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1. Introduction

For about two decades, nano-structures, like quantum dots, quantum wires or quantum

wells, are produced by diverse techniques such as etching, local inter-diffusion, particle

suspension in dielectric media, or by self-assembly in matrices of a host material. They

display many effects of standard atomic physics by restricting to a confined region of

space the motion of one to a hundred embedded elementary charge carriers, which may

be conduction band electrons, valence band holes, or excitons of the semiconducting

host substrate. In contrast to atoms, two Quantum Dots (QDs) are never identical

because phonons, surface effects and bulk disorder play a crucial role on their electronic

properties. But, a QD may be considered as a giant artificial atom, which possesses

an adjustable quantized energy spectrum, controlled by its size. Therefore, it enjoys

prospects for an increasing range of future applications: e.g. as a semiconductor laser [1]

or as single-photon sources [2], as qubits for quantum information processing [3], as

single-electron transistors in micro-electronics [4], as artificial fluorophores for intra-

operative detection of tumors, biological imaging or cell studies [5].

Thanks to the progress of semiconductor growth technology during the early

eighties, quantum size effects (QSE) showed up through optical properties of spherical

semiconductor micro-crystals embedded in an insulating matrix [6,7]. The characteristic

blue-shift observed in optical spectra of such strongly quantum-confined systems emerges

in a widening of semiconductor optical band gap, caused by the increasing confinement

energy for decreasing QD size [8]. It has been also observed in a large variety of other

confined micro-structures, like quantum ribbons or quantum disks [9], quantum wires

[10] and quantum wells [11]. A review of empirical and theoretical results on quantum

confinement effects in low-dimensional semiconductor structures is given in [12]. The

first theoretical attempt to describe semiconductor QDs has been elaborated upon a

particle-in-a-sphere model, in the effective-mass approximation (EMA), which assumes

parabolic valence and conduction bands [8, 13–16]. Both electron and hole behave as

free particles, trapped in a spherical infinite potential well, and move with their common

effective masses in the considered semiconductor. The electron-hole Coulomb interaction

is included, and the excitonic contribution to the QD ground state energy is taken into

account by Ritz’ variational principle. Other EMA models have been built upon finite

potential wells, improving agreement with experimental data for a significant range

of QD sizes [17–21]. In addition to spherical clusters, the case of cylindrical shaped

micro-crystals has been carefully studied [17, 22–24], as well as the case of quantum

wires [25,26]. More sophisticated models, which consider non-parabolic valence and/or

conduction band(s), have been also developed [27–31]. Modern approaches and how

they can be applied to large structures and compared to experiments are discussed in

the book [32] as well as in the recent review article [33].

Among many important topics, it is the physics of atom-like behavior of QDs, which

is nowadays most vigorously investigated in quantum confined systems, for potential

technological applications. Of particular interest is the interaction with an ambient
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electromagnetic field, giving rise to the so-called quantum-confinement Stark effect

(QCSE), which has been studied for example in CdS0.12Se0.88 [34], in CdSe [35] or in

InGaAs micro-crystals [36]. It consists of an observable red-shift of an optical transition

induced by the presence of a constant external electric field [37–40]. In recent years,

some works have also dealt with ac-electric field [41,42]. Stark effect leads to an energy

shift of the exciton photoluminescence as well as a corresponding enhancement of its

recombination lifetime [43]. The electric field dependence of QCSE was first studied

in GaAs − AlGaAs multi-layers quantum wells [44]. Exciton energy shift peaks were

experimentally observed and successfully compared to theoretical results obtained by a

perturbation method introduced in [45,46], as the applied electric field is perpendicular

to the plane of the layer wells, within which the electron-hole Coulomb interaction is

negligible. However, in spherical QDs, the Coulomb potential turns out to be more

important, and cannot be discarded [34, 47].

Over the years, the spherical shape of QD has remained popular in the study of

QCSE [48–52]. But, to the best of our knowledge, no simple comprehensive model,

which describes Stark effects in spherical semiconductor nano-structures with analytic

results, has been worked out. In this paper, we propose to use the EMA model for

spherical micro-crystals, to establish analytically some criterions on the QD radius and

on the electric field amplitude, and to understand why presently known results fail so far

to correctly describe QCSE for a wide range of QD radius. To this end, in Section 2, we

shall introduce the electric field free model first, and recall some of its general properties.

The next two Sections 3 and 4 are devoted to the analysis of Stark effects in spherical

semiconductor QDs, first with the inclusion of electron-hole Coulomb potential and

second with an additional polarization energy. In the concluding section, we summarize

our main results and indicate possible future research perspectives.

2. EMA Quantum Dot model

A standard EMA model with infinite spherical confining potential well, without electron-

hole spin coupling and external magnetic field, allows to perform analytically most of

the calculations on spherical semiconductor nano-structures interacting with a fixed

external electric field. There exists other models with parabolic confinement [53, 54]

or parabolic potential superimposed to an infinite potential well [55], but the concept

of a QD size is then not so well defined. As Stark effect in semiconducting micro-

crystallites manifests itself through an energy shift of the electron-hole total energy

levels, we have to deal mainly with energy eigenvalue differences of a Hamiltonian.

However, two different energies have to be computed within the same theoretical QD

model. Even if this model does not fully describe the QD behavior in the absence of

electric field, particularly for small QD radii, it can be still used, since it gives rather

satisfactory theoretical predictions on Stark effect. The overestimation made for the

electric field free electron-hole pair energy levels should also appear in the interaction

of the electric field with electron-hole pairs [20]. Then, despite intrinsic limitations, an
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approximate value of the Stark shift can be obtained under some consistency conditions.

2.1. Consistency conditions

Since most synthesized nano-crystallites possess an aspect ratio (defined as the ratio

between the longest and shortest axes of the QD) smaller than 1.1, even if higher

aspect ratio micro-crystals would exist, the hypothesis of a QD with spherical symmetry

appears often as quite reasonable.

Realistically, the effective potential at the QD surface is finite, and has a standard

amplitude from 1 to 3eV [20]. This value justifies already the use of an infinite confining

potential well, as mentioned earlier, because it is generally quite large as compared to

typical electron and hole confinement energies usually involved, which increase as ∝ R−2

for decreasing QD radius R [14]. Therefore, the tunnel conductivity through the QD

boundary is vanishingly small, except of course for very small QDs. Futhermore, the

infinite potential well approximation implies that charge carriers inside the cluster are

insensitive to its outside surroundings, particularly to any externally applied field, as

far as considerations on QCSE are concerned. Although the surrounding effects may be

sufficiently small to be neglected, the presence of a large external field can significantly

modify the inside behavior of the micro-crystallites. Thus, the electric field amplitude

outside the QD should not then exceed a threshold, fixed ad hoc by the height of the real

confining potential step. This constraint should be referred to as the usual weak electric

field limit. An inequality, which analytically expresses its validity by linking the electric

field amplitude to other physical parameters of the problem, is to be determined later.

It allows to evaluate an approximate value for the maximal electric field amplitude to

apply on the QD, while respecting the weak field limit.

Lastly, for small nano-crystals of typical sizes of less than a hundred lattice spacings,

there exist magic numbers for which clusters remain stable: e.g. crystalline silicon only

stay coherent as clusters of Si12, Si33, Si39 and Si45, if they contain less than 60 silicon

atoms [56]. Their band structure are so deformed such that it becomes impossible to

use the parabolic shape of conduction and valence bands, required by EMA models.

However, if there is no potential well — i.e. if there is no semiconductor micro-crystal

embedded in the surrounding insulating matrix —, no electrons should be excited, and

no holes should appear. Stark effects must then vanish in small QDs for any electric field.

In the weak field limit, it has been shown that, in semiconducting rectangular quantum

boxes, the Stark shift of the confined exciton ground state presents three contributions,

each of them going as the fourth power of an edge length [40]. Hence, for a spherical

potential well of radius R, the Stark shift is expected to scale as ∝ R4.

2.2. General considerations

We work with the infinite confining potential well V (r) = V (r) =

{
0 if 0 ≤ r ≤ R

∞ if r > R
,

written in spherical coordinates (r, θ, ϕ). According to the EMA model, the total
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electron-hole pair Hamiltonian operator H0 reads, in units where ~ = 1

H0 = He +Hh + VC(reh) = − ∇2
e

2m∗
e

− ∇2
h

2m∗
h

+ V (re) + V (rh) −
e2

κreh
, (1)

where κ = 4πε, ε denotes the semiconductor dielectric constant, reh = |reh| = |re − rh|
the electron-hole relative distance, m∗

e,h the effective mass and He,h the confinement

Hamiltonian respectively of the electron and of the hole and VC(reh) the electron-hole

Coulomb interaction. Without loss of generality, the semiconductor energy band gap

Eg is set equal to be zero for convenience.

In the absence of Coulomb potential, electron and hole are treated as decoupled

particles, the QD wave function should be then factorized into separable electronic and

hole parts Ψ(re, rh) = ψ(re)ψ(rh). The orthonormal eigenfunctions ψlnm(r) are labeled

by three quantum numbers l∈N, n∈N
∗ = N r {0} and m∈ [[−l, l]]. If 0 ≤ r ≤ R,

ψlnm(r) = ψlnm(r, θ, ϕ) =

√
2

R3

Ym
l (θ, ϕ)

jl+1(kln)
jl

(
kln

R
r

)
, (2)

where Ym
l (θ, ϕ) is the spherical harmonic of orbital quantum number l and azimuthal

quantum number m, jl(x) the spherical Bessel function of the first kind of index l and

of variable x, and {kln}ln the wave numbers set, defined as the nth non-zero root of

the spherical Bessel function jl(x) thanks to the continuity condition at r = R — the

presence of an infinite potential imposes that ψlnm(r) = 0, if r > R [13]. The respective

energy eigenvalues for electron and hole are expressed in terms of {kln}ln as

Ee,h
ln =

k2
ln

2m∗
e,hR

2
.

The continuum density of states of the semiconductor bulk should show atomic-like

discrete spectrum with increasing energy separation as the radius decreases.

Because of the explicit micro-crystallites spherical symmetry breakdown in the

presence of a Coulomb potential, the exact determination of eigenfunctions and energy

eigenvalues for Eq. (1) is arduous. Treating the interplay of the Coulomb interaction,

scaling as ∝ R−1, and the quantum confinement, scaling as ∝ R−2, constitutes the

common approach to this problem. To handle these competing contributions, two

working regimes are singled out, according to the ratio of the QD radius R to the

Bohr radius of the bulk Mott-Wannier exciton a∗ =
κ

e2µ
, µ being the reduced mass of

the exciton [16]. In the strong confinement regime, corresponding to a size R ≤ 2a∗,

the potential well strongly affects the relative electron-hole motion, and exciton states

consist of uncorrelated electron and hole states. The weak confinement regime, valid

for a size R ≥ 4a∗, leaves the electron-hole relative motion and its binding energy

unchanged. The exciton character of a quasi-particule of total mass M = m∗
e + m∗

h is

conserved. As its center-of-mass motion remains confined, it should be quantized [16].

Even if we focus on Stark effect in the strong confinement regime, we shall briefly

present the consequences of the previous single EMA model in both strong and weak

confinement regimes. Despite its simplicity, this model seems to be able to apprehend
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correctly the QCSE, at least for a range of sufficiently small QD sizes, and to yield

numerical values, which agree with experimental results.

2.3. Considerations on strong and weak confinement regimes

2.3.1. Strong confinement regime

In this regime, the Coulomb potential is treated as a perturbation with respect to the

infinite confinement potential well in a variational procedure, which shall be extended

to the case of an applied electric field. The ground state energy of the exciton should

be evaluated with the following trial wave function

φ(re, rh) = ψ010(re)ψ010(rh)φrel(reh), (3)

with φrel(reh) = φrel(reh) = e−
σ

2
reh , where σ is the variational parameter, re,h = |re,h| and

ψ010(re,h)=ψ010(re,h)=
sin

(
π
R
re,h

)

re,h
√

2πR
.

The variational wave function of Eq. (3) implies that both electron and hole should

occupy primarily their respective ground state in the confining infinite potential well,

as described by the product ψ010(re)ψ010(rh). It should also exhibit, via the function

φrel(reh) of the relative coordinates reh, an exciton bound state behavior, analogous to

the ground state of an hydrogen-like atom with appropriate mass µ and Bohr radius a∗,

up to a normalization factor, especially if σ−1 ∝ a∗.

Despite the breakdown of translational invariance of the Coulomb interaction by

the spherical confining potential, Fourier transform formalism in relative electron-hole

coordinates allows to establish integral representations for quantities such as the square

of the norm 〈φ|φ〉 of the trial function φ(re, rh) or the corresponding Coulomb potential

diagonal matrix element 〈φ|VC(reh)|φ〉




〈φ|φ〉=− 8

R2

∂

∂σ

[
1

σ

∫∫

D

dx

x

dy

y
sin2(πx) sin2(πy) sinh(σRx)e−σRy

]
,

〈φ|VC(reh)|φ〉=− e2

κR

8

σ

∫∫

D

dx

x

dy

y
sin2(πx) sin2(πy) sinh(σRx)e−σRy ,

(4)

where D = {(x, y) ∈ R
2 / 0 ≤ x ≤ y ≤ 1}. A Taylor expansion of expressions Eqs. (4)

with respect to the dimensionless parameter σR near zero yields




〈φ|φ〉=1 − BσR+ O(σ2R2),

〈φ|VC(reh)|φ〉=− e2

κR

{
A− σR+ O(σ2R2)

}
.

Thus, an expression of the mean value of the total Hamiltonian H0 in the strong

confinement regime in terms of a dimensionless variational parameter σ′, defined by

σ′ = σa∗, and of the binding exciton Rydberg energy E∗ =
1

2µa∗2
can be obtained as

〈φ|H0|φ〉
〈φ|φ〉 = Eeh − A

e2

κR
− 2B′E∗σ′ +

E∗

4
σ′2 + . . .
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where the correction terms “ . . . ” go to zero as soon as
R

a∗
goes to zero, and where

Eeh = Ee
01 + Eh

01 is the electron-hole pair ground state confinement energy §. The

variational parameter σ′ is determined to be σ′
0 = 4B′ ≈ 0.9956, to minimize the value

of the electron-hole energy

Estrong
eh = Eeh − A

e2

κR
− 4B′2E∗,

This formula has been already analytically obtained with trial functions showing the

same global form as φ(re, rh), but with an interactive part equal to φ̃rel(reh) = (1− σ
2
reh),

instead of φrel(reh) [16, 57]. It is obvious that φ̃rel(reh) consists of the two first terms

of the Taylor expansion of φrel(reh), in the limit σ
2
reh ≤ σR ≪ 1. Because of the

infinite confining potential well assumption, the total excitonic energy is overestimated

in comparison to experimental data for small QDs. A successful method to subtract off

this over-estimation consists in adopting a model in which a confining finite potential

step of experimentally acceptable height is restored [20].

2.3.2. Weak confinement regime

In this regime, electron-hole pair states consist of exciton bound states. The Coulomb

potential and the kinetic energy in the electron-hole relative coordinates are of the same

order of magnitude because the QD size allows a partial restoration of the long range

Coulomb interaction between the charged carriers inside the QD. Then, the essential

contribution to the ground state energy of the exciton is −E∗, the ground state energy

of a hydrogen-like atom mass µ. Furthermore, the total translational motion of the

exciton, thought as a quasi-particle of total mass M , should be restored and contributes

to the exciton total energy by
π2

2MR2
, the typical kinetic energy term of a free particle

confined in a space region of size R. As a first approximation, the ground state energy of

the exciton trapped inside the QD is then the sum of these two energetic contributions,

but this is not totally satisfactory. To improve phenomenologically its accuracy in regard

to numerical simulations, a monotonic increasing function η(λ) of the effective masses

ratio λ =
m∗

h

m∗
e

has been introduced in [16], and has been inserted into Eweak
eh as follows

Eweak
eh = −E∗ +

π2

2M(R − η(λ)a∗)2
.

The QD size renormalization term η(λ)a∗ is a dead layer [58]. Although it could be

successfully described as a quasi-particle, the exciton is not itself an indivisible particle.

Its center-of-mass, whose motion is quantized, could not reach the infinite potential

well surface unless the electron-hole relative motion undergoes a strong deformation.

The picture of a point-like exciton should be dropped in this region of space. The

exciton should be preferentially thought as a rigid sphere of radius η(λ)a∗, where η(λ)

is numerically determined to get a better fit of experimental results [16].

§ Appendix A compiles a register of all constants, which appear in this paper.
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3. QD Stark effect without polarization energy

The diagonalization of the Hamiltonian of an electron-hole pair trapped in an infinite

potential well under the influence of an external constant electric field is, in principle,

an exactly solvable problem. Even if the presence of a constant electric field explicitly

breaks both spherical QD symmetry and electron-hole Coulomb potential translation

invariance, in a spherical QD, we shall consider an applied electric field Ea along the

direction z of a three-dimensional cartesian coordinates system with its origin located

at the QD center. This is not the cases of quantum wells [45, 46], quantum wires [59],

quantum disks [39], rectangular [40], cubical [60] or confined by parabolic potential [61]

quantum boxes, in which the electric field direction plays a significant role. As the

inside semiconducting QD dielectric constant ε is larger than the outside insulating

matrix dielectric constant ε′, the electric field Ed inside the QD is different from Ea. It

is given by Ed =
Ea

(1 − g) + gεr
, where g is a geometrical depolarization factor, which

equals
1

3
for a sphere, and εr =

ε

ε′
is defined as the relative dielectric constant [62].

The dielectric constant difference also implies the existence of a polarization energy

term P (re, rh), introduced in [8], which shall be neglected in this section, but taken into

account in the next one. This hypothesis allows to study in more details its relative role

vs. the Coulomb potential, because they both scale as ∝ R−1.

Let us define the electron and the hole (of respective electric charge ∓e) interaction

Hamiltonian with the electric field Ed, in spherical coordinates, as

We,h(re,h) = ±eEd · re,h = ±eEdre,h cos θe,h, (5)

where Ed = |Ed| is the electric field amplitude inside the micro-crystal. As the function

φ(re, rh) does not provide any further contribution to the excitonic energy in the presence

of the electric field, i.e. 〈φ|We(re)|φ〉 = −〈φ|Wh(rh)|φ〉, an appropriate form for the trial

wave function should present some other dependence on the electron and hole space

coordinates to be determined later.

3.1. Justification of the variational trial wave function form

To apprehend the effect of the induced electric polarization, we follow a reasoning

made in [45], and study the interaction between the charge carriers with the ambient

electric field, neglecting the Coulomb potential. To this end, we define the individual

Hamiltonian H ′
e,h of a confined electron or of a confined hole interacting with Ed as

H ′
e,h = He,h +We,h(re,h).

As mentioned as a consistency condition in Subsection 2.1, we can assume that the

electric field amplitude is sufficiently small so as to consider the Hamiltonian interactive

part We,h(re,h) as a perturbation to the confined Hamiltonian He,h. In this weak field

limit, the absolute typical interaction energy of the electron or of the hole under the

electric field influence Eele = eEdR should be treated as a perturbation compared to
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their typical confinement energy Ee,h = Ee,h
01 , i.e. Eele ≪ Ee,h. In real atoms as well

as in quantum wells [46], in quantum wires [59] and quantum boxes [60], Stark shifted

levels show a typical quadratic dependence on the electric field amplitude, a similar

behavior is expected here. In the following, to justify the form of the variational wave

function leading to the QCSE, we investigate perturbative results on decoupled confined

electron and hole, interacting individually with an external electric field, by performing

first, a standard second-order stationary perturbation theory, and second, a variational

procedure.

A second-order perturbation computation of the Stark shift undergone by the

electron or by the hole ground state, yields

∆EStark pert
e,h = −Γpertm

∗
e,he

2E2
dR

4 + O(E3
d),

where the constant Γpert =
32

3
π2

∑

n≥1

k2
1n

(k2
1n − π2)5

≈ 0.01817.

In order to account for the electric field direction along the z-axis in the variational

principle, the trial wave function should show a deformation away from the spherical

shape, which squeezes or stretches the electron or the hole probability density along

this particular direction. The variational trial function is chosen of the form Φe,h(re,h) =

ψ010(re,h)ϕe,h(re,h), where ϕe,h(re,h) = e∓
σe,h

2
re,h cos θe,h . The variational parameters σe,h

have the dimension of an inverse length so that, in the weak field approximation, we

can assume that σe,hR ≪ 1. The difficulty in this problem is in the calculation of

the square of the norm of the trial function Φe,h(re,h). However, it admits an integral

representation, on which a Taylor expansion in the neighborhood of the dimensionless

parameter σe,hR = 0 can be performed

〈Φe,h|Φe,h〉 =
2

σe,hR

∫ 1

0

dx

x
sin2(πx) sinh(σe,hRx)

= 1 +
C

6
σ2

e,hR
2 + O

(
σ4

e,hR
4
)
.

The mean value of the confinement Hamiltonian He,h in the quantum state defined by

the trial function Φe,h(re,h) is exactly determined as

〈Φe,h|He,h|Φe,h〉
〈Φe,h|Φe,h〉

= Ee,h +
σ2

e,h

8m∗
e,h

,

and the mean value of the interaction Hamiltonian We,h(re,h) as

〈Φe,h|We,h|Φe,h〉
〈Φe,h|Φe,h〉

= −eσe,hEdR
2

{
C

3
+ O

(
σ2

e,hR
2
)}
.

Then, the total Hamiltonian H ′
e,h mean value, up to the second order in σe,hR, is

〈Φe,h|H ′
e,h|Φe,h〉

〈Φe,h|Φe,h〉
= Ee,h +

σ2
e,h

8m∗
e,h

− C

3
eEdR

2σe,h + . . .
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A choice of the variational parameter σ0
e,h =

4C

3
m∗

e,heEdR
2 gives the ground state energy

E ′
e,h of the confined charge carriers in interaction with the electric field, and the Stark

shift by subtracting their respective ground state energy, as follows

∆Ee,h
Stark var = E ′

e,h − Ee,h = −Γvarm
∗
e,he

2E2
dR

4,

where Γvar =
2C2

9
≈ 0.01776.

These two Stark shift expressions present the same dependence on physical

parameters: they both scale as ∝ m∗
e,he

2E2
dR

4. The Stark shift contribution is clearly a

second order term in the dimensionless parameter
Eele

Ee,h
≪ 1, with respect to the electron

or the hole confinement energy Ee,h. The difference between the previous methods is

quantifiable by evaluating the relative error between the values of the proportionality

constants Γpert and Γvar, which is ≈ 2%. This small relative error supports the validity

of the new trial wave function Φ(re, rh) in the presence of the electric field, defined as

Φ(re, rh) = φ(re, rh)ϕe(re)ϕh(rh). (6)

Since, the function Φ(re, rh) has the part φ(re, rh), describing the electron-hole Coulomb

interaction both occupying the ground state of their respective confinement Hamiltonian,

and the electric field interactive part ϕe(re)ϕh(rh), liable for the individual electron and

hole behaviors in the ambient electric field Ed.

3.2. General results on Stark effect in semiconductor Quantum Dots

As already mentioned, we add the interaction Hamiltonians We,h(re,h) between the

charge carriers and the electric field to the QD model Hamiltonian H0, introduced

in Section 2, in order to apprehend QCSE in spherical semiconductor micro-crystals

H = H0 +We(re) +Wh(rh). (7)

In the weak field limit, the variational procedure is to be applied using the trial function

Φ(re, rh), introduced in Eq. (6). To this end, we use a reasoning similar to that of

Subsection 2.2, i.e. the Fourier transform formalism in the relative coordinates can be

used once again quite advantageously. This formalism leads to integral representation

of the square of the norm of the trial function Φ(re, rh) and of the mean value of the

Coulomb interaction matrix element in the corresponding quantum state




〈Φ|Φ〉=− 2

R2

∂

∂σ

[
1

σ

∫ 1

−1

dξ

∫∫

D

dx

x

dy

y
sin2(πx) sin2(πy)

×
{

sinh(ρe(ξ)σRx)

ρe(ξ)

e−ρh(ξ)σRy

ρh(ξ)
+

sinh(ρh(ξ)σRx)

ρh(ξ)

e−ρe(ξ)σRy

ρe(ξ)

}]
,

〈Φ|VC(reh)|Φ〉=− e2

κR

2

σR

∫ 1

−1

dξ

∫∫

D

dx

x

dy

y
sin2(πx) sin2(πy)

×
{

sinh(ρe(ξ)σRx)

ρe(ξ)

e−ρh(ξ)σRy

ρh(ξ)
+

sinh(ρh(ξ)σRx)

ρh(ξ)

e−ρe(ξ)σRy

ρe(ξ)

}
,

(8)
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where ρe,h(ξ) =

√

1 − 2
σe,h

σ
ξ +

σ2
e,h

σ2
, for −1 ≤ ξ ≤ 1.

Direct calculations prove that Eqs. (8) are valid if and only if the variational

parameters σ and σe,h satisfy the inequality

0 ≤ e · σe,h < σ, (9)

where e = exp(1). Hence, Eq. (9) is a consistency condition, which analytically

determines the range of acceptable electric field amplitudes. First, following the

variational results for the interaction between the electric field with the electron or with

the hole, we expect that σe,h ∝ m∗
e,heEdR

2. Second, following the variational results

on the electric field free interactive electron-hole pair through the Coulomb potential,

we also expect that σ ∝ a∗−1. Then, after trivial rearrangements, we remark that
Eele

Ee,h

∝ σe,h

σ

R

a∗
, i.e. the weak field limit should remain valid if

Eele

Ee,h

does not exceed, up

to a dimensionless proportionality factor to be given later, the order of magnitude of
R

a∗
,

the ratio which characterizes the strong confinement regime. The charge carrier energy,

in the presence of the electric field, should be at most of the same order of magnitude

of a first term correction to their confinement energy in the strong confinement regime,

which corresponds to the absolute value of the typical electron-hole Coulomb interaction

energy, because they both scale as ∝ R−1.

In the limit of vanishing electric field, i.e. in the limit
σe,h

σ
→ 0, the expressions in

Eqs. (8) allow to retrieve the expressions for the square of the norm and for the Coulomb

potential mean value without electric field expressed by Eq. (4). Moreover, in the weak

field limit, based on the decoupled electron-hole point of view presented in Subsection

3.1, we expect that the Stark shift for the coupled electron-hole system should scale as

∝ (m∗
e + m∗

h)e
2E2

dR
4 ∝ Eeh

R2

a∗2
. Then, to get at least the lowest order contribution to

this Stark shift, it is necessary to perform a Taylor expansion of the total Hamiltonian

H mean value up to the second order in the variational parameters. However, as we

shall see in the following subsection, this first contribution is not sufficiently accurate to

fit experimental data, because it does not account for the electron-hole coupling through

the Coulomb interaction. This is the reason why we shall carry on the expansion up to

the third order, since we will also get the first correction in
R

a∗
to the Stark shift, which

expresses the presence of the Coulomb potential in the strong confinement regime.

Finally, we obtain the interaction Hamiltonian We,h(re,h) mean value from the

square of the norm of the wave function Φ(re, rh) by taking its logarithmic derivative

with respect to the variational parameters σe,h

〈Φ|We,h(re,h)|Φ〉
〈Φ|Φ〉 = −eEd

∂

∂σe,h
log〈Φ|Φ〉. (10)

As we have build the trial function Φ(re, rh), so that it possesses the properties of

the functions φ(re, rh) and Φe,h(re,h), the exact mean value of the electric field free
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Hamiltonian H0 should lead to

〈Φ|H0|Φ〉
〈Φ|Φ〉 = Eeh +

σ2

8µ
+

σ2
e

8m∗
e

+
σ2

h

8m∗
h

, (11)

where the electron-hole pair ground state confinement energy Eeh is provided by the

function ψ010(re)ψ010(rh), and the contributions
σ2

8µ
and

σ2
e,h

8m∗
e,h

to the total kinetic energy

are respectively due to the Coulomb potential and to the interaction between the charge

carriers and the electric field. However, in addition to these four expected terms, direct

calculations exhibit a further contribution to the mean value of H0 of the form

K(σ, σe, σh) =
σ

4

{
∂

∂σe

+
∂

∂σh

}{
σh

m∗
h

− σe

m∗
e

}〈Φ| 1
|reh|

|Φ〉
〈Φ|Φ〉 .

Real physical quantities should be invariant under the electron-hole exchange symmetry

defined by the exchange of their coordinates, their masses and their electric charges

re,h → rh,e, m∗
e,h → m∗

h,e, e→ −e. (12)

As we expect that σe,h ∝ m∗
e,heEdR

2, under an electron-hole exchange, the variational

parameters should transform as σe,h → −σh,e. Therefore, the trial function Φ(re, rh),

the confinement Hamiltonian H0, the Coulomb potential VC(reh) and the interaction

Hamiltonian We(re)+Wh(rh) should remain invariant under the electron-hole exchange,

as well as the norm of Φ(re, rh) and the mean value of these operators. But, the further

contribution will not, since it changes as K(σ, σe, σh) → −K(σ, σe, σh). Because of the

mean value of the confinement Hamiltonian H0 invariance, it should not bring any new

contribution to real physical quantities, and should be discarded from
〈Φ|H0|Φ〉
〈Φ|Φ〉 , as

given by Eq. (11).

3.3. Stark effect in strong confinement regime

As there seems to be no way to analytically compute the integrals in Eqs. (8), we propose

to Taylor expand them in the strong confinement regime, i.e. when σR ≪ 1. To perform

this expansion, we have to specify the QD radii region, in which the following expressions

are valid. For this, we shall assume that the quantities ρe,h(ξ)σR in the arguments of

the functions exp(x) and sinh(x), appearing in Eq. (8) should be sufficiently small. As

ρe,h(ξ) <
3

2
for all ξ ∈ [−1, 1], we will only consider the range of QD radii such that

R ≤ 2

3σ′
a∗, so that ρe,h(ξ)σRx, ρe,h(ξ)σRy . 1, if −1 ≤ ξ ≤ 1 and 0 ≤ x ≤ y ≤ 1.

Thanks to the consistency condition Eq. (9), the variational parameters σ and σe,h can
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be of the same order of magnitude. Then, we deduce, up to third order in σR, that




〈Φ|Φ〉=1 − BσR+ Cσ2R2 −Dσ3R3

+(C −D′σR)
σ2

e + σ2
h

6
R2 −D′′σσeσhR

3 + O(σ4R4),

〈Φ|VC(reh)|Φ〉
〈Φ|Φ〉 =

−e2
κR

{
A+B′σR + C ′σ2R2 + C ′

1(σ
2
e + σ2

h)R
2

+C ′
2σeσhR

2 + O(σ3R3)},
〈Φ|We(re) +Wh(rh)|Φ〉

〈Φ|Φ〉 =−eEd(σe + σh)R
2

{
C

3
− C ′′σR+ O(σ2R2)

}
.

(13)

The mean value of the total Hamiltonian H , under the influence of the electric field on

both electron and hole is then expressed as an expansion in powers of the variational

parameters, up to third order in σR,

〈Φ|H|Φ〉
〈Φ|Φ〉 = Eeh −A

e2

κR
+
E∗

4
σ′2 +

σ2
e

8m∗
e

+
σ2

h

8m∗
h

− 2B′E∗σ′

− 2C ′E∗R

a∗
σ′2 − C ′

1

σ2
e + σ2

h

µ

R

a∗
− C ′

2

σeσh

µ

R

a∗

− eEd(σe + σh)R
2

{
C

3
− C ′′R

a∗
σ′

}
+ · · · (14)

We minimize the previous matrix element with respect to σ′ and σe,h to obtain an

approximate value of the ground state total energy. Their values are determined to the

first order in
R

a∗
to insure the coherence of the expansion we made as






σ′
0 =4B′

{
1 + 8C ′R

a∗

}
− 8

3
CC ′′(m∗

e +m∗
h)
e2E2

dR
4

E∗

R

a∗
,

σ0
e,h =

4C

3
m∗

e,heEdR
2

{
1 + 4

[
2C ′

1

m∗
e,h

µ
+ C ′

2

m∗
h,e

µ
− 3B′C ′′

C

]
R

a∗

}
.

(15)

The Stark shift is identified as terms scaling as ∝ E2
d, and‖

∆Estrong
Stark = −Γvar(m

∗
e +m∗

h)e
2E2

dR
4

{
1 + 8Γeh

var

R

a∗

}
, (16)

where Γvar appears as of universal character, while the constant Γeh
var depends on the

semiconductor. In terms of the effective masses of the electron and the hole, it can be

‖ From Eqs. (13), we confirm that K(σ, σe, σh), the contribution discarded from the confinement

Hamiltonian H0 mean value because of the electron-hole exchange symmetry, does not contribute to

Stark effects

K(σ, σe, σh) =

{
C′

1

2
+

C′

2

4

}{
σh

m∗

h

− σe

m∗

e

}
{σe + σh}σR + . . .

Such terms contribute to the total Hamiltonian mean value H up to the third order in
R

a∗
. These third

order terms just contribute to the variational parameters σ′

0 and σ0

e,h up to the first order, but not

at all to the electron-hole pair ground state energy. Therefore, the last possible contribution to Stark

effect should come from K(σ′

0, σ
0
e , σ0

h), where we replace the different variational parameters by their

respective zeroth order expressions σ′

0
≈ 4B′ and σ0

e,h ≈ 4C

3
m∗

e,heEdR
2, according to Eqs. (15). Then,

we straightforwardly verify that K(σ′

0
, σ0

e , σ
0

h) = 0, which is what was expected.
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expressed as

Γeh
var = C ′

1

{
m∗

e

m∗
h

+
m∗

h

m∗
e

}
+ C ′

2 −
3B′C ′′

C
.

The first contribution to this shift is simply the sum of the Stark shift contributions

undergone by the ground states of both electron and hole taken individually as computed

in Subsection 3.1. Because of the dependence of the constant Γeh
var on the effective masses

m∗
e,h, the second contribution to ∆Estrong

Stark indicates the existence of a further coupling

between the electron and the hole, which appears as a standard dipolar interaction

between two opposite electric charge carriers. This interpretation is a question of point

view. Until now, we have considered that the interaction between the electron or the

hole with the external electric field takes place individually, whereas they interact only

through the Coulomb potential. This physical description justifies a priori the validity

of the strong confinement regime assumption, for which the exciton states consist of

uncorrelated individual confined electron and hole states. It then allows to intuitively

build a coherent model in order to describe the QCSE in QDs in this regime, and also

simplifies the calculations in practice. In spite of these advantageous properties, the

previous remark suggests that this picture should be revised.

Actually, the total Hamiltonian electric field interaction partWe(re)+Wh(rh) should

also be written as

W (reh) = We(re) +Wh(rh) = Ed · deh,

where deh = ereh is the exciton electric dipole moment. This is the standard dipolar

interaction Hamiltonian of an electric dipole. It satisfies the electron-hole exchange

symmetry, while the individual interaction Hamiltonian We,h(re,h) transform themselves

one into another. In the strong confinement regime, despite the importance of

confinement effects on excitonic ones, the dipolar interaction point of view expresses the

remnant of electron-hole pair states, thought as exciton bound states under the influence

of the electric field. It suggests the inclusion of a further term in the Hamiltonian

H describing the exciton-electric field interaction, which accounts for the polarization

energy of the electron-hole pair, due to the difference between the dielectric constants

of the semiconductor QD and the surrounding insulating matrix.

3.4. Comparison with experimental data

In order to test the relevance of our model, we shall compare our predictions to real

experimental data given in [34] and to other computational data of [47] in spherical

CdS0.12Se0.88 micro-crystallites with material parameters: ε = 9.3, m∗
e = 0.13me,

m∗
h = 0.46me, E

∗ = 16meV and a∗ = 49Å, where me is the electron bare mass. The

electric field amplitude inside the micro-crystal is fixed at Ed = 12.5kV.cm−1. We note

that an earlier work [51] has used numerical diagonalization of the total Hamiltonian H ,

with the same material parameters for spherical CdS0.12Se0.88 QDs as well as electric

field, to obtain theoretical predictions.
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Figure 1. Stark shift for confined interactive electron-hole pair as a function of the

QD radius including the Coulomb interaction and excluding the polarization energy

up to the zeroth (—) or to the first (––) order in comparison with experimental results

(+) [34]. Γeh
var ≈ −0.1629.
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3.4.1. Case of real experimental data

Figure 1 presents a comparison between results we obtain and experimental values for

spherical CdS0.12Se0.88 micro-crystallites [34]. Two exciton peaks are experimentally

resolved, which are attributed to the transitions from the highest valence sub-band and

from the spin-orbit split-off state to the lowest conduction sub-band, with an energy

splitting is about 0.39eV independently of the QD radius [34]. The experimental values

depicted by crosses in Figure 1 consist of mean values of the Stark shift of these two

types of excitons. They seem to indicate that the Coulomb interaction is sufficient

to explain correctly the amplitude of the Stark effects experimentally observed, as we

expect, in the range of validity of QD radii.

In the strong confinement regime, our approach offers a model capable to describe

QCSE at least for QD sizes
R

a∗
≤ 2

3σ′
0

. But, σ′
0 is itself a function of

R

a∗
, which is

still considered as a small dimensionless parameter in the strong confinement regime.

Here, the part of σ′
0 which depends on the electric field is negligible, because it scales

as ∝ mee
2E2

dR
4. This is at least of the same order of magnitude as the exciton

Rydberg energy as soon as R ≤ 50Å, if the electric field amplitude is fixed at

Ed = 12.5kV.cm−1, and
CC ′′(m∗

e +m∗
h)

12B′C ′
≈ 0.0552me. Hence, according to Eqs. (15),

σ′
0 ≈ 4B′

{
1 + 8C ′R

a∗

}
. Therefore, up to first order in

R

a∗
, our predictions should be

valid for QD radii

R ≤ a∗

2(3B′ + 4C ′)
≈ 0.6080a∗. (17)

According to this effective constraint, in the case of CdS0.12Se0.88 micro-crystals, this

approach should lead to acceptable results in regard to experimental data as long as

the cluster radius does not exceed 30Å. Figure 1 shows that the absolute value of the



Stark Effect of Interactive Electron-hole pairs in Spherical Semiconductor QDs 16

Stark shift, computed up to the zeroth order, is significantly overestimated, except for

a minor range of small QD radii compared with the one we expect. The results become

much more accurate, if the Stark effects are computed up to the first order. In this case,

Figure 1 exhibits a good agreement with the experimental data over the whole expected

region of micro-crystals radii. In this domain of validity, the first order calculation seems

to be efficient enough to describe QCSE in spherical semiconductor QDs. As soon as, the

QD radius exceeds the maximal value for which the strong confinement regime is valid,

our results diverge significantly from experimental data. Furthermore, Figure 4 in [51]

shows Stark shifts of the ground state and the two first excited states of the confined

exciton, obtained by numerical diagonalization of the Hamiltonian H . Agreement with

experimental data from [34] is also reported in the ground state case. Whereas [51]

gives a range 20Å ≤ R ≤ 100Å, in its validity domain R . 30Å, we may say that our

analytical approach is totally consistent with the numerical approach of [51].

To determine the maximal electric field amplitude, for which the weak electric field

limit assumption remains valid, the consistency condition Eq. (9) is reconsidered for

the electron or for the hole, in which the respective variational parameters are replaced

by their variational values. After summing the expressions for the electron and for the

hole, up to first order in
R

a∗
, we deduce that

Eele

Eeh
≤ 1

π2eC

1

1 + 4
3

C′

B′

≈ 0.1197.

Then, in the strong confinement regime, the hypothesis of weak electric field limit should

be valid as soon as the typical electric dipole interaction energy does not represent more

than about 12% of the typical exciton confinement energy. If the micro-crystal radius

is fixed at R = 10Å, the highest electric field amplitude for which the weak field limit

assumption stays acceptable is aboutEmax
d ≈ 450kV.cm−1. Idem if the QD radius is fixed

near R ≈ 30Å, the upper boundary of the strong confinement regime validity domain,

the electric field amplitude inside the QD should not exceed Emax
d ≈ 16.7kV.cm−1. These

numerical results justify the choice of an electric field such that Ed ≈ 12.5kV.cm−1 to

compare theoretical predictions against experimental results, because it satisfies the

weak field limit all along the strong confinement range of QD radius.

In a more general manner, as soon as the semiconductor of the synthesized QD is

chosen, the strong confinement regime domain of validity and the weak electric field limit

condition consist of a set of two constraints, which should be optimized by choosing the

QD radius and the electric field amplitude as functions of the Bohr radius, the Rydberg

energy and the confinement energy of a trapped exciton. But, for future technological

applications, this set of constraints will permit to determine conversely the best possible

semiconductor for practical and technological reasons, by imposing the typical QD size

and the order of magnitude of the maximal electric field amplitude to use.

3.4.2. Case of computational data
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Table 1. Stark shift for confined interactive electron-hole pair as a function of the QD

radius including the Coulomb interaction and excluding the polarization energy, where

terms scaling as ∝ σ2

e,h are removed from the total Hamiltonian H mean value, i.e.

C′

1
= 0 and Γeh

var ≈ −0.0333, in comparison with computational results [47] in spherical

CdS0.12Se0.88 micro-crystallites.

R Å 10 20 30 40 50

−∆Enum meV 2.08 10−4 3.16 10−3 1.49 10−2 4.34 10−2 9.63 10−2

−∆Estrong

Stark meV 2.03 10−4 3.07 10−3 1.46 10−2 4.31 10−2 9.78 10−2

relative error <3% <3% ≈2% <1% <2%

In the early nineties, a variational calculation on the same total Hamiltonian H

with computational is performed, in order to study Stark effect in spherical micro-

crystals [47]. The weak field limit is also considered and the Hamiltonian mean value is

expanded in powers of the variational parameters σe,h up to the second order. However,

terms scaling as ∝ σ2
e,h are neglected, while those scaling as ∝ σeσh are kept. Our

approach suggests that both terms have the same order of magnitude and contribute

to the electron-hole pair Stark shift. Leaving out such contributions implies that C ′
1

should vanish in Eq. (14). The expected Stark shift should be then affected, because

Γeh
var = C ′

2 −
3B′C ′′

C
. Then, Γeh

var ≈ −0.0333 is independent of the semiconductor, and

hardly represents about 20% of its value, when we account for contributions scaling as

∝ σ2
e,h, i.e. if C ′

1 6= 0. Although the approximation made in [47] deeply changes the

nature of Stark effect, and does not seem to describe correctly experimental results,

except for very small QDs. Table 1 shows good agreement between our results if

C ′
1 = 0 and computational ones from [47], even outside the validity domain of the strong

confinement regime, i.e. for R ≥ 30Å. This signifies that, in the strong confinement

regime, a first order expansion in
R

a∗
of the ground state energy Stark shift should be

sufficient, at least when only the Coulomb interaction is included in the electron-hole

pair Hamiltonian, because there is no particular constraint on the variational parameter

σ in [47].

4. Stark effects with polarization energy

To investigate in more details Stark effects in semiconductor micro-crystallites and to

especially integrate the electric dipole interaction point of view, we shall introduce the

following polarization energy introduced in [8] to the total electron-hole Hamiltonian H

P (re, rh) =
e2

2R

∑

l≥1

αl(εr)

{(re
R

)2l

+
(rh
R

)2l

− 2
(rerh
R2

)l

Pl(cos θeh)

}
,

where Pl(x) denotes the Legendre polynomial of index l and of variable x, and where

we define, for a later purpose, the constants αl(εr) as functions of the relative dielectric
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constant εr as αl(εr) =
(l − 1)(εr − 1)

κ(lεr + l + 1)
, l ∈ N

∗. We wish to apply a variational method

to the new Hamiltonian H ′ = H + P , which takes into account the polarization energy

P (re, rh). For this, we keep the form of the variational trial function Φ(re, rh), since the

polarization energy should not basically change the properties of the trial function.

4.1. Strong confinement regime

Here, the polarization energy mean value is expressed as an expansion in the variational

parameters, which has the same form as the Coulomb potential mean value, where

the constants A, B′, C ′, C ′
1 and C ′

2 are replaced by functions of the relative dielectric

constant εr. This is the reason why we adopt the same notations for these quantities,

but with explicit dependence on εr, as shown in Table A3. In fact, the polarization

energy mean value in the quantum state defined by Φ(re, rh) should be written as

〈Φ|P (re, rh)|Φ〉
〈Φ|Φ〉 = − e2

κR

{
A(εr) +B′(εr)σR+ C ′(εr)σ

2R2

+C ′
1(εr)(σ

2
e + σ2

h)R
2 + C ′

2(εr)σeσhR
2 + O(σ3R3)

}
. (18)

In this formalism, we obtain expressions for the variational parameters and the Stark

shift considering only the polarization energy or both the Coulomb interaction and the

polarization energy in Stark effects by Eqs. (15) and (16) in Section 3, by replacing all

the appearing constants, in the first case, by the corresponding functions of εr and, in

the second case, by the sum of both contributions. An important step in this calculation

consists of the simple idea of rewriting the functions αl(εr) in a such way that it becomes

possible to perform analytically the summation of the series appearing in the expression

of the polarization energy P (re, rh). As matter of fact, we remark that for l ∈ N
∗

αl(εr) ≈
εr − 1

κ(εr + 1)

{
1 +

εr

(εr + 1)l

}
= α̃l(εr).

Introducing ∆l(εr) for l ∈ N
∗ as the relative error between the functions αl(εr) and

α̃l(εr), the replacement of αl(εr) by α̃l(εr) is reasonable because it leads to negligible

relative errors: e.g. for CdS0.12Se0.88 micro-crystallites, for which εr = 4.0, we get that

∆1(εr) ≈ 8%, ∆2(εr) ≈ 3% and ∆l(εr) =
εr

(εr + 1)2

1

l(l + 1)
. 1%, for l ≥ 3. The

polarization energy is then written as

P (re, rh) =
e2

2κR

εr − 1

εr + 1


 1

1 − r2
e

R2

+
1

1 − r2

h
R2

− εr

εr + 1

{
log

(
1 − r2

e

R2

)
+ log

(
1 − r2

h

R2

)}

−2
∑

l≥0

(rerh
R2

)l

Pl(cos θeh) −
2εr

εr + 1

∑

l≥1

1

l

(rerh
R2

)l

Pl(cos θeh)

]
, (19)

where it is possible to sum a priori the series in the polarization energy because of the

confining potential well. The mean value of P (re, rh) in the quantum state Φ(re, rh)

contains only contributions of electron and hole such that re,h < R.
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4.2. Comparison with experimental data

The experimental parameters are those of Subsection 3.4 and the electric field amplitude

inside the micro-crystal is kept at Ed = 12.5kV.cm−1.

4.2.1. Case of real experimental data

We begin to evaluate the strong confinement regime validity region by considering Eq.

(17), on which we apply the appropriate changes according to the cases. If we only

consider the polarization energy, the strong confinement regime is not actually valid,

because it turns out that σ′
0 ≤ 0, in this case. Therefore, the interaction part of the

variational function should be φrel(re,h) = e|σ
′

0|re,h. This reveals that the polarization

energy is repulsive, while our approach is build on an attractive point of view for the

interaction between the electron and the hole. If we consider both Coulomb potential

and polarization energy, this problem no longer exists because the attractive effects of

Coulomb potential are more important than the repulsive ones due to the polarization

energy, so that σ′
0 remains positive. Thus, the strong confinement regime remains valid

up to R . 1.0179a∗, i.e. R . 50Å for CdS0.12Se0.88 micro-crystallites. This domain

of validity is twice as large as the one obtained if only the Coulomb potential is taken

into account. In the same spirit, we evaluate an order of magnitude for the maximal

electric field amplitude, for which the weak field limit should be assumed to be valid,

as
Eele

Eeh
. 0.1186, when only polarization is taken into account, and

Eele

Eeh
. 0.1204,

when polarization energy and Coulomb interaction are both included. From such

numerical values, we should remark that the weak field limit is relatively insensitive

to the interaction between the charge carriers. It may notably signify that this limit

is relevantly chosen because it is an independent condition coming from the strong

confinement regime validity domain. For example, this corresponds, for a QD radius of

30Å, to an electric field amplitude of about Emax
d = 16.5kV.cm−1, on one hand, and to

an electric field amplitude of about Emax
d = 16.8kV.cm−1, on the other hand.

As the electric field amplitude is fixed inside the CdS0.12Se0.88 micro-crystallites

at Ed = 12.5kV.cm−1, the weak electric field limit should be satisfied in the range of

QD radii R ≤ 30Å and we can compare, at least in this domain, our predictions to

experimental data. In the rest of the strong confinement regime validity domain, i.e.

for radii 30Å . R . 50Å, the weak field limit is no longer valid. This may actually

explain the significant divergence from experimental results in this region. Once again

the analogy with rectangular quantum boxes should be quite helpful. In the opposite

limit of strong electric field, the Stark shift undergone by the ground state of the electron-

hole pair confined in a rectangular QD shows essentially a linear behavior in the electric

field amplitude [40], which is a totally different behavior in comparison to the quadratic

dependence found here. Figure 2 clearly shows that the behavior of the polarization

energy, if considered alone, is not satisfactory because it seems that its contribution

does not counterbalance the divergence of the zeroth order Stark shift for QD radii near

the upper boundary of the strong confinement validity region, while Figure 1 suggests
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Figure 2. Stark shift for confined interactive electron-hole pair as a function of the

QD radius including both the Coulomb interaction and the polarization energy up to

the zeroth (—) or to the first order (––), where Γeh
var ≈ −0.2045, and including only the

polarization energy up to the first order (– · –), where Γeh
var ≈ −0.0416, in comparison

with experimental results (+) [34] in spherical CdS0.12Se0.88 micro-crystallites.

 60 0  10  20  40  50 30
−0.02

−0.015

−0.01

−0.005

0

∆E
strong
Stark

(meV)

R (Å)

that the contribution to the Stark effects due to the Coulomb potential seems to consist

of more important contributions. Figure 2 stresses this point of view. In the strong

confinement regime, if we account for the Coulomb potential and the polarization energy,

the results accurately fit the experimental data, except if the QD size begins to reach

the lower boundary of the domain of this regime, in which the weak field limit is not

valid anymore. The reason for this phenomenon is simple to understand. For such QD

sizes, we remark that the first order term has the same order of magnitude as the zeroth

order contribution to the Stark shift. Then, if it is reasonable to maintain a priori a

perturbation point of view, the first order correction is not sufficient to describe correctly

QCSE in the whole domain of strong confinement regime validity. It is perhaps advisable

to continue the expansion to one or two further orders and to revise the definition of

weak field limit. However, the computations become quite involved and we think that

such approach does not really bring a significant improvement to the understanding of

the Stark effects in QDs.

4.2.2. Case of computational data

Following the reasonings made in Subsubsection 3.4.2, we add the polarization energy

P (re, rh) to the total Hamiltonian of the electron-hole pair but impose that C ′
1(εr), C

′
1 =

0, in such a way that terms scaling as ∝ σ2
e,h do not contribute to the electron-hole ground

state Stark shift. Once again, the new value for Γeh
var represents a small part from the

one, in which all contributions are kept. Likewise, when we only consider the Coulomb

interaction, Table 2 shows that there is still a good agreement between our results and

computational ones from [47], over the whole validity domain of strong confinement

regime. The divergence from experimental results is still significant after inclusion of
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Table 2. Stark shift for confined interactive electron-hole pair as a function of the QD

radius including the Coulomb interaction and the polarization energy where terms

scaling as ∝ σ2

e,h are suppressed from the total Hamiltonian H mean value, i.e.

C′

1
(εr), C

′

1
= 0 and Γeh

var ≈ −0.0446, in comparison with computational results [47]

in spherical CdS0.12Se0.88 micro-crystallites.

R Å 10 20 30 40 50

−∆Enum meV 2.09 10−4 3.14 10−3 1.45 10−2 4.11 10−2 8.93 10−2

−∆Estrong

Stark meV 1.99 10−4 2.94 10−3 1.36 10−2 3.90 10−2 8.55 10−2

relative error ≈5% ≈6% ≈6% ≈5% ≈4%

polarization energy, even for small QD radius. This confirms that the terms scaling as

∝ σ2
e,h play a relevant role in Stark effects and should not be discarded. While, this

also legitimates the approximation αl(εr) ≈ α̃l(εr), because Table 2 suggests that this

approximation does not seem over-estimate the polarization energy contribution to the

Stark shift. Maybe, each term of the sum defining the polarization energy plays a role in

Stark effect, but errors made term by term should not cumulate. A first order expansion

in
R

a∗
of the ground state energy Stark shift should not be sufficient and reinforces the

idea according which it is necessary to carry on the expansion at least up to the second

order. If the second order expansion does not improve the situation, this signifies that

there should exist another reason for this divergence. Therefore, because the strong

confinement regime validity domain is not affected be dropping of terms scaling ∝ σ2
e,h,

it is reasonable to think that it comes from the failure of the weak field limit assumption

for QD radius sufficiently close to its upper boundary.

5. Conclusion

By considering a simple EMA model under the assumptions of strong confinement regime

by a infinite potential well and of weak electric field limit, we are able to obtain analytical

results for Stark effect in semiconducting micro-crystallites with spherical shape. In

the domain of validity of physical approximations, the numerical values we can deduce

agree with experimental data. We furthermore clarify why other variational calculations

predict numerical results, which markedly diverge from experimental ones.

Despite these successes, our approach has been invalidated in a particular range

of QD sizes, for which the strong confinement point of view still holds, but for which

the weak electric field limit assumption fails. Thus, a future research work may focus

on trying to apply the strong confinement regime in the limit of strong electric field

indeed, even in a more general manner, to any electric field amplitude. The case of

the weak confinement regime of the electron-hole pair is much more difficult, even in

the weak field limit. Actually, in such a regime, the integration domain of integrals,

we have to deal with, to compute the square of the trial function norm or the diagonal
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matrix elements of physical operators consists of a half-rectangle instead of the domain

D, which is a half-square. This implies an explicit break down of the electron-hole

exchange symmetry. Then, a different approach may be needed.

Appendix A. Constants

In the following tables, we sum up all appearing constants and give their approximate

values. The function Si(x) =

∫ x

0

dt

t
sin(t) denotes the standard sine integral.

Appendix A.1. Constants occurring in Stark effect expressions in absence of

polarization

Table A1 presents analytical expressions and approximate values of constants when only

the Coulomb potential is taken into account.

Appendix A.2. Constants occurring in Stark effect expressions in presence of

polarization

We evaluate the polarization energy mean value using Eq. (19). To this end, we compute

integral representations of the polarization energy terms depending only on the radial

coordinates re,h of the electron and the hole following the reasoning, made in Subsection

3.2 to get Eq. (8). This reasoning does not apply to the angular part. However, we are

able to provide exact expressions for all the constants, which appears in the calculations,

except for δ′′′, γ′′′ and γ′′′′. For these, we obtain integral representations, which cannot

be analytically computed at the moment. Their approximative values are computed

numerically by using Wolfram Research Mathematica R© 7. As exact expressions for

other constants are quite cumbersome, we give only their approximate values.

Let us define the constants β ′, β ′′, γ′, γ′′, γ′′′, γ′′′′, δ′, δ′′ and δ′′′ by the expressions

〈Φ| 1

1 − r2
e

R2

+
1

1 − r2

h
R2

|Φ〉

= β ′ − γ′σR+ δ′σ2R2 +
δ′

6
(σ2

e + σ2
h)R

2 + O(σ3R3),

− 〈Φ| log

(
1 − r2

e

R2

)
+ log

(
1 − r2

h

R2

)
|Φ〉

= β ′′ − γ′′σR+ δ′′σ2R2 +
δ′′

6
(σ2

e + σ2
h)R

2 + O(σ3R3),

2〈Φ|
∑

l≥0

(rerh
R2

)l

Pl(cos θeh)|Φ〉

= 2 − γ′′′σR− δ′′′σ2R2 + 2C

{
σ2 +

σ2
e + σ2

h

6

}
R2 − σeσh

18
R2 + O(σ3R3),

2〈Φ|
∑

l≥1

1

l

(rerh
R2

)l

Pl(cos θeh)|Φ〉
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Table A1. Definition, analytical expression and approximate value of constants when

only the Coulomb interaction is taken into account.

Name Expression Value

A 2 − 1

π

{
Si(2π) − Si(4π)

2

}
1.7861

B1

2

3
− 5

8π2
0.6033

B2

2

9
+

13

24π2
+

1

2π3

{
Si(2π) − Si(4π)

2

}
0.2879

B B1 +
B2

3
0.6993

B′ AB − 1 0.2489

C
1

3
− 1

2π2
0.2827

C′ A(B2 − C) − B

2
0.0189

C′

1

B1 − 2AC

12
-0.0339

C′

2

B2

18
0.0160

D1

2

5
− 13

8π2
+

147

64π4
0.2589

D2

2

15
− 1

8π2
− 21

64π4
0.1173

D3

2

25
+

37

120π2
− 1153

320π4
− 3

2π5

{
Si(2π) − Si(4π)

2

}
0.0710

D
5D1 + 10D2 + D3

30
0.2539

D′
3D1 + 4D2 + D3

6
0.2195

D′′
5D2 − D3

45
0.0115

C′′
D′ + 3D′′ − BC

3
0.0187

Table A2. Approximate value of constants appearing in 〈Φ|P (re, rh)|Φ〉.

Name Value Name Value Name Value Name Value Name Value

β′ 3.1144 γ′ 2.3218 γ′′′ 1.3263 δ′ 0.9973 δ′′′ 0.0533

β′′ 0.7524 γ′′ 0.5992 γ′′′′ -0.0704 δ′′ 0.2708

= − γ′′′′σR− δ′′′σ2R2 − σeσh

18
R2 + O(σ3R3).

Table A2 presents approximate values for constants which appear in the polarization

energy diagonal matrix element 〈Φ|P (re, rh)|Φ〉, while Table A3 defines constants which

appear in the polarization mean value Eq. (18) and gives their approximate values in

CdS0.12Se0.88 micro-crystals.
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Table A3. Definition and approximate value of constants appearing in the polarization

mean value Eq. (18) in CdS0.12Se0.88 micro-crystals.

Name Expression Value for CdS0.12Se0.88

β(εr)
1

2

εr − 1

εr + 1

{
β′ − 2 +

εr

εr + 1
β′′

}
0.5149

γ(εr)
1

2

εr − 1

εr + 1

{
γ′ − γ′′′ +

εr

εr + 1
(γ′′ − γ′′′′)

}
0.4594

δ1(εr)
εr − 1

εr + 1

{
δ′ − 2C +

εr

εr + 1
δ′′

}
0.3891

δ2(εr)
εr − 1

2

2εr + 1

(εr + 1)2
0.5400

δ(εr)
εr − 1

εr + 1

{
δ′ + δ′′′ − 2C +

εr

εr + 1
(δ′′ + δ′′′)

}
0.4467

A(εr) −β(εr) -0.4467

B′(εr) −β(εr)B + γ(εr) -0.0993

C′(εr) −β(εr)(B
2 − C) + γ(εr)B − δ(εr)

2
-0.0083

C′

1(εr) −δ1(εr) − 2β(εr)C

12
-0.0082

C′

2(εr) −δ2(εr)

18
-0.0300
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