we use the H(curl)-conform transform which maps a hat
vector basis function ϕ̂ onto a basis function ϕ on Kj as follows:

ϕ ◦ F j = DF ∗−1
i ϕ̂,

where DF ∗−1
i is the inverse of the transposed Jacobian matrix of F j .

This transform is called H(curl)-conform because it ensures the continuity of the tangential
component of ϕ all over the mesh.

3. Another important point in the following, is the use of mass lumping. This property is obtained
by defining interpolation points for the basis functions (which are basically Lagrange interpola-
tion polynomials) as quadrature points and by computing mass integrals by the corresponding
quadrature formula. In the case of Maxwell’s equations, this technique provides block-diagonal

mass matrices.

A General Framework for Edge Elements The edge element methods are based on the
following variational formulation of problem (2):

Find E ∈ L2(0, T ; H0(curl, Ω)) such that

d2

dt2

∫

Ω

εE · ϕdx−

∫

Ω

µ−1 (∇×E) · ∇ × ϕdx+
d

dt

∫

Ω

σE · ϕ dx = −

∫

Ω

J ′ ·ϕ dx,

∀ϕ ∈ H0(curl, Ω).

(4)

Then, we construct an edge element approximation based on this variational formulation which
reads

Find Eh ∈ L2(0, T ;V r
h) such that

d2

dt2

∫

Ω

εEh ·ϕh dx−

∫

Ω

µ−1 (∇×Eh) · ∇ ×ϕh dx+
d

dt

∫

Ω

σEh ·ϕh dx = −

∫

Ω

J ′ · ϕh dx,

∀ϕh ∈ V r
h.

(5)

2.3 A First Family of Edge Elements

For the first family of edge elements (defined in [24]), we have,

V r
h = {vh ∈ H0(curl, Ω) such that ∀Kj ∈ Q, DF ∗

i vh|Kj
◦F j ∈ Qr−1,r,r×Qr,r−1,r×Qr,r,r−1}, (6)

where

Qr1,r2,r3
=

{
p(x) =

r1∑

ℓ=0

r2∑

m=0

r3∑

n=0

aℓ,m,n xℓ
1x

m
2 xn

3 , aℓ,m,n ∈ IR

}
. (7)

For spectral edge elements, the basis functions on K̂ for this family are constructed from 1D
Lagrange interpolation polynomials based on Gauss and Gauss-Lobatto quadrature points (denoted

(ξ̂G
ℓ , ℓ = 1, .., r) and (ξ̂GL

ℓ , ℓ = 1, .., r + 1) respectively). For each set of points, the corresponding

polynomials are denoted ĝℓ and l̂ℓ respectively. For instance, the function of Qr−1,r,r × Qr,r−1,r ×

Qr,r,r−1 corresponding to the point
(
ξ̂G
ℓ , ξ̂GL

m , ξ̂GL
n

)
∈ K̂ reads

ϕ̂ℓ,m,n(x̂1, x̂2, x̂3) = ĝℓ(x̂1)l̂m(x̂2)l̂n(x̂3)e1,



where e1 is the first basis vector of IR3. In the same way, functions corresponding to points with
a Gauss coordinate as second (resp. third) coordinate, are supported by e2 (resp. e3).

For any ĝℓ and any ξ̂G
m and for any l̂ℓ and any ξ̂GL

m , we have ĝℓ(ξ̂
G
m) = δℓm and l̂ℓ(ξ̂

GL
m ) = δℓm,

where δℓm is the Kronecker symbol.
The corresponding degrees of freedom are given in Fig. 1.

Fig. 1. The degrees of freedom of the first family of edge elements for E on faces of cubes when r = 2

2.4 A Second Family of Edge Elements

The definition of V r
h for the second family of edge elements is much simpler. It reads

V r
h = {vh ∈ H0(curl, Ω) such that ∀Kj ∈ Q, DF ∗

i vh|Kj
◦ F j ∈ (Qr)

3
}, (8)

where Qr = Qr,r,r, Qr,r,r defined as in (7).

For spectral edge elements, the basis functions on K̂ for this family are constructed from 1D
Lagrange interpolation polynomials based on Gauss-Lobatto quadrature points. For any point ℓ,
the corresponding polynomial is denoted ϕ̂ℓ. For instance, the function of (Qr)

3
corresponding to

the point
(
ξ̂GL
ℓ , ξ̂GL

m , ξ̂GL
n

)
∈ K̂ reads

ϕ̂
p
ℓ,m,n(x̂1, x̂2, x̂3) = ϕ̂ℓ(x̂1)l̂ϕ(x̂2)l̂ϕ(x̂3)ep.

Moreover, we have:
ϕ̂

p
ℓ,m,n(ξ̂GL

i , ξ̂GL
j , ξ̂GL

k ) = δℓiδmjδnkep.

The corresponding degrees of freedom are given in Fig. 2.
This method provides a block-diagonal mass matrix on any mesh. This structure is obtained by

numbering the degrees of freedom ni around a point i sequentially and by using a Gauss-Lobatto
quadrature formula for computing the mass (and also stiffness) integrals. Therefore, the size of a
block is equal to ni.

2.5 Mixed Formulation

Although the above method solves the problem of mass lumping, which is important in terms of
computational time, the storage of the stiffness matrix on non-orthogonal meshes remains sub-
tantial. This storage is still a drawback of FETD, even mass-lumped, versus FDTD. A way to
overcome this problem is to use a mixed formulation.



Fig. 2. The degrees of freedom of the second family of edge elements for E on faces of cubes when r = 2

In order to write this new approach, we use equations (1a)-(1b) with the following variational
formulation:

d

dt

∫

Ω

εE · ϕ dx−

∫

Ω

H · ∇ ×ϕ dx+

∫

Ω

σE ·ϕ dx = −

∫

Ω

J ·ϕ dx, ∀ϕ ∈ H0(curl, Ω), (9a)

d

dt

∫

Ω

µH · ψ dx+

∫

Ω

∇×E ·ψ dx = 0, ∀ψ ∈
[
L2(Ω)

]3
, (9b)

which provides the approximate problem

d

dt

∫

Ω

εEh ·ϕh dx−

∫

Ω

Hh · ∇ ×ϕh dx+

∫

Ω

σEh · ϕh dx = −

∫

Ω

J · ϕh dx, ∀ϕh ∈ V r
h,(10a)

d

dt

∫

Ω

µHh ·ψh dx+

∫

Ω

Eh · ∇ ×ψh dx = 0, ∀ψh ∈W r
h,(10b)

where
W r

h = {vh ∈
[
L2(Ω)

]3
such that ∀Kj ∈ Q, DF ∗

i vh|Kj
◦ F j ∈ (Qr)

3
}. (11)

Basis functions of W r
h are constructed exactly in the same way as in section 2.4 but they are

discontinuous. In fact, this discontinuous character makes useless the use of the H(curl)-conform
transform which ensures the tangential continuity. Its presence in W r

h is an artifact to provide an
important gain of storage based on the following identity:

∀Kj ∈ Q, ∀ϕh ∈ V r
h, ∀ψh ∈W r

h,

∫

Kj

∇×ϕh · ψh dx = sign(Jj)

∫

K̂

∇̂ × ϕ̂h · ψ̂h dx̂. (12)

where ∇̂ is the ∇ operator in x̂ coordinates, Jj = detDFi and ϕ̂h = DF ∗
i ϕh|Kj

◦ F j .

Identity (12) means that the knowledge of the stiffness matrix on K̂ implies its knowledge on
any element Kj (modulo one sign per element). In other words, if one assemblies the stiffness matrix
at each time-step (which is a low-cost operation, in particular for higher-order approximations),

the storage of the stiffness matrix is reduced to its storage over K̂ (which is peanuts!), the storage
of one sign per element and the storage of the mass matrix of (10b) which is a 3×3 block-diagonal
matrix. Of course, this induces a huge gain of storage, as indicated by the left curve of Fig. 3.
Besides this gain of storage, due to orthogonality properties of the basis functions over K̂, this
approach also provides a substantial gain of storage, as one can see in the right curve of Fig 3.

By using a leapfrog scheme in time, (10a)-(10b) can be written as follows in its discrete form

Bε
En+1 − En−1

∆t
+ Rh Hn+1/2 + Bσ

En+1 + En

2
= 0, (13a)

Bµ
Hn+1/2 − Hn−1/2

∆t
+ R∗

h En = 0, (13b)



where Bε, Bσ are ni × ni block-diagonal mass matrices, Bµ is a 3 × 3 block-diagonal mass matrix
and Rh is a stiffness matrix which needs almost no storage.

A detailed description of the above methods can be found in [5].
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Fig. 3. Storage (left) and CPU time (right) ratios for spectral elements and mixed spectral elements for
the same number of d.o.f

Remarks:

1. The mixed formulation was also applied to the acoustics equation [6] and the linear elastody-
namics system [7].

2. A proof of the equivalence between the approximations given in (4) and in (10a)-(10b) is given
in Pernet’s thesis [26]. This proof is a powerful generalization of the equivalence theorem given
in [6].

3. This mixed formulation can also be applied to the first family of edge elements. Although
inefficient in terms of mass lumping on non-orthogonal meshes for this family, this formulation
provides a fast algorithm of matrix-vector product very useful for the time-harmonic problem,
as discussed in section ???.

4. Another approximation of (9a)-(9b) for the first family of edge elements, in which
[
L2(Ω)

]3
is

replaced by H(div, Ω), is given in [12]. This approach leads to a variational generalization of
the Yee’s scheme at any order.

2.6 Discontinuous Galerkin Methods

Description of the Method In a discontinuous Galerkin method (DGM), the solution is sought

in
[
L2(Ω)

]3
. So, one cannot express a continuous variational formulation. The approximate prob-

lem reads as follows

For each Kj ∈ Q, we set:

∫

Kj

ε
∂E

∂t
·ψ dx = −

∫

Kj

σE · ψ dx

∫

Kj

∇× H · ψ dx −

∫

Kj

J ·ψ dx

+ α

∫

∂Kj

[[H× n]]
Kj

∂Kj
· ψ ds + β

∫

∂Kj

[[n × E]]
Kj

∂Kj
· (n ×ψ) ds,

(14)

∫

Kj

µ
∂H

∂t
· φ dx = −

∫

Kj

∇× E · φ dx+ γ

∫

∂Kj

[[E × n]]
Kj

∂Kj
· φ ds

+ δ

∫

∂Kj

[[n × H]]
Kj

∂Kj
· (n × φ) ds,

(15)

where α, β, γ, δ are positive constants, φ ∈W r
h, ψ ∈W r

h and [[v]]
Kj

∂Kj
is the jump of a vector-valued

function v across the boundary of Kj.



Basis functions of W r
h are constructed exactly in the same way as in section 2.5. Now, the

discontinuous character of these basis functions allows us to use either Gauss-Lobatto or Gauss
points as interpolation and quadrature points. A dispersion analysis of the schemes obtain by
using each set of points shows a better accuracy for Gauss points which actually provide an exact
value of the integrals. However, since some of the points are located on the faces of the unit cube,
Gauss-Lobatto points give an immediate definition of the jumps whereas Gauss points require an
extrapolation. However, due to orthogonality properties, this extrapolation is 1D and do not induce
a substantial additional cost.

Discrete Energy Analysis If we compute the discrete energy of (14)-(15) (when σ = 0 and
J = 0)

E(t) =
∑

Ki⊂Ω

{∫

Ki

(ǫEKi
) ·EKi

dx +

∫

Ki

(µHKi
) ·HKi

dx

}
,

one can show that, for −α = γ = 1
2 , α ≥ 0 and δ ≥ 0, we get

dE

dt
(t) =

∑

Ki∩Kj

{−β‖[[n×E]]Ki∩Kj
‖2

Γ−δ‖[[n×H]]Ki∩Kj
‖2

Γ } (16)

which provides a decreasing energy and so, a disspative aproximation of the problem. On the other
hand, if we set α = 0 and δ = 0, we get a conservative approximation.

Now, the discrete form of this approximation with a leapfrog scheme in time reads

Bε
En+1 −En

∆t
+ Bσ

En+1 +En

2
+ RhH

n+1/2 + α ShH
n+1/2 + β DhE

n + Jn+1/2 = 0, (17)

Bµ
Hn+1/2 −Hn−1/2

∆t
+ RhE

n + γ S∗
hE

n + δ D∗
hH

n+1/2 = 0, (18)

where Bε, Bσ and Bµ ar 3 × 3 block diagonal mass matrices, Rh is a stiffness matrix which needs
to be stored on the unit element, Sh is a jump matrix which needs to be stored on the unit element
and Dh is a jump matrix which needs to be stored (its storage is equivalent to that of a mass
matrix). Moreover, the jump terms in which Dh appear need to be uncentered in order to keep
the scheme explicit, which introduces some numerical dissipation. However, this is not too much
troublesome since these two terms are themselves dissipative. So, in order to reduce the storage
and to avoid numerical dissipation, it seems a priori better to set β = δ = 0. This was our first
choice, as described in details in [9,26].

Remark: Plane wave analysis and error estimates can be found in [26]. Error analysis shows
that, due to the presence of DFi which is not constant on non-regular meshes, a Qr approximation
is of order r − 1. In particular, this implies that the first-order approximation is not consistent on
non-regular meshes. This theoretical result was confirmed by numerical experiments.

2.7 Numerical Results

Both DGM and the second family of edge elements on slightly non-regular meshes provided per-
formant results in 2D and 3D in terms of storage and CPU time. In particular comparisons with
FDTD showed its efficiency [8]. Such meshes are easy to construct in 2D but not always possible
to get in 3D. In fact, for complex geometries, it is difficult to obtain a purely hexahedral mesh. A
palliative to this difficulty is to produce a hexahedral mesh from a tetrahedral mesh by splitting
each tetrahedron into four hexahedra, as shown in Fig 4. Unfortunately, this technique leads to
very distorted meshes which produces very important parasitic waves.



Fig. 4. Splitting a tetrahedron into four hexahedra

3 Eigenvalue Analysis

Since one can write a spectral decomposition the solution of Maxwell’s equations, the study of the
eigenvalues problem related to the Maxwell’s equations in their continuous or discrete form can
exhibit parasitic modes.

In [14], the problem of spurious modes for nodal elements is dealt. The author suggests a
weighted regularization to avoid these spurious modes. In [1], the second family is shown as spec-
trally non-correct in the case of rectangular meshes. The authors prooved that “hp” elements based
on the first family for rectangular meshes provide a spurious-free method. I. Perugia and Al [2]
treats the Maxwell eigenvalue for several Discontinuous Galerkin formulations : interior penalty
IP, non-symmetric interior penalty NIP and Local Discontinuous Galerkin LDG, which is the for-
mulation we use. The authors conclude that the formulation is spurious free for first and second
family on tetrahedra, for first family on hexahedra. Nevertheless, they think that the method has
spurious modes for the second family. Our study will focus on the second family, in order to give
a new enlightement.

Our eigenvalue analysis is developped on two test cases which are unit square and cubic cavities
meshed by using split triangles or tetrahedra as shown in Fig. 5 with a Q3 approximation. For these
two cavities, we compute the eigenvalues in the range of frequencies contained in the solution.

Fig. 5. Test meshed cavities in 2D and 3D

3.1 Discontinuous Galerkin Methods

For DGM without numerical dissipation (i.e. β = δ = 0), the behaviour of the eigenvalues is
somehow strange. In 2D, we only get one parasitic eigenvalue but a huge amount of such eigenvalues
appear in 3D (Fig. 6). If we compare with the second family of edge elements (Fig. 9), we get about
25 times more parasitic eigenvalues in 3D!
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An efficient way to get rid of these parasitic eigenvalues is to introduce some numerical dissi-
pation (i.e. to set β > 0 or/and δ > 0). In this way, the parasitic eigenvalues become all complex
with a negative imaginary part. This last property implies that all the parasitic waves become
evanescent. In Fig. 7, we show the eigenvalues obtained by setting β = 0.1 then = 0.5 and δ = 0
in 3D. One can notice that for both values of the parameter, a lot of parasitic eigenvalues are not
too much affected by the change of parameter.
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Fig. 7. Eigenvalues in the complex plane for β = 0.1 (left) and β = 0.5 (right) computed with DGM

The effect of numerical dissipation on the solution can be seen in Fig. 8, in which show snapshots
of the solution (on the x − y plane) in unit cubic cavity after a wave travel of 30 wavelengths.

Fig. 8. Snapshots of the solution (on the x − y plane) in unit cubic cavity after a wave travel of 30
wavelengths for β = 0 (left) and β = 0.1 (right) computed with DGM



3.2 Second Family of Edge Elements

In the 2D and the 3D case, edge elements present a substantial number of parasitic eigenvalues,
even more important in 3D, as shown in Fig. 8. These parasitic eigenvalues confirm the presence of
parasitic waves in the solution. A priori, these parasitic eigenvalues seem to make this family of edge
elements inefficient. However, this problem can be overcome in a similar way as DGM, by adding
some numerical dissipation to this approximation. These dissipative terms can be introduced in
(10a)-(10b) as follows

∑

Kj∈Q

{
d

dt

∫

Kj

εEh · ϕh dx−

∫

Kj

Hh · ∇ ×ϕh dx+

∫

Kj

σEh ·ϕh dx

+ β′

∫

∂Kj

[[E · n]]
Kj

∂Kj
(ψ · n) ds +

∫

Kj

J ·ϕh dx

}
= 0, ∀ϕh ∈ V r

h,

(19a)

∑

Kj∈Q

{
d

dt

∫

Kj

µHh ·ψh dx +

∫

Kj

Eh · ∇ ×ψh dx

+ δ′
∫

∂Kj

[[n × H]]
Kj

∂Kj
· (n ×ψh) ds

}
= 0, ∀ψh ∈W r

h.

(19b)

As for (14)-(15), one can write the following energy identity:

dE

dt
(t) =

∑

Ki∩Kj

{−β′‖[[n ·E]]Ki∩Kj
‖2

Γ−δ′‖[[n×H]]Ki∩Kj
‖2

Γ } (20)
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Fig. 9. Eigenvalues for the 2D (left) and 3D (right) cavities computed with edge elements. Physical eigen-
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The use of the above dissipative terms provides the same effect on the eigenvalues as shown in
Fig. 10 and 11.

Remarks:

1. The dissipative term in (19a) is not equal to zero because only the tangent components of E
are continuous.

2. The dissipative term in (19b) is similar to this of DGM but was not yet tested.
3. Both for DGM and edge elements, the dissipation was tested in cavities for very long times

(even for time-harmonic problems) for Q3 and higher-order approximations. For all these ex-
periments, we did not notice substantial effect on the amplitudes of the solutions.
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Fig. 10. Eigenvalues in the complex plane for β′ = 0.1 (left) and β′ = 0.5 (right) and δ′ = 0 computed
with the second family of edge elements

Fig. 11. Snapshots of the solution (on the x − y plane) in unit cubic cavity after a wave travel of 30
wavelengths for β′ = 0 (left) and β′ = 0.1 (right) and δ′ = 0 computed with the second family of edge
elements

3.3 The Case of the First Family

The first family of edge elements does not provide mass-lumping on non-orthogonal meshes. How-
ever, this family is very useful for time-harmonic problem, as we shall see in the next section. Its
efficiency is based on a fast matrix-vector product but also on the fact that, for some quadrature
rules, this family is free of spurious modes
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Fig. 12. Eigenvalues for the 3D first family of edge elements with Gauss (left) and Gauss-Lobatto (right)
quadrature rules for the stiffness matrix. Physical eigenvalues are indicated by red lines



In fact, due to the structure of its degrees of freedom, both Gauss and Gauss-Lobatto quadrature
rules are suitable to this family. For the mass matrices, Gauss points lead to non invertible mass
matrices whereas Gauss-Lobatto quadrature rules behave well. The stiffness matrices can also be
computed by both quadrature rules. However, as shown in Fig. 12, the Gauss-Lobatto rules leads
to a spurious-free approximation.

4 Time-Harmonic Problems

In this section, we only study the first family, which is spurious free and which needs less storage
than other methods to reach the same accuracy.

4.1 Fast Matrix-Vector Product

After applying the Fourier transform in time and discretizing the variational formulation (5), we
get the following linear system:

−ω2 Mh Eh + Kh Eh = Fh

The mass matrix Mh and stiffness matrix Kh can be written as

(Mh)j,k =

∫

Ω

εϕj · ϕk

(Kh)j,k =

∫

Ω

µ−1 ∇× ϕj · ∇ × ϕk

After a change of variables, the integrands are computed over the unit cube K̂ as follows

(Mh)j,k =

∫

K̂

Ji DF−1
i ε DF−t

i ϕ̂j · ϕ̂k

(Kh)j,k =

∫

K̂

1

Ji
DF ∗

i µ−1 DFi ∇̂ × ϕ̂j · ∇̂ × ϕ̂k

We have supposed here that the jacobian Ji is always positive. This can be obtained by a permu-
tation on the local numbers of the vertices in each hexahedron.

These two matrices are computed by using Gauss-Lobatto quadrature rules. We need then to
compute the following 3x3 symmetric matrices (Ah)k,k and (Bh)k,k at each quadrature point ξGL

k :

(Ah)k,k = ωGL
k Ji DF−1

i ε DF−t
i (ξ̂GL

k )

(Bh)k,k =
ωGL

k

Ji
DF ∗

i µ−1 DFi(ξ̂
GL
k )

Matrices Ah and Bh are block-diagonal matrices, with 3x3 symmetric blocks. An “interpolation”
operator Ĉ is defined by

Ĉj,k = ϕ̂j(ξ̂
GL
k )

In the same way, a discrete “curl” R̂ operator is defined by

R̂j,k = ∇̂ × ϕ̂GL
j (ξ̂GL

k ),

where functions ϕ̂GL
j are basis functions associated to Gauss-Lobatto points. The reader can notice

that matrix R̂ is the same as the stiffness matrix introduced for the mixed formulation.

Theorem 1 With the previous notations, we get the following factorizations:

Mh = Ĉ Ah Ĉ∗

Kh = Ĉ R̂ Bh R̂∗ Ĉ∗



Proof: Let us write the elementary mass matrix by using quadrature rules:

(Mh)j,k =

(r+1)3∑

m=1

(Ah)m,m ϕ̂j(ξ̂
GL
m ) · ϕ̂k(ξ̂GL

m )

If we denote a matrix Fh :
(Fh)j,m = (Ah)m,m ϕ̂j(ξ̂

GL
m )

we have a classical matrix-matrix product :

Mh = FhĈ∗

The matrix Fh can be easily decomposed as

Fh = Ĉ Ah

The factorization of the elementary mass matrix is proven. In the same way, we write the elementary
stiffness matrix :

(Kh)j,k =

(r+1)3∑

m=1

(Bh)m,m ∇̂ × ϕ̂j(ξ̂
GL
m ) · ∇̂ × ϕ̂k(ξ̂GL

m )

As for the mass matrix, we have the following factorization

Kh = Ŝ Bh Ŝ∗

where matrix Ŝ is defined by
Ŝ = ∇× ϕ̂j(ξ̂

GL
k )

Ŝ is different from R̂, because we take basis functions of the first family instead of basis functions
associated to Gauss-Lobatto points. But we claim the identity (21).

Ŝ = Ĉ R̂ (21)

Because of polynomial inclusion (Qr−1,r,r × Qr,r−1,r × Qr,r,r−1 ⊂ Q3
r), we have:

ϕ̂j(x̂) =

3(r+1)3∑

m=1

Ĉj,m ϕ̂GL
m (x̂)

By taking the curl of this expression, and for all x̂ equal to a Gauss-Lobatto point, we get:

∇̂ × ϕ̂j(ξ̂
GL
k ) =

3(r+1)3∑

m=1

Ĉj,m ∇̂ × ϕ̂GL
m (ξ̂GL

k )

By definition of the operators, this can be rewritten as

Ŝj,k =

3(r+1)3∑

m=1

Ĉj,mR̂m,k

Identity (21) is proven, as well as the factorization of the elementary stiffness matrix.

Complexity of the matrix-vector product (−ω2 Mh + Kh)Xh is in O(r4). Moreover, the number
of operations is equal to : ((r + 1)3 [24(r + 1) + 12 r + 30])Ne, where Ne represents the number of
hexahedra of the mesh. The required storage is equal to 12 (r+1)3 Ne coefficients, which is equiva-
lent to four vectors if r is large enough. In order to compare the different orders of approximation,
we compute the two quantities :

Computational cost

Number of d.o.f.s

Storage cost

Number of d.o.f.s
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Fig. 13. At left, computational time according to the order of approximation, at right storage required. A
standard matrix-vector product (by storing the full matrix) and the fast matrix-vector are compared

These quantites are displayed in Fig. 13 As we can see in this figure, the fast matrix-vector product
is more efficient than standard matrix-vector product for order greater or equal to 3, and leads
also to a lower storage than standard method for order greater or equal to 2.

Remark: The factorization is also true if an almost-”exact” integration is used (k + 1 Gauss
points instead of k + 1 Gauss-Lobatto points). In this case, R̂ has the same sparsity pattern, but
Ĉ is a full matrix. Fortunatelaty, thanks to tensorization of basis functions on the hexahedron,
the triple sum induced by the matrix-vector product ĈX can be decomposed into three single
sums. By doing that, we use an implicit factorization: Ĉ = Ĉ1 Ĉ2 Ĉ3, where the intermediaries
matrices Ĉ1, Ĉ2 and Ĉ3 are sparse. A fast matrix-vector is obtained, but it is slower than the fast
matrix-vector product obtained with approximate integration. More precisely, it is 67 % slower, if
we use exact integration. This difference was confirmed numerically.

4.2 Preconditioning Technique

The iterative solver used is an iterative solver which only works for complex symmetric matrices.
It is called BICGCR (BIConjugate Gradient Conjugate Residual method) and is described in
[4]. Numerical experiments show the superiority of this solver over classical COCG, GMRES or
BICGSTAB [15]. Nevertheless, the number of iterations can be very large for high frequency
problems with hetereogeneities, and for fine meshes. In order to be efficient for the linear system,
this basic iterative solver needs to be accelerated by a preconditioning technique.

The main idea of the preconditioning technique used in this article, is to consider damped
Maxwell equations by taking ε′ complex of the form :

ε′ = ε (θ + iη)

Damping is obtained under the assumption η > 0. The preconditioner will be constructed on the
damped Maxwell equations, while non-damped Maxwell equations are solved.

The effect of damping is to “localize” the inverse of the matrix so that the incomplete fac-
torization works fine. In Table 1, we put the number of iterations of BICGCR preconditioned by
ILUT, according to η and different values of the threshold. The incomplete factorization is called
ILUT [27], but we only store U factor, considering that the L factor can be recovered by symmetry.
We can see, that if you don’t put a damping, the incomplete factorization crashes very fast, and
there is no gain in storage. The gain in storage increases with damping, but also the number of
iterations. The parameters choosen will be equal to (1, 1) for all other numerical experiments on
the paper.

In order to have a low storage, we use a subdivided Q1 mesh to compute a Q1 matrix. The
procedure can be summarized by the figure 14. There is an exact matching between degrees of
freedom (d.o.f.s) of the high-order mesh and d.o.f.s of low-order provided a diagonal scaling. This
diagonal scaling is due to the transform DF ∗−1

i incorporated in the definition of the basis functions.



Threshold 1e − 4 1e − 3 0.01 0.05 0.08 0.1

θ = 1 η = 0 30/370 Mo ∞/350 Mo ∞/340 Mo ∞/326 Mo ∞/318 Mo ∞/314 Mo

θ = 1 η = 0.5 55/299 Mo 55/242 Mo 55/149 Mo 82/74 Mo 116/55Mo 145/47Mo

θ = 1 η = 1 97/244 Mo 97/197 Mo 99/108 Mo 110/53 Mo 133/40Mo 155/34Mo

Table 1. Number of iterations of BICGCR for a perfectly conducting sphere, and memory used for
factorization. The preconditioning used is incomplete factorization on the finite element matrix Q1

=⇒

F−1

i

K̂

Fig. 14. Subdivided Q1 mesh of a elementary quadrilateral Q2 transformation Fi to go from unit square
to a small square of the subdivided mesh

4.3 Cost of the Matrix-Vector Product. Comparison with Tetrahedra

In this section, we numerically compare hexahedral and tetrahedral elements for the first family.
The results are summarized in Fig. 15. The mesh and the matrix are main components of the
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Fig. 15. At left, time for 1 000 iterations of COCG on a test-case of 200 000 d.o.f.s. At right, storage
required before iterative solving (iterations vectors are not included)

storage requirement. For Q1 and R1, the mesh represents the main part. As we can see, the storage
needed decreases for hexahedra, whereas it dramatically increases for tetrahedra. The hexahedral
elements provide a matrix-vector product which becomes faster than for tetrahedral elements for



an order of approximation greater than 3. In practice, the use of high order for tetrahedra of the
first family is quite difficult because of this high storage.

5 Numerical Results

5.1 A Dielectric Spherical Torus

In this experiment, we treat a metallic sphere coated by a dielectric layer (Fig. 16) in time domain.
The radius of the sphere is equal to 0.5m whereas the width of the dielectric is 0.25m. The relative
permittivity εr in the dielectric is equal to 10. This sphere is illuminated by a Gaussian plane wave
of frequency 0.5 GHz.

A(-0.76,0.,0.)

O(0,0,0)

r=0.75m

r=0.5m

Fig. 16. The dielectric spherical torus

In Fig. 17, we give te he comparison of the value of the electric field at the point (-0.76,0)
computed by FDTD (10 and 20 points per wavelength) and our method with a mesh composed
of 16984 hexahedra (obtained by split tetrahedra adapted to the wavelength) for Q3 and Q5

approximations. The FDTD with 20 points/λ requires 1100s of CPU versus 300s for the Q3 DG
approximation and 10 times more storage for a very bad accuracy in long times.
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Fig. 17. Ey component of the electric field at a point of the domain after propagation across 10 wavelengths
(left) and 120 wavelengths (right)



5.2 The Cobra Cavity

The scattering of a cobra cavity in time-harmonic domain is studied (cf. Fig 18). Its length is 3m
and a plane wave of frequency 1 GHz illuminates its open end. If we want to obtain an error less

Fig. 18. At left mesh of the cavity, at right real part of x-component of electric field

than 0.5 dB for the RCS (see Fig. 19), we get results of table 2. For a Q6 approximation, we need

Order Number d.o.f.s Error on the RCS BICGCR ILUT(0.05)

Q4 412 000 0.45 dB 14 039 s 2 247 s
34 800 (47 Mo) 1 900 (391 Mo)

Q6 187 000 0.4 dB 12 096 s 846 s
41 500 (22 Mo) 1 700 (161 Mo)

Table 2. Efficiency of first family on cobra cavity

187 000 d.o.f.s, the computational time is 846s, if we use the ILUT preconditioner. The iterative
solver converged in 1700 iterations and needs 161 Mo to run.
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Fig. 19. Radar cross section for the cobra cavity



5.3 Scattering by an Airplane

This last experiment illustrates the possibilities of the methods in terms of storage and CPU time.
We consider an airplane of length 11m in the time domain, illuminated by a time-harmonic plane
wave of frequency 0.75 GHz. The whole mesh (obtained by split tetrahedra) contains about 78 000
elements and a Q4 DG approximation was used, which leads to about 30 000 000 of degrees of
freedom. The dissipation coefficient β defined in (14) is equal to 0.1. This experiment requires
a storage of 0.8 Go and the wave used 25 hours of CPU on a monoprocessor computer (2.4 Go
and 3.2 GHz) to reach the end of the plane. In Fig 20, we show the triangular surfacic mesh
(before splitting) and a snapshot at the final time. We validated the accuracy of the solution by a
comparison with a Q5 approximation on the same mesh.

Fig. 20. The plane mesh (left) and the final snapshot (right)

6 Conclusion

Mixed spectral approximations provide fast an low-storage algorithms both in the time domain and
the time-harmonic domain, provided some numerical dissipation. Their advantage over tetrahedral
methods is obvious. On the other hand, time domain approximation can efficiently compete with
FDTD methods. However, the use of split tetrahedra for meshing remains a handicap for the
performance of the method. Some alternative meshing stratetegies are under study.
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25. J.-C. Nédélec, A new family of mixed finite elements in IR3, Numer.Math., 50 (1), pp. 57-81, 1986.
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Dauphine, 2004.

27. Y. Saad, Iterative methods for sparse linear systems, Series in Computer Science, 1996.
28. K. Yee, Numerical solutions of initial boundary value problems involving Maxwell’s equations in

isotropic media, IEEE Trans. on Antennas and Propagation AP-16, pp. 302-307, 1966.
29. L. C. Young, An efficient finite element method for reservoir simulation, Proc. of the 53rd Annual

Fall Technical Conference and Exhibition of the Society of Petroleum Engineers of AIME, Houston,
Texas Oct. 1-3, 1978.


