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Abstract. We present a theoretical variational approach, based on the effective mass

approximation (EMA), to study the quantum-confinement Stark effects for spherical

semiconducting quantum dots in the strong confinement regime of interactive electron-

hole pair and limiting weak electric field. The respective roles of the Coulomb potential

and the polarization energy are investigated in details. Under reasonable physical

assumptions, analytical calculations can be performed. They clearly indicate that the

Stark shift is a quadratic function of the electric field amplitude in the regime of study.

The resulting numerical values are found to be in good agreement with experimental

data over a significant domain of validity.
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1. Introduction

Depending on their dimensionality, nano-structures displaying many effects of standard

atomic physics are known as quantum dots, quantum wires or quantum wells. For

about two decades, they are produced by diverse techniques such as etching, local inter-

diffusion, particle suspension in dielectric media, or by self-assembly in matrices of a

host material and are known as confined systems. In these structures, the motion

of one to a hundred embedded elementary charge carriers, which may be conduction

band electrons, valence band holes, or excitons of the semiconducting host substrate, is

restricted to a confined space region. In particular, since two Quantum Dots (QDs) are

never identical in contrast to atoms, because of the crucial role of phonons or surface and

bulk disorder on their electronic properties, a QD may be considered as a giant artificial

atom, which enjoys prospects for an increasing range of future applications: e.g. as a

semiconductor laser [1] or as single [2], as qubits for quantum information processing [3],

as single-electron transistors in micro-electronics [4], as artificial fluorophores for intra-

operative detection of tumors, biological imaging or cell studies, etc. [5]. In short, a

QD presents the invaluable property of a device with an adjustable quantized energy

spectrum, controlled by its size.

Thanks to the progress of semiconductor growth technology during the

early eighties, quantum size effects (QSE) experimentally showed up in spherical

semiconductors QDs, through optical properties of semiconductor micro-crystals

embedded in an insulating matrix [6, 7]. The characteristic blue-shift observed in

optical spectra of such strongly quantum-confined systems emerges in a widening of

semiconductor optical band gap, due to the increasing confinement energy for decreasing

QD size [8]. This fact has been observed in a large range of other confined micro-

structures, e.g. in quantum ribbons or quantum disks [9], in quantum wires [10], indeed

also in quantum wells [11]. The first theoretical attempt to describe electronic properties

of semiconductor QDs has been elaborated upon a particle-in-a-sphere model in the

effective-mass approximation (EMA), which assumes parabolic valence and conduction

bands [8, 12–15]. Both electron and hole behave as free particles but trapped in a

spherical infinite potential well and moving with different effective masses, commonly

defined through the inverse of the second derivative of their kinetic energy with respect

to their momentum, as a consequence of the parabolic energy bands assumption. The

electron-hole Coulomb interaction is usually included and the excitonic contribution to

the ground state energy is taken into account by Ritz’ variational principle. Some other

authors have developed their own EMA-model based on finite potential wells and have

improved agreement with experimental data for a significant range of QD size [15–20].

In addition to spherical clusters, the case of cylindrical shaped micro-crystallites has

been carefully treated and experimentally studied [16, 21–23], as well as the case of

quantum wires [24, 25]. Of course, more sophisticated models, which consider non-

parabolic valence and/or conduction band(s) have been also considered [26–30].

Among many important topics, it is the physics of atom-like behavior of QDs,
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which is nowadays most vigorously investigated experimentally and theoretically in

a large range of quantum confined systems, for potential technological applications.

Of particular interest is the interaction with an ambient electromagnetic field, giving

rise to the so-called quantum-confinement Stark effects (QCSE), which consists of an

observable red-shift of the optical transition induced by the presence of an constant

external electric field [31–34]. Moreover, in recent years, some works have emerged

dealing with ac-electric field [35,36]. Stark effect leads to an energy shift of the exciton

photoluminescence as well as a corresponding enhancement of its recombination lifetime

[37]. The electric field dependence of QCSE was first studied in GaAs−AlGaAs multi-

layers quantum wells [38]. Exciton energy shift peaks were experimentally observed

and successfully compared to theoretical results obtained by a perturbation method

introduced in [39], for the case of an applied electric field perpendicular to the plane of

the layer wells, in which the Coulomb potential describing the electron-pair dynamics is

not accounted for. In higher dimensional confinement, the Coulomb potential turns out

to be more significant in QDs with spherical shape, and should not be neglected [40,41].

Finally, we observe that, over the years, the spherical structure has remained a very

popular research domain to study theoretically and/or empirically QCSE [42–46].

In spite of an impressive number of published works, to the best of our knowledge,

no simple comprehensive model, which describes Stark effects in spherical QDs with

analytic results seems to be worked out. In this paper, we propose to use the EMA-

model for spherical semiconductor micro-crystals, in order to establish analytically some

criterions on the QD radius and on the electric field amplitude, and to understand why

presently known results fail so far to correctly describe QCSE for a wide range of QD

radius. To this end, we shall introduce in Section 2 our model first without electric field

and recall some of its general properties. The next two Sections 3 and 4 are devoted to

the analysis of Stark effects in spherical semiconductor nano-structures, first with the

inclusion of electron-hole Coulomb potential and second with an additional polarization

energy. In the concluding section, we summarize our main results and indicate possible

future research perspectives.

2. EMA Quantum Dot model

In order to describe spherical semiconductor nano-structures interacting with a fixed

external electric field, we study first a standard EMA-model with infinite spherical

confining potential well, without electron-hole spin coupling and without spin coupling

to applied external magnetic field. We shall see how such a model would allow us to

perform analytically most of the calculations. There exists other models with parabolic

confinement [47,48] or parabolic potential superimposed to an infinite potential well [49],

which are used to explain certain spectroscopic data, but then the concept of a QD size

is not so well defined.

As Stark effect in semiconducting micro-crystallites manifests itself through an

energy shift of the electron-hole total energy levels due to the electric field presence,
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we have to deal mainly with energy eigenvalue differences of a Hamiltonian. The most

important idea, we must keep in mind, is that two different energies have to be computed

in the same theoretical QD model. Even if this model does not fully describe the QD

behavior in the absence of electric field, particularly for small QD radii, it can be still

used and gives rather satisfactory theoretical predictions for Stark effects. The possible

over- or under-estimation made for the electric field free electron-hole pair energy levels

should also appear in the interaction of the electric field with electron-hole pairs. Then,

it should be subtracted off from each other in order to get an approximated value for

the Stark shift. Despite the fact that such an approach presents some intrinsic basic

limitations, we shall adopt it, under some consistency conditions, to compute QCSE in

semiconductor QDs.

2.1. Consistency conditions

Since most synthesized nano-crystallites possess an aspect ratio (defined as the ratio

between the longest and shortest axes of the QD) smaller than 1.1, even if there exist

also some experimental protocols, which lead to higher aspect ratio in micro-crystals,

the hypothesis of a QD with spherical symmetry seems often to be quite reasonable.

Next, the effective potential at the QD surface is finite. In fact, it has a standard

amplitude from 1 to 3eV [19]. This value is generally quite large as compared to typical

electron and hole energies usually involved, so that the tunnel conductivity through

the QD boundary is vanishingly small, except maybe for very small QDs. Actually,

the electron or hole confinement energies increase as ∝ R−2 for decreasing QD radius

R and then should exceed the confinement potential step height for small QD sizes.

Furthermore, the infinite potential well approximation implies that charge carriers inside

the cluster are totally insensitive to its outside surroundings and also to any externally

applied field, as far as considerations on QCSE are concerned. Although the surrounding

effects may be sufficiently small to be neglected, the presence of a large external field can

actually significantly modify the inside behavior of the micro-crystallites. Therefore, to

justify the use of an infinite confining potential well, we have to take care of the electric

field amplitude outside the QD, which should not exceed a certain threshold, fixed ad

hoc by the height of the real confining potential step. This constraint should be referred

to as the usual weak electric field limit. We will determine later an inequality, which

analytically expresses the validity of this condition by linking the electric field amplitude

to a certain number of other relevant physical parameters of the problem. It thus allows

us to evaluate an approximate value for the maximal electric field amplitude we could

apply on the QD, while still respecting the weak field limit.

Lastly, we should remind that for small nano-crystals of typical sizes of less than

a hundred lattice spacings, there exist magic numbers for which clusters remain stable:

e.g. crystalline silicon only stay coherent as clusters of Si12, Si33, Si39 and Si45, if they

contain less than 60 silicon atoms [50]. Their band structure should be deformed such

that it becomes impossible to use the parabolic shape of conduction and valence bands,
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on which the EMA-model is built. For sufficiently small electric field amplitude, it has

been shown that, in semiconducting rectangular quantum boxes of typical size L×W×H
as far as the weak field limit is concerned, the Stark shift of the confined exciton ground

state presents essentially three contributions, each of them going as the fourth power

of an edge length, i.e. the first scales as ∝ L4, the second as ∝ W 4 and the last as

∝ H4 [34]. Thus, for a spherical potential well of radius R, the same Stark shift is

expected to scale as ∝ R4. This is consistent with the physical fact that if there is

no potential well — i.e. if there is no semiconductor micro-crystal embedded in the

surrounding insulating matrix —, no electrons should be excited from the valence band

to the conduction band, and no holes should then appear.

2.2. General considerations

Let V (r) be the confining potential well defined in spherical coordinates as:

V (r) = V (r) =

{
0 if 0 ≤ r ≤ R, Region I;

∞ if r > R, Region II.

Let VC(reh) be the Coulomb interaction between electron and hole, in the single parabolic

band approximation, the total electron-hole pair Hamiltonian operator reads (with

~ = 1)

H0 = He +Hh + VC(reh) + Eg

= − ∇2
e

2m∗
e

− ∇2
h

2m∗
h

+ V (re) + V (rh) −
e2

κreh
+ Eg, (1)

where κ = 4πε, ε denotes the semiconductor dielectric constant, reh = |reh| = |re − rh|
the electron-hole relative distance, m∗

e,h the effective mass and He,h the confinement

Hamiltonian respectively of the electron and of the hole, and Eg the semiconductor

energy band gap, which we will assume to be zero for convenience.

Without the Coulomb potential, the electron and the hole should be treated as

decoupled particles, the QD wave function should be then factorized into separable

electronic and hole parts Ψ(re, rh) = ψ(re)ψ(rh). The orthonormal eigenfunctions ψlnm

are labeled by three quantum numbers l∈N, n∈N∗ = N − {0} and m∈ [[−l, l]].
ψlnm(r) = ψlnm(r, θ, ϕ)

=
χ[0,R[(r)

RJ′
νl
(kln)

√
2

r
Jνl

(
kln

R
r

)
Ym

l (θ, ϕ), (2)

where

• Ym
l (θ, ϕ) is the spherical harmonic of orbital quantum number l and azimuthal

quantum number m,

• Jνl
(x) is the Bessel function of the first kind of index νl = l +

1
2

and of variable x,

• χ[0,R[(r) is the characteristic function of radial interval,
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• {kln}ln are the wave numbers in Region I defined as the nth non-zero root of the

Bessel function Jνl
(x) thanks to the continuity condition at r = R.

The respective energy eigenvalues for electron and hole are now expressed in terms of

the same wave number set {kln}ln

Ee,h
ln =

k2
ln

2m∗
e,hR

2
.

The continuum density of states of the semiconductor bulk should show atomic-like

discrete spectrum with increasing energy separation as the radius decreases.

Because of the explicit micro-crystallites spherical shape symmetry breakdown in

the presence of a Coulomb potential, which only depends in the electron-hole relative

distance reh, the exact determination of eigenfunctions and energy eigenvalues for

Eq. (1) is arduous. Treating the interplay of the Coulomb interaction, which scales

as ∝ R−1, and the quantum confinement, which scales as ∝ R−2, constitutes the

common approach to this problem. To handle these competing contributions, we should

essentially distinguish two working regimes according to the ratio of the QD radius R

to the Bohr radius of the bulk Mott-Wannier exciton a∗ =
κ

e2µ
, µ being the reduced

mass of the exciton:

• the strong confinement regime — valid for a size R ≤ 2a∗ [15] — in which the

potential well strongly affects the relative electron-hole motion, the exciton states

consist of uncorrelated electron and hole states;

• the weak confinement regime — valid for a size R ≥ 4a∗ [15] — in which the

electron-hole relative motion and its binding energy are quasi left unchanged. The

character of the exciton as a quasi-particule of total massM = m∗
e+m

∗
h is conserved,

while its center-of-mass motion remains confined and should be quantized.

Even if we actually focus on Stark effect in the strong confinement regime, we

shall briefly present the consequences of the previous single EMA-model in both

strong confinement and weak confinement regimes. Despite the apparent simplicity

of this model, it seems to be able to apprehend correctly QCSE, at least for a range

of sufficiently small QD sizes, and to predict numerical values, which agree with

experimental results.

2.3. Considerations on strong and weak confinement regimes

2.3.1. Strong confinement regime

In this regime, the Coulomb potential is treated as a perturbation with respect to the

infinite confinement potential well in a variational procedure, which shall be extended

to the case of an applied electric field. In order to determine an approximate value for

the ground state energy of the exciton state, we use the variational principle with the

following trial wave function

φ(re, rh) = ψ010(re)ψ010(rh)φrel(reh), (3)
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with φrel(reh) = φrel(reh) = e−
σ
2
reh , where σ denotes the variational parameter, re,h =

|re,h| and

ψ010(re,h)=ψ010(re,h)=−χ[0,R](re,h)

re,h
√

2πR
sin

( π
R
re,h

)
.

The variational wave function of Eq. (3) imposes that both electron and hole should

occupy primarily their respective ground state in the confining infinite potential well,

as described by the product wave function ψ010(re)ψ010(rh), and should exhibit, via

the function φrel(reh) of the relative coordinates reh, the exciton bound state behavior,

analogous to the one found in a hydrogen-like atom with a mass µ. Actually, this

function φrel(reh) describes the excitonic contribution of the ground state as an hydrogen-

like atom with an appropriate Bohr radius, up to a normalization factor, especially if

we expect that σ−1 ∝ a∗.

Despite the fact that the spherical confining potential well breaks the translation

invariance of the Coulomb interaction, Fourier transform formalism in relative electron-

hole coordinates allows to establish integral representations for quantities such as the

square of the norm of the trial function φ(re, rh) or the corresponding Coulomb potential

diagonal matrix element (cf. Appendix A for details)




〈φ|φ〉=− 8

R2
∂σ

1

σ

∫∫

D

dx

x

dy

y
sin2(πx) sin2(πy) sinh(σRx)e−σRy ,

〈φ|VC(reh)|φ〉=− e2

κR

8

σ

∫∫

D

dx

x

dy

y
sin2(πx) sin2(πy) sinh(σRx)e−σRy ,

(4)

where D = {(x, y) ∈ R
2 / 0 ≤ x ≤ y ≤ 1}.

A Taylor expansion of expressions (4) with respect to the dimensionless parameter

σR near zero yields






〈φ|φ〉=1 − BσR+ O(σ2R2),

〈φ|VC(reh)|φ〉=− e2

κR

{
A− σR+ O(σ2R2)

}
.

Thus, an expression of the mean value of the total Hamiltonian H0 in the strong

confinement regime in terms of a dimensionless variational parameter σ′, defined by

σ′ = σa∗, and of the binding exciton Rydberg energy E∗ =
1

2µa∗2
can be obtained as

〈φ|H0|φ〉
〈φ|φ〉 =

π2

2µR2
−A

e2

κR
− 2B′E∗σ′ +

E∗

4
σ′2 + . . .

where the correction terms “ . . . ” go to zero as soon as
R

a∗
goes to zero §. The variational

parameter σ′ is now determined by minimizing the expectation value of the electron-hole

§ Any constant, which is introduced but not explicitly defined in the article, is actually presented in

Appendix B.
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energy. Then, its value is found to be σ′
0 = 4B′ ≈ 0.9956 and the corresponding value

of the energy is

Estrong
eh = Eeh − A

e2

κR
− 4B′2E∗,

where Eeh =
π2

2µR2
is the electron-hole pair ground state confinement energy. In the

strong confinement regime, this formula has been already analytically obtained in [15,51]

with trial functions showing the same global form as φ(re, rh), but with an interactive

part equal to φ̃rel(reh) = (1−σ
2
reh), instead of φrel(reh). It is obvious that φ̃rel(reh) consists

of the two first terms of the Taylor expansion of φrel(reh), in the limit σ
2
reh ≤ σR ≪ 1.

Because of the infinite potential well confinement assumption, the total excitonic energy

is actually overestimated in comparison to experimental data for small QDs. A standard

successful method to subtract off this over-estimation consists in adopting a model in

which we restore a confining finite potential step of experimentally acceptable height,

this approach actually leads to a significantly better fit of the experimental data [19].

2.3.2. Weak confinement regime

In this regime, electron-hole pair states should consist of electron-hole pair bound states.

The Coulomb potential and the kinetic energy in the electron-hole relative coordinates

should be of the same order of magnitude because the QD size authorizes a partial

restoration of the long range Coulomb interaction between the charged carriers inside

the QD. Then, the most important contribution to the ground state energy of the exciton

should be the ground state of a hydrogen-like atom with an appropriate reduced mass

µ. Therefore, in the weak confinement regime, the leading term of the excitonic total

energy is of the order of −E∗. Furthermore, we should remark that this contribution

accounts for the total energy in the exciton relative coordinates, because of the validity

of the Virial theorem in this set of coordinates. Finally, the total translational motion

of the exciton, thought as a quasi-particle of total mass M , should be restored and

contributes to the exciton total energy by the typical kinetic energy term of a free

particle, confined in a space region of size R, i.e. by
π2

2MR2
. As a first approximation,

we compute the total exciton ground state energy in the weak confinement regime by

adding two energetic contributions from two different properties of the exciton trapped

inside the QD

Eweak
eh = −E∗ +

π2

2MR2
.

Actually, the previous formula is not totally satisfactory. To improve phenomenologi-

cally its accuracy in regard to empirical data from numerical simulations, a monotonic

increasing function η(λ) of the effective masses ratio λ =
m∗

h

m∗
e

has been defined by [15],

and has been inserted into Eweak
eh as follows

Eweak
eh = −E∗ +

π2

2M(R − η(λ)a∗)2
.
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The QD size renormalization term η(λ)a∗ is interpretable as a dead layer [52]. This is

the physical reminiscence of the fact that, although it could be successfully described

as a quasi-particle, the exciton is not actually itself an indivisible particle. Its center-

of-mass motion, the one on which the quantization is really performed, could not reach

the infinite potential well surface unless the exciton undergoes a strong deformation

in the relative motion of the electron and the hole. This implies that the picture of

a point-like exciton should be dropped in this region of space. The exciton should be

preferentially thought as a rigid sphere of radius ∝ a∗. The proportionality factor is,

in practice, numerically determined in order to get a better fit of experimental results.

It must not significantly exceed 3
2
, because l∗ = 3

2
a∗ is the mean value of the relative

distance between the electron and the hole in the non-confined exciton ground state.

3. Stark effect without polarization energy

The calculation of the eigenfunctions and energy eigenvalues of electron-hole pair

trapped in an infinite potential well QD and under the influence of an external constant

electric field is, in principle, an exactly solvable problem. However, the presence of a

constant electric field explicitly breaks both spherical QD symmetry and electron-hole

Coulomb potential translation invariance.

Consider now an applied electric field Ea along the direction z of a three-dimensional

cartesian coordinates system with its origin located at the QD center. Because the

dielectric constant ε of the inside semiconducting QD is larger than the dielectric

constant ε′ of the outside insulating matrix, the electric field Ed inside the QD is actually

different from the one externally applied. It should be then reduced, according to [53],

as Ed =
Ea

(1 − g) + gεr
, where g is a geometrical depolarization factor, which equals 1

3

for a sphere, and where εr =
ε

ε′
is defined as the relative dielectric constant. Moreover,

the difference between the dielectric constants inside and outside micro-crystals also

implies the existence of a polarization energy term P (re, rh), introduced by Brus [8],

which shall be dropped first in this section, but taken into account in the next one.

This methodology allows us to study in more details its relative role vs. the Coulomb

potential because they both typically scale as ∝ R−1 and, consequently, they should

contribute to the exciton total energy with terms of the same order of magnitude.

For the moment, let us simply define the electron and the hole (of respective electric

charge ∓e) interaction Hamiltonian under an electric field inside the nano-crystal. Their

expression in spherical coordinates is

We,h(re,h) = ±eEd · re,h = ±eEdre,h cos θe,h, (5)

where Ed = |Ed| is the electric field amplitude inside the micro-crystal. In order to

justify an appropriate form for the trial wave function, we note that the function φ(re, rh)

introduced in Eq. (3) does not provide any further contribution to the excitonic energy

in the presence of the electric field, i.e. 〈φ|We(re)|φ〉 = −〈φ|Wh(rh)|φ〉. Therefore, the
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variational function should present some other dependence on the electron and hole

space coordinates to be determined later.

3.1. Justification of the variational trial wave function form

To apprehend the effect of the induced electric polarization, we follow a reasoning made

in [39], by studying the interaction between the electron (resp. the hole) with the

ambient electric field and neglecting the Coulomb potential. To this end, let us define

the individual Hamiltonian H ′
e (resp. H ′

h) of confined electron (resp. of confined hole)

interacting with a constant electric field Ed as

H ′
e,h = He,h +We,h(re,h)

= −
∇2

e,h

2m∗
e,h

+ V (re,h) +We,h(re,h).

As mentioned as a consistency condition in Subsection 2.1, we can assume that the

electric field amplitude is sufficiently small so as to consider the Hamiltonian interactive

part We,h(re,h) as a perturbation to the confined Hamiltonian He,h. In this weak field

limit, for which the perturbation point of view should hold, the typical interaction energy

of the electron (resp. of the hole) under the electric field influence should be treated as

a perturbation compared to their typical confinement energy

Eele ≪ Ee,h,

where we define Ee,h = Ee,h
01 to simplify the notations. The energy Eele = eEdR is

introduced as in the absolute value of the typical energy due to the interaction of the

electron (resp. of the hole) with the applied electric field inside the QD. In real atoms,

Stark shifted levels show a typical dependence on the electric field of the form ∝ E2
d. A

similar behavior is expected here.

In the following, in order to justify the form of the parts we should add to the

electron-hole variational wave function φ(re, rh) to efficiently come up with QCSE,

we will first investigate perturbative results of decoupled confined electron and hole,

which interact individually with an external electric field. The interaction Hamiltonian

We,h(re,h) describing the electron and the hole into the electric field is treated as a

perturbation of their respective confinement Hamiltonian He,h by performing, on one

hand, a standard second-order stationary perturbation theory and, on the other hand,

by a variational procedure.

Stationary perturbation principle. A second-order perturbation procedure

gives the expectation value of the ground state perturbed energy E ′
e,h of the confined

electron (or of the confined hole) in the presence of an electric field and the corresponding
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wave function Ψe,h(re,h) in Dirac notation as





E ′
e,h = Ee,h + e2E2

d

∑

lnm

(l,n) 6=(0,1)

|〈ψlnm|r cos θ|ψ010〉|2
Ee,h −Ee,h

ln

+ O(E3
d),

|Ψe,h〉 = |ψ010〉 ± eEd

∑

lnm

(l,n) 6=(0,1)

〈ψlnm|r cos θ|ψ010〉
Ee,h −Ee,h

ln

|ψlnm〉 + O(E2
d).

After computing the matrix elements 〈ψlnm|r cos θ|ψ010〉 for l ∈ N, n ∈ N∗ and

m ∈ [[−l, l]] (cf. Appendix C for details), we deduce the Stark shift undergone by

the electron (or by the hole) ground state, up to the second order in the electric field

amplitude,

∆EStark pert
e,h = E ′

e,h − Ee,h = −Γpertm
∗
e,he

2E2
dR

4 + O(E3
d),

where the constant Γpert has the value

Γpert =
32

3
π2

∑

n≥1

k2
1n

(k2
1n − π2)5

≈ 0.01817.

Variational principle. In order to account for the electric field direction along

the z-axis in the variational principle, the trial wave function should show deformation

away from the spherical shape, which squeezes or stretches the electron or the hole

probability density along this particular direction. Then, the variational trial function

should be chosen of the form

Φe,h(re,h) = ψ010(re,h)ϕe,h(re,h),

where ϕe,h(re,h) = e∓
σe,h

2
re,h cos θe,h. The variational parameters σe,h have the dimension

of an inverse length so that, in the weak field approximation, we can assume

σe,hR ≪ 1. The computational difficulty of this problem is therefore contained in

the calculation of the square of the norm of the trial function Φe,h(re,h), which admits

an integral representation. By performing a Taylor expansion on this expression in the

neighborhood of the dimensionless parameter σe,hR = 0, we deduce

〈Φe,h|Φe,h〉 =
2

σe,hR

∫ 1

0

dx

x
sin2(πx) sinh(σe,hRx)

= 1 +
C

6
σ2

e,hR
2 + O

(
σ4

e,hR
4
)

= 1 + O
(
σ2

e,hR
2
)
.

Moreover, we can exactly determine the mean value of the electric field free confinement

Hamiltonian He,h in the quantum state defined by the trial function Φe,h(re,h)

〈Φe,h|He,h|Φe,h〉
〈Φe,h|Φe,h〉

= Ee,h +
σ2

e,h

8m∗
e,h

,
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and we can also evaluate the mean value of the interaction Hamiltonian We,h(re,h) by

using the previous Taylor expansion for 〈Φe,h|Φe,h〉
〈Φe,h|We,h|Φe,h〉

〈Φe,h|Φe,h〉
= ± eEd

〈Φe,h|re,h cos θe,h|Φe,h〉
〈Φe,h|Φe,h〉

= − eEd∂σe,h
log〈Φe,h|Φe,h〉

= − eσe,hEdR
2

{
C

3
+ O

(
σ2

e,hR
2
)}
.

Then, we obtain the total HamiltonianH ′
e,h mean value as an expansion up to the second

order in the dimensionless parameter σe,hR

〈Φe,h|H ′
e,h|Φe,h〉

〈Φe,h|Φe,h〉
= Ee,h +

σ2
e,h

8m∗
e,h

− C

3
eEdR

2σe,h + . . . ,

on which we shall apply the variational principle. The correct variational parameter

value is σ0
e,h =

4C

3
m∗

e,heEdR
2. It minimizes the ground state energy E ′

e,h of the electron

(or of the hole) interaction with the electric field and we get the Stark shift by subtracting

the confined electron (or hole) ground state energy as follows

∆Ee,h
Stark var = E ′

e,h − Ee,h = −Γvarm
∗
e,he

2E2
dR

4,

where Γvar =
2C2

9
≈ 0.01776.

We observe that the two Stark shift expressions present the same dependence on

the physical parameters of the problem under study, they both scale as ∝ m∗
e,he

2E2
dR

4.

Furthermore, we could easily establish that the Stark shift contribution is actually a

second order term in the dimensionless parameter
Eele

Ee,h

≪ 1, with respect to the electron

or the hole confinement energy Ee,h,

∆Ee,h
Stark = −Γm∗

e,he
2E2

dR
4 = −Γ

π2

2

E2
ele

E2
e,h

Ee,h,

where the constant Γ stands for either Γpert or Γvar, according to the corresponding cases.

The multiplicative factor Γ
π2

2
, which naturally appears, takes, for both perturbation

procedures, a value of order around 0.09. Finally, the difference between the two different

methods we use is quantifiable by evaluating the relative error between the values of

the proportionality constants Γpert and Γvar, which is around 2%. This relative error

supports the validity of the new trial wave function Φ(re, rh) in the presence of the

electric field, defined as

Φ(re, rh) = φ(re, rh)ϕe(re)ϕh(rh). (6)

It is reasonable to assume that this variational function presents the necessary properties

to describe the QCSE in spherical semiconductor QDs. It possesses, on one hand, a

part φ(re, rh) describing the Coulomb interaction between the electron and hole both

occupying the ground state of their respective confinement Hamiltonian and, on the

other hand, the electric field interactive part ϕe(re)ϕh(rh) liable for the individual

electron and hole behaviors in an ambient electric field inside the micro-crystal.
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3.2. General results on Stark effect in semiconductor Quantum Dots

As already mentioned, we add the interaction Hamiltonian We,h(re,h) between the

electron (or the hole) and the electric field to the QD model Hamiltonian H0, introduced

in Section 2, in order to apprehend QCSE in semiconductor micro-crystals with spherical

shape. Thus,

H = H0 +We(re) +Wh(rh). (7)

In the limit of weak electric fields, we would apply the variational procedure on the

trial function Φ(re, rh), introduced in Eq. (6). To this end, we shall use a reasoning

similar to that of Subsection 2.2, i.e. the Fourier transform formalism in the relative

coordinates can be used once again quite advantageously. This formalism leads to

integral representation of the square of the norm of the trial function Φ(re, rh) and of

the mean value of the Coulomb interaction matrix element in the corresponding quantum

state (cf. Appendix A for details)




〈Φ|Φ〉 = − 2

R2
∂σ

1

σ

∫ 1

−1

dξ

∫∫

D

dx

x

dy

y
sin2(πx) sin2(πy)

×
{

sinh(ρe(ξ)σRx)

ρe(ξ)

e−ρh(ξ)σRy

ρh(ξ)
+

sinh(ρh(ξ)σRx)

ρh(ξ)

e−ρe(ξ)σRy

ρe(ξ)

}
,

〈Φ|VC(reh)|Φ〉 = − e2

κR

2

σR

∫ 1

−1

dξ

∫∫

D

dx

x

dy

y
sin2(πx) sin2(πy)

×
{

sinh(ρe(ξ)σRx)

ρe(ξ)

e−ρh(ξ)σRy

ρh(ξ)
+

sinh(ρh(ξ)σRx)

ρh(ξ)

e−ρe(ξ)σRy

ρe(ξ)

}
,

(8)

where the functions ρe,h(ξ) are defined as

ρe,h(ξ) =

√

1 − 2
σe,h

σ
ξ +

σ2
e,h

σ2
, −1 ≤ ξ ≤ 1.

According to Appendix A, we note that Eqs. (8) are valid if and only if the different

variational parameters σ and σe,h satisfy the inequality

0 ≤ eσe,h < σ, (9)

where e = exp(1). This condition on different variational parameters is a

consistency condition, which analytically determines the range of acceptable electric

field amplitudes. As matter of fact, on one hand, following the variational results

for the interaction between the electric field with the electron (or with the hole), we

expect that σe,h should scale as ∝ m∗
e,heEdR

2 and, on the other hand, following the

variational results on the electric field free interactive electron-hole pair through the

Coulomb potential, we also expect that σ ∝ a∗−1. Therefore, after performing some

simple rearrangements, Eq. (9) provides a validity criterion in terms of different typical

electron (or hole) energy, because
σe,h

σ
∝ Eele

Ee,h

a∗

R
. This dependence naturally justifies
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the fact that the weak field limit should remain valid if the ratio
Eele

Ee,h

does not exceed,

up to a dimensionless proportionality factor to be given later, the order of magnitude

of the ratio
R

a∗
, the quantity which characterizes the strong confinement regime. The

electron (resp. the hole) energy, in the presence of the electric field, should be at most

of the same order of magnitude of a first term correction to the electron (resp. the hole)

confinement energy in the strong confinement regime, which corresponds to the absolute

value of the typical energetic contribution of the electron-hole Coulomb interaction —

they actually both scale as ∝ R−1.

Moreover, in the limit of weak electric field, based on the decoupled electron-hole

point of view presented in Subsection 3.1, we also reasonably expect that the Stark shift

for the coupled electron-hole system should scale as

∝ (m∗
e +m∗

h)e
2E2

dR
4 ∝

{
E2

ele

E2
e

Ee +
E2

ele

E2
h

Eh

}
∝ Eeh

R2

a∗2
.

Then, in order to get at least the lowest order contribution to the Stark shift in the strong

confinement, it is necessary to perform a Taylor expansion of the total Hamiltonian H

mean value up at least to the second order in the variational parameters. However, as we

shall see in the following subsection, this first contribution is not sufficiently accurate to

fit experimental data because it does not account for the coupling between the electron

and the hole through the Coulomb interaction. This is the reason why we shall carry

on the expansion up to the third order, since we will also get the first correction in
R

a∗
to the Stark shift, which explicitly expresses the presence of the Coulomb potential in

the strong confinement regime.

Furthermore, Eq. (9) indicates approximate boundaries values for the previous

quantities ρe,h(ξ). Actually, we straightforwardly deduce, for −1 ≤ ξ ≤ 1, that

1

2
< 1 − 1

e
< 1 − σe,h

σ
≤ ρe,h(ξ) ≤ 1 +

σe,h

σ
< 1 +

1

e
<

3

2
.

In the limit of vanishing electric field, i.e. in the limit
σe,h

σ
→ 0, the expressions in Eqs.

(8) allow us to retrieve the expressions for the square of the norm and for the Coulomb

potential mean value without electric field expressed by Eq. (4).

Finally, we shall obtain the interaction Hamiltonian We,h(re,h) mean value from the

square of the norm of the wave function Φ(re, rh) by taking its logarithmic derivative

with respect to the variational parameters σe,h

〈Φ|We,h(re,h)|Φ〉
〈Φ|Φ〉 = −eEd∂σe,h

log〈Φ|Φ〉. (10)

We are also able to conduct the computation of the exact mean value of the electric

field free Hamiltonian H0

〈Φ|H0|Φ〉
〈Φ|Φ〉 = Eeh +

σ2

8µ
+

σ2
e

8m∗
e

+
σ2

h

8m∗
h

. (11)
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As we have build the trial function Φ(re, rh), so that it possesses the properties of the

functions φ(re, rh) and Φe,h(re,h), we should expect that the same goes for the mean value

of the confinement Hamiltonian H0. This quantity should contain at least the electron-

hole pair ground state confinement energy Eeh, due to the presence of the function

ψ010(re)ψ010(rh), the contributions to the total kinetic energy
σ2

8µ
, due to the Coulomb

potential, and
σ2

e,h

8m∗
e,h

, due to the interaction between the charge carriers and the electric

field. However, in addition to the four previous expected terms, direct calculations

exhibit a further contribution to the mean value of H0 of the form

Kh(σ, σe, σh)

2m∗
h〈Φ|Φ〉

− Ke(σ, σe, σh)

2m∗
e〈Φ|Φ〉

,

where the functions Ke,h(σ, σe, σh) are given by

Ke,h(σ, σe, σh)

= ∓
∫

(R3)2
d3red

3rhψ
2
010(re)ψ

2
010(rh)ϕ

2
h,e(rh,e)

[
∇φ2

rel(reh)
]
·[ϕe,h(re,h)∇ϕe,h(re,h)]

=
σσe,h

2
{∂σe

+ ∂σh
}〈Φ| 1

|reh|
|Φ〉.

Real physical quantities should be invariant under the electron-hole exchange symmetry

defined by the exchange of their coordinates, their masses and their electric charges




re,h −→ rh,e,

m∗
e,h −→ m∗

h,e,

e −→ −e.
(12)

As we expect that σe,h ∝ m∗
e,heEdR

2, under an electron-hole exchange, the variational

parameters should transform as σe,h −→ −σh,e. Therefore, the trial function Φ(re, rh),

the confinement Hamiltonian H0, the Coulomb potential VC(reh) and the interaction

HamiltonianWe(re)+Wh(rh) remain actually invariant under the electron-hole exchange,

as well as the norm of Φ(re, rh) and the mean value of these operators. But, the next

contribution will not. As a matter of fact, it verifies

[
Kh(σ, σe, σh)

2m∗
h〈Φ|Φ〉

− Ke(σ, σe, σh)

2m∗
e〈Φ|Φ〉

]
−→

[
Ke(σ, σe, σh)

2m∗
e〈Φ|Φ〉

− Kh(σ, σe, σh)

2m∗
h〈Φ|Φ〉

]
.

Then, because of the mean value of the confinement HamiltonianH0 invariance, it should

not bring any new contribution to real physical quantities and should be immediately

discarded from
〈Φ|H0|Φ〉
〈Φ|Φ〉 , which should be now exactly expressed as given by Eq. (11).

3.3. Stark effect in strong confinement regime

As there seems to be no way to analytically compute the integrals in Eqs. (8), we shall

Taylor expand them in the strong confinement regime, i.e. when σR ≪ 1. In order to
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perform this expansion, we have to specify the QD radii region, in which the following

expressions are valid in the strong confinement region. For this, we shall assume that

the quantities ρe,h(ξ)σR in the arguments of the functions exp(x) and sinh(x), appearing

in Eq. (8) should be sufficiently small. This is the reason why we will only consider the

range of QD radii such that R ≤ 2

3σ′
a∗, where the dimensionless variational parameter

σ′ should take its variational value. From the bounds of the functions ρe,h(ξ), we derive

the following bounds for ρe,h(ξ)σRx, ρe,h(ξ)σRy . 1, if −1 ≤ ξ ≤ 1 and 0 ≤ x ≤ y ≤ 1.

Moreover, since different variational parameters σ and σe,h can be of the same order of

magnitude, because of the consistency condition (9), we deduce, up to the third order

in σR, that




〈Φ|Φ〉 = 1 − BσR+ Cσ2R2 −Dσ3R3

+(C −D′σR)
σ2

e + σ2
h

6
R2 −D′′σσeσhR

3 + O(σ4R4),

〈Φ|VC(reh)|Φ〉
〈Φ|Φ〉 =

−e2
κR

{
A+B′σR + C ′σ2R2 + C ′

1(σ
2
e + σ2

h)R
2

+C ′
2σeσhR

2 + O(σ3R3)},
〈Φ|We,h(re,h)|Φ〉

〈Φ|Φ〉 = −eEdR

[
{C +(BC −D′)σR}σe,hR

3
−D′′σh,eσR+ O(σ3R3)

]
.

(13)

The mean value of the total Hamiltonian H , under the influence of the electric field on

both electron and hole is then expressed as an expansion in powers of the variational

parameters, up to third order,

〈Φ|H|Φ〉
〈Φ|Φ〉 = Eeh −A

e2

κR
+
E∗

4
σ′2 +

σ2
e

8m∗
e

+
σ2

h

8m∗
h

− 2B′E∗σ′

− 2C ′E∗R

a∗
σ′2 − C ′

1

σ2
e + σ2

h

µ

R

a∗
− C ′

2

σeσh

µ

R

a∗

− eEd(σe + σh)R
2

{
C

3
− C ′′R

a∗
σ′

}
+ · · · (14)

Applying now the variational procedure, we minimize the previous matrix element with

respect to σ′ and σe,h to obtain an approximate value of the ground state total energy.

Thus, their values are determined to the first order in
R

a∗
to insure the coherence of the

expansion we made and to account for all contributions to the ground state energy



σ′
0 = 4B′

{
1 + 8C ′R

a∗

}
− 8

CC ′′

3
(m∗

e +m∗
h)
e2E2

dR
4

E∗

R

a∗
,

σ0
e,h =

4C

3
m∗

e,heEdR
2

{
1 + 4Σe,h

R

a∗

}
,

(15)

where Σe,h =
1

µ

{
2C ′

1 + C ′
2

m∗
h,e

m∗
e,h

}
− 3B′C ′′

Cm∗
e,h

and

E ′
eh = Eeh −A

e2

κR
− 4B′2

{
1 + 8C ′R

a∗

}
E∗ − Γvar(m

∗
e +m∗

h)e
2E2

dR
4

− 8Γvare
2E2

dR
4

{
C ′

1

m∗2
e +m∗2

h

µ
+ C ′

2

m∗
em

∗
h

µ
− 3B′C ′′

C
(m∗

e +m∗
h)

}
R

a∗
. (16)
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The previous expression allows us to identify the Stark shift in the strong confinement

regime as terms scaling as ∝ E2
d, i.e.

∆Estrong
Stark = −Γvar(m

∗
e +m∗

h)e
2E2

dR
4

{
1 + 8Γeh

var

R

a∗

}
, (17)

where Γvar appears as of universal character, while the constant Γeh
var depends on the

semiconductor. In terms of the effective masses of the electron and the hole, it can be

expressed as

Γeh
var = C ′

1

{
m∗

e

m∗
h

+
m∗

h

m∗
e

}
+ C ′

2 −
3B′C ′′

C
.

The first contribution to this shift is nothing else but the sum of the contributions of the

Stark shift undergone by the ground states of both electron and hole taken individually

and computed by the variational principle formalism presented in Subsection 3.1.

Because of the dependence of the constant Γeh
var on the effective masses m∗

e,h, let us

remark that the second contribution to the Stark shift indicates the existence of a

further physical coupling between electron and hole, which seems to be physically

interpretable as a standard dipolar interaction between the two carriers of opposite

electric charge. Actually, this interpretation is nothing more than a question of point

view. Until now, we choose to consider that the interaction between the electron or

the hole with the external electric field takes place individually, whereas the electron

and the hole interact only through the Coulomb potential. This physical description

justifies a priori the validity of the strong confinement regime assumption, for which the

exciton states consist of uncorrelated individual confined electron and hole states, and

then allows us to intuitively build a coherent and reasonable model in order to describe

QCSE in QDs in this regime. Moreover, it also simplifies the calculations in practice.

In spite of these advantageous properties, the previous remark suggests that we have to

revise this picture. As a matter of fact, the electric field interaction part of the total

Hamiltonian We(re) +Wh(rh) should also be written as

W (reh) = We(re) +Wh(rh) = Ed · deh,

where deh = ereh is the exciton electric dipole moment, which is the standard dipolar

interaction Hamiltonian of an electric dipole generated by two carriers, one with

charge −e and another with charge +e. This dipolar interaction Hamiltonian satisfies

the electron-hole exchange symmetry, while the individual interaction Hamiltonian

We,h(re,h) transform themselves one into another. In the strong confinement regime,

despite the importance of confinement effects on excitonic effects, the dipolar interaction

point of view expresses the remnant of electron-hole pair states, thought as exciton

bound states under the influence of the electric field. The dipolar interaction

interpretation suggests the inclusion of a further term in the Hamiltonian H describing

the exciton-electric field interaction, which accounts for the polarization energy of

the electron-hole pair, due to the difference between the dielectric constants of the

semiconductor QD and the surrounding insulating matrix.
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Furthermore, we can explicitly confirm that another contribution to the confinement

Hamiltonian H0 mean value, discarded because of the electron-hole exchange symmetry,

does not effectively contribute to Stark effects. Using Eqs. (13), we obtain

Kh(σ, σe, σh)

2m∗
h〈Φ|Φ〉

− Ke(σ, σe, σh)

2m∗
e〈Φ|Φ〉

=

{
C ′

1

2
+
C ′

2

4

}{
σh

m∗
h

− σe

m∗
e

}
{σe + σh}σR+ . . .

Thus, such terms contribute to the total Hamiltonian mean value H up to the third

order in
R

a∗
. These third order terms just contribute to the variational parameters σ′

0

and σ0
e,h up to the first order, but not at all to the electron-hole pair ground state

energy. Therefore, the last possible contribution to Stark effect should come from
Kh(σ, σe, σh)

2m∗
h〈Φ|Φ〉

− Ke(σ, σe, σh)

2m∗
e〈Φ|Φ〉

∣∣∣
σ′=σ′

0,σe,h=σ0
e,h

, where we replace the different variational

parameters by their respective zeroth order expressions, i.e. σ′
0 ≈ 4B′ and σ0

e,h ≈
4C

3
m∗

e,heEdR
2. Then, we straightforwardly have

Kh(σ, σe, σh)

2m∗
h〈Φ|Φ〉

− Ke(σ, σe, σh)

2m∗
e〈Φ|Φ〉

∣∣∣
σ′=σ′

0,σe,h=σ0
e,h

= 0,

which expresses what was expected.

3.4. Comparison with experimental data

In order to test the relevance of our model, we shall compare numerical predictions we

manage to compute to real experimental data [40] and to other computational data [41].

3.4.1. Comparison with real experimental data

Figure 1 presents a comparison between results we obtain and experimental values

for spherical CdS0.12Se0.88 micro-crystallites [40]. The authors of [40] are able to

experimentally resolve two exciton peaks, which they attribute to the transitions from

the highest valence sub-band and from the spin-orbit split-off state to the lowest

conduction sub-band. Furthermore, they observed that the energy splitting is about

0.39eV independently of the QD radius. The experimental values depicted by crosses

in Figure 1 consist of the mean values of the Stark shift of these two types of excitons.

They seem to indicate that the Coulomb interaction is sufficient to explain correctly the

amplitude of the Stark effects experimentally observed, as we expect, in the range of

validity of QD radii.

This paper offers a model, which is able to describe QCSE at least in the strong

confinement regime for QD sizes R ≤ 2

3σ′
0

a∗. But, we should remember that σ′
0

is actually itself a function of
R

a∗
, which is still considered as a small dimensionless

parameter in the strong confinement regime. Here, for convenience, we prefer to neglect

the part of σ′
0, which depends on the electric field, because it scales as ∝ mee

2E2
dR

4.

This is at least of the same order of magnitude as the exciton Rydberg energy as soon
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Figure 1. Stark shift for confined interactive electron-hole pair as a function of the

QD radius including the Coulomb interaction and excluding the polarization energy

up to the zeroth (—) or to the first (– –) order in comparison with experimental

results (+) [40] in spherical CdS0.12Se0.88 micro-crystallites with material parameters:

ε = 9.3, m∗

e = 0.13me, m∗

h = 0.46me, E∗ = 16meV and a∗ = 49Å, where me is the

electron bare mass. The electric field amplitude inside the micro-crystal is fixed at

Ed = 12.5kV.cm−1 and Γeh
var ≈ −0.1629.
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as R ≤ 50Å, if the electric field amplitude is fixed at Ed = 12.5kV.cm−1. We should

also remark that
CC ′′(m∗

e +m∗
h)

12B′C ′
≈ 0.0552me, hence

σ′
0 = 4B′ + 32B′C ′

{
1 − CC ′′

12B′C ′
(m∗

e +m∗
h)
e2E2

dR
4

E∗

}
R

a∗

≈ 4B′

{
1 + 8C ′R

a∗

}
.

Therefore, up to the first order in
R

a∗
, our predictions should be valid for QD sizes with

R ≤ a∗

2(3B′ + 4C ′)
≈ 0.6080a∗. (18)

According to this effective constraint, in the case of CdS0.12Se0.88 micro-crystals, this

approach should lead to acceptable results in regard to experimental data as long as

the cluster radius does not exceed 30Å. Figure 1 shows that the absolute value of the

Stark shift, we compute up to the zeroth order, is significantly overestimated, except

for a minor range of small QD radii compared with the one we expect. The results

become much more accurate, if we carry the computation of the Stark effects up to

the first order. In fact, in this case, Figure 1 also exhibits a good agreement with the

experimental data over the whole expected region of micro-crystals radii. In this domain
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of validity, the first order calculation seems to be efficient enough to describe QCSE in

spherical semiconductor QDs. As soon as, the QD radius exceeds the maximal value

for which the strong confinement regime is valid, our results diverge significantly from

experimental data.

Finally, we have to determine the maximal electric field amplitude, for which the

weak electric field limit assumption remains valid. To this end, as already previously

explained, we must reconsider the consistency condition (9) for the electron or for the

hole, in which we replace the respective variational parameters by their variational

values. After summing the expressions for the electron and for the hole, up to the first

order in
R

a∗
, we deduce, by also using the previous inequality which determines the

strong confinement validity domain, that

Eele

Eeh
≤ 6

π2e

B′

C

R

a∗
≤ 1

π2eC

1

1 + 4
3

C′

B′

≈ 0.1197.

Then, in the strong confinement regime, the hypothesis of weak electric field limit should

be valid as soon as the typical electric dipole interaction energy does not represent

more than about 12% of the typical exciton confinement energy. Thus, if the micro-

crystal radius is fixed at R = 10Å, the highest electric field amplitude for which the

weak field limit assumption stays acceptable is about Emax
d ≈ 450kV.cm−1, and idem

if the QD radius is fixed near the upper boundary of the strong confinement regime

validity domain, i.e. R ≈ 30Å, the electric field amplitude inside the QD should not

exceed Emax
d ≈ 16.7kV.cm−1. These numerical results allow us to justify the fact

that, taking an electric field such that Emax
d ≈ 12.5kV.cm−1 to compare theoretical

predictions against experimental results, satisfies the weak field limit all along the strong

confinement range of valid QD radius.

In a more general manner, as soon as the semiconductor in the synthesized QD is

chosen, the strong confinement regime domain of validity and the weak electric field limit

condition consist of a set of two constraints, which should be optimized by choosing the

QD radius and the electric field amplitude as functions of the Bohr radius, the Rydberg

energy and the confinement energy of a trapped exciton. This is how we justify the

validity of assumptions we made in order to use in practice the approach we propose in

this article. But, for future technological applications, this set of constraints will permit

to determine conversely the best possible semiconductor for practical and technological

reasons, by imposing the typical QD size and the order of magnitude of the maximal

electric field amplitude to use.

3.4.2. Comparison with computational data

In the early nineties, Nomura and Kobayashi performed a variational calculation on

the same total Hamiltonian H with computational tools, in order to study Stark effect

in spherical micro-crystals [41]. In their theoretical model, they also considered the

weak field limit and expand the Hamiltonian mean value in powers of the variational

parameters σe,h. However, they neglected terms, which scale as ∝ σ2
e,h, while they kept



Stark Effect of Interactive Electron-hole pairs in Spherical Semiconductor QDs 21

Table 1. Stark shift for confined interactive electron-hole pair as a function of the

QD radius including the Coulomb interaction and excluding the polarization energy,

where terms scaling as ∝ σ2

e,h are removed from the total Hamiltonian H mean value,

i.e. C′

1 = 0 and Γeh
var ≈ −0.0333, in comparison with computational results [41] in

spherical CdS0.12Se0.88 micro-crystallites.

R Å 10 20 30 40 50

−∆Enum meV 2.08 10−4 3.16 10−3 1.49 10−2 4.34 10−2 9.63 10−2

−∆Estrong
Stark meV 2.03 10−4 3.07 10−3 1.46 10−2 4.31 10−2 9.78 10−2

relative error <3% <3% ≈2% <1% <2%

terms scaling as ∝ σeσh. Our approach suggests that such terms have the same order

of magnitude and they both contribute to the electron-hole pair Stark shift. In fact,

leaving out these contributions implies that C ′
1 should vanish in Eq. (14). Therefore,

the expected Stark shift should be affected, because Γeh
var should be then expressed as

Γeh
var = C ′

2−
3B′C ′′

C
. We first remark that Γeh

var is now independent of the semiconductor.

Furthermore, we get Γeh
var ≈ −0.0333, which hardly represents about 20% of its value,

when we account for contributions scaling as ∝ σ2
e,h, i.e. if C ′

1 6= 0. The approximation

made in [41] deeply changes the nature of Stark effect and does not seem to describe

correctly experimental results, except for very small QDs.

However, Table 1 shows good agreement between our results for C ′
1 = 0 and

computational ones from [41], even outside the validity domain of the strong confinement

regime, i.e. for QD size R ≥ 30Å. This signifies notably that, in the strong confinement

regime, a first order expansion in
R

a∗
of the ground state energy Stark shift should be

sufficient, at least when only the Coulomb interaction is included in the electron-hole

pair Hamiltonian, because there is no particular constraint on the variational parameter

σ in [41].

4. Stark effects with polarization energy

In order to investigate in more details Stark effects in semiconductor micro-crystallites

and to especially integrate, as a whole, the electric dipole interaction point of view, we

shall introduce the following polarization energy employed by Brus in [8] to the total

electron-hole Hamiltonian H

P (re, rh) =
e2

2R

∑

l≥1

αl(εr)

{(re
R

)2l

+
(rh
R

)2l

− 2
(rerh
R2

)l

Pl(cos θeh)

}
,

where Pl(x) denotes the Legendre polynomial of index l and of variable x, and where

we define, for a later purpose, the constants αl(εr) as functions of the relative dielectric

constant εr as αl(εr) =
l − 1

4πε

εr − 1

lεr + l + 1
, l ∈ N

∗. We wish to apply once again the
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variational method to the new total Hamiltonian H ′ = H + P , which takes into

account the polarization energy P (re, rh). For this, we keep the form of the variational

trial function Φ(re, rh), since the polarization energy should not basically change the

properties of the trial function.

4.1. Stark effect in the strong confinement regime

Here, we are able to determine an expansion in the variational parameters of the mean

value of the polarization energy, which presents the exact same form as the mean value

of the Coulomb potential, where the constants A, B′, C ′, C ′
1 and C ′

2 are replaced by

functions of the relative dielectric constant εr. This is the reason why we adopt the

same notations for these quantities, but with explicit dependence on εr, as shown in

Table B3. In fact, we can prove that the mean value of the polarization energy in the

quantum state defined by Φ(re, rh) should be written as

〈Φ|P (re, rh)|Φ〉
〈Φ|Φ〉 = − e2

κR

{
A(εr) +B′(εr)σR+ C ′(εr)σ

2R2

+C ′
1(εr)(σ

2
e + σ2

h)R
2 + C ′

2(εr)σeσhR
2 + O(σ3R3)

}
. (19)

In this formalism, we obtain expressions for the variational parameters, the total

electron-hole pair ground state energy and the Stark shift considering, on one hand,

only the polarization energy or, on the other hand, both the Coulomb interaction and

the polarization energy in Stark effects by Eqs. (15), (16) and (17) in Section 3, where

we replace all the appearing constants, in the first case, by the corresponding functions

of εr and, in the second case, by the sum of both contributions.

The most important step in the calculation consists of the simple idea of rewriting

the functions αl(εr) in a such way that it becomes possible to perform analytically the

summation of the series appearing in the expression of the Brus polarization energy. As

matter of fact, we remark that for l ∈ N∗

αl(εr) =
εr − 1

κ(εr + 1)

{
1 +

εr

(εr + 1)l + 1

}

≈ εr − 1

κ(εr + 1)

{
1 +

εr

(εr + 1)l

}
= α̃l(εr).

Let us introduce ∆l(εr) for l ∈ N∗, as the relative error between the functions αl(εr)

and α̃l(εr). Therefore, the replacement of αl(εr) by α̃l(εr) is reasonable because it leads

to negligible relative errors: e.g. for CdS0.12Se0.88 micro-crystallites, for which εr = 4.0,

we get that ∆1(εr) ≈ 8%, ∆2(εr) ≈ 3% and ∆l(εr) =
εr

(εr + 1)2

1

l(l + 1)
. 1%, for l ≥ 3.

The polarization energy is then written as

P (re, rh) =
e2

2κR

εr − 1

εr + 1


 1

1 − r2
e

R2

+
1

1 − r2

h
R2

− εr

εr + 1

{
log

(
1 − r2

e

R2

)
+ log

(
1 − r2

h

R2

)}

−2
∑

l≥0

(rerh
R2

)l

Pl(cos θeh) −
2εr

εr + 1

∑

l≥1

1

l

(rerh
R2

)l

Pl(cos θeh)

]
, (20)
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where it is possible to sum a priori the series in the polarization energy because of the

confining potential well. In the mean value of P (re, rh) in the quantum state Φ(re, rh),

only contribute the electron and hole coordinates such that re,h < R, i.e.
re,h
R

belongs

to the convergence disc of the occurring series.

4.2. Comparison with experimental data

4.2.1. Comparison with real experimental data

We begin to evaluate the strong confinement regime validity region by considering Eq.

(18), on which we apply the appropriate changes according to the cases. If we only

consider the polarization energy, the strong confinement regime is not actually valid,

because it turns out that σ′
0 ≤ 0, in this case. Therefore, the interaction part of the

variational function yields φrel(re,h) = e|σ
′

0|re,h , this reveals the fact that the polarization

energy is repulsive, while our approach is build on an attractive point of view for the

interaction between the electron and the hole. If we consider both Coulomb potential

and polarization energy, this problem no longer exists because the attractive effects of

Coulomb potential are more important than the repulsive ones due to the polarization

energy, so that σ′
0 remains positive. Thus, the strong confinement regime remains valid

up to R . 1.0179a∗, i.e. R . 49.9Å for CdS0.12Se0.88 micro-crystallites. This domain

of validity is twice as large as the one obtained if only the Coulomb potential is taken

into account.

In the same spirit, we can evaluate an order of magnitude for the maximal electric

field amplitude, for which the limit of weak electric field should be assumed to be valid

up to
Eele

Eeh
. 0.1186, when only polarization is taken into account, and

Eele

Eeh
. 0.1204,

when polarization energy and Coulomb interaction are both included. From such

numerical values, we should remark that the weak field limit is relatively insensitive

to the interaction between the charge carriers. It may notably signify that this limit

is relevantly chosen because it is an independent condition coming from the strong

confinement regime validity domain. For example, this corresponds, for a QD radius of

30Å, to an electric field amplitude of about Ed = 16.5kV.cm−1, on one hand, and to an

electric field amplitude of about Ed = 16.8kV.cm−1, on the other hand.

As the electric field amplitude is fixed inside the CdS0.12Se0.88 micro-crystallites

at Ed = 12.5kV.cm−1, the weak electric field limit should be satisfied in the range

of QD radii R ≤ 30Å and we can compare, at least in this domain, our predictions to

experimental data. In the rest of the strong confinement regime validity domain, i.e. for

radii 30Å . R . 50Å, the weak field limit is no longer valid. This may actually explain

the significant divergence from experimental results in this region. Once again the

analogy with rectangular quantum boxes should be quite helpful. In the opposite limit

of strong electric field, the Stark shift undergone by the ground state of the electron-hole

pair confined in a rectangular QD shows essentially a linear behavior in the electric field

amplitude [34], which is a totally different behavior in comparison with the quadratic

dependence found here.
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Figure 2. Stark shift for confined interactive electron-hole pair as a function of the

QD radius including the both Coulomb interactionand polarization energy up to the

zeroth (—) or to the first order (– –), where Γeh
var ≈ −0.2045, and including only the

polarization energy up to the first order (– · –), where Γeh
var ≈ −0.0416, in comparison

with experimental results (+) [40] in spherical CdS0.12Se0.88 micro-crystallites with

material parameters. The electric field amplitude inside the micro-crystal is once again

fixed at Ed = 12.5kV.cm−1.
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Figure 2 also clearly shows that the behavior of the polarization energy, if considered

alone, is not satisfactory because it seems that its contribution does not counterbalance

the divergence of the zeroth order Stark shift for QD radii near the upper boundary

of the strong confinement validity region, while Figure 1 suggests that the contribution

to the Stark effects due to the Coulomb potential seems to consist of more important

contributions. Figure 2 stresses this point of view because, in the strong confinement

regime, the results we obtain, if we account for the Coulomb potential and the

polarization energy accurately, fit the experimental data, except if the QD size begins to

reach the upper boundary of the validity domain of this regime, when only the Coulomb

potential is included, and the weak field limit is not valid anymore. The reason for this

phenomenon is simple to understand. For such QD sizes, we can easily show that the first

order term actually has the same order of magnitude as the zeroth order contribution

to the Stark shift. Then, if it is reasonable to maintain a priori a perturbation point of

view, the first order correction is not sufficient to describe correctly QCSE in the whole

domain of strong confinement regime validity. It is perhaps advisable to continue the

expansion to one or two further orders and to revise the definition of weak field limit.

However, the computations become quite involved and we think that such approach does

not really bring a significant improvement to the understanding of the Stark effects in

QDs.
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Table 2. Stark shift for confined interactive electron-hole pair as a function of the QD

radius including the Coulomb interaction and the polarization energy where terms

scaling as ∝ σ2

e,h are suppressed from the total Hamiltonian H mean value, i.e.

C′

1(εr), C
′

1 = 0 and Γeh
var ≈ −0.0446, in comparison with computational results [41]

in spherical CdS0.12Se0.88 micro-crystallites.

R Å 10 20 30 40 50

−∆Enum meV 2.09 10−4 3.14 10−3 1.45 10−2 4.11 10−2 8.93 10−2

−∆Estrong
Stark meV 1.99 10−4 2.94 10−3 1.36 10−2 3.90 10−2 8.55 10−2

relative error ≈5% ≈6% ≈6% ≈5% ≈4%

4.2.2. Comparison with computational data

Following the reasonings and remarks we made in Subsubsection 3.4.2, we add the

polarization energy P (re, rh) to the total Hamiltonian of the electron-hole pair but

impose that C ′
1(εr), C

′
1 = 0, in such a way that terms scaling as ∝ σ2

e,h do not contribute

to the electron-hole ground state Stark shift. Once again, the new value for Γeh
var

represents a small part from the one, in which all contributions are kept. Likewise,

when we only consider the Coulomb interaction, Table 2 shows that there is still a

good agreement between our results and computational ones from [41], over the whole

validity domain of strong confinement regime. The divergence from experimental results

is still significant after including the polarization energy, even for small QD radius. This

confirms that the terms scaling ∝ σ2
e,h play a relevant role in Stark effects and should not

be discarded. While, this also legitimates the approximation αl(εr) ≈ α̃l(εr), because

Table 2 suggests that this approximation does not seem over-estimate the polarization

energy contribution to the Stark shift. Maybe, each term of the sum defining the

polarization energy plays a role in Stark effect, but errors made term by term should

not cumulate.

A first order expansion in
R

a∗
of the ground state energy Stark shift should not

be sufficient and reinforces the idea according which it is necessary to carry on the

expansion at least up to the second order. If the second order expansion does not

improve the situation, this signifies that there should exist another reason for this

divergence. Therefore, because the strong confinement regime validity domain is not

affected be dropping of terms scaling ∝ σ2
e,h, it is reasonable to think that it comes from

the failure of the weak field limit assumption for QD radius sufficiently close to its upper

boundary.

5. Conclusion

By considering a simple EMA-model under the assumptions of strong confinement

regime by a infinite potential well and of weak electric field limit, we are able to obtain

analytical results for Stark effect in semiconducting micro-crystallites with spherical
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shape. In the domain of validity of physical approximations, the numerical values we

can deduce agree with experimental data. We furthermore clarify why other variational

calculations predict numerical results, which markedly diverge from experimental ones.

Despite these successes, our approach has been invalidated in a particular range

of QD sizes, for which the strong confinement point of view still holds, but for which

the weak electric field limit assumption fails. Thus, a future research work may focus

on trying to apply the strong confinement regime in the limit of strong electric field

indeed, or even in a more general manner, to any electric field amplitude. The case of

the weak confinement regime of the electron-hole pair is much more difficult, even in

the weak field limit. Actually, in such a regime, the integration domain of integrals,

we have to deal with, to compute the square of the trial function norm or the diagonal

matrix elements of physical operators consists of a half-rectangle instead of the domain

D, which is a half-square. This implies an explicit break down of the electron-hole

exchange symmetry. Then, a different approach may be needed.

Appendix A. Calculations of norms

As suggested by the remark on translation invariance and spherical symmetry breakdown

as a whole in Subsubsection 2.3.1, the square of the norms of the trial functions φ(re, rh)

and Φ(re, rh) should be computed by using Fourier transform formalism in relative

coordinates. Then, let F [f ] stands for the Fourier transform of a function f . In order

to prove the derivation of Eqs. (4) and (8), we need the expressions of the Fourier

transform of the functions ψ2
010 and φ2

rel. It can be shown straightforwardly that





F
[
φ2

rel

]
(k) = −4π∂σ

1

σ2 + k2
,

F
[
ψ2

010

]
(k) =

2

kR

∫ 1

0

dx

x
sin2(πx) sin(kRx).

Appendix A.1. State norm in absence of electric field

As φ2
rel,F [φ2

rel] ∈ L1(R3), the inversion theorem of the Fourier transform is satisfied and

yields

φ2
rel(r) =

∫

R3

d3k

(2π)3
F

[
φ2

rel

]
(k)eik·r, ∀r ∈ R

3.

Then,

〈φ|φ〉 =

∫

(R3)2
d3red

3rhψ
2
010(re)ψ

2
010(rh)φ

2

rel(reh)

=

∫

R3

d3k

(2π)3
F

[
φ2

rel

]
(k)F

[
ψ2

010

]
(k)2

= − 8

πR2
∂σ

∫∫

[0,1]2

dx

x

dy

y
sin2(πx) sin2(πy)

∫ ∞

0

dk

σ2 + k2
sin(kRx) sin(kRy).
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Since, according to Eq. 2.5.6.4, p. 390 [55], we get

∫ ∞

0

dk

σ2 + k2
sin(kRx) sin(kRy) =

π

4σ

{
e−σR|x−y| − e−σR(x+y)

}
, ∀(x, y) ∈ [0, 1]2.

Therefore, the expression for 〈φ|φ〉, after some trivial manipulations, becomes

〈φ|φ〉 = − 8

R2
∂σ

1

σ

∫∫

D

dx

x

dy

y
sin2(πx) sin2(πy) sinh(σRx)e−σRy .

The corresponding expression for the Coulomb potential diagonal element 〈φ|VC|φ〉
should be obtained in the same way, up to the homogeneity factor, except that φ2

rel(reh)

should be replaced by ϕrel(reh) = −e2

κ

φrel(reh)
2

reh
, where F

[
ϕrel

]
(k) = −e2

κ

4π

σ2 + k2
.

Appendix A.2. State norm in presence of electric field

Here, we argue as in the previous subsection, except that we have to pay attention to

the fact that the Fourier transform of the electronic and hole trial function parts are no

longer identical, i.e. we should write, because 〈Φ|Φ〉 ∈ R,

〈Φ|Φ〉 =

∫

R3

d3k

(2π)3
F

[
φ2

rel

]
(k)F

[
ϕ2

eψ
2
010

]
(k)F [ϕ2

hψ
2
010](k).

Later on, in spherical coordinates, we shall adopt the following notations

r =




r sin θ cosϕ

r sin θ sinϕ

r cos θ


 and k =




k sin θ′ cosϕ′

k sin θ′ sinϕ′

k cos θ′


,

where r, k ≥ 0; θ, θ′ ∈ [0, π] and ϕ, ϕ′ ∈ [0, 2π].

Appendix A.2.1. Calculation of F
[
ϕ2

e,hψ
2
010

]

It is easy to show that

F
[
ϕ2

e,hψ
2
010

]
(k)

=
1

2πR

∫ R

0

dr sin2
( π
R
r
)∫ π

0

dθ sin θe±σe,hr cos θeikr cos θ cos θ′
∫ 2π

0

dϕ e−ikr sin θ sin θ′ cos(ϕ−ϕ′).

Since, according to Eq. 8.411.1, p. 902 [57], we have, first
∫ 2π

0

dϕ e−ikr sin θ sin θ′ cos(ϕ−ϕ′) =

∫ π

−π

dϕ e−ikr sin θ sin θ′ sinϕ

= 2πJ0(kr sin θ sin θ′).

Second, according to Eq. 5.13.3.8, p. 713 [56],

eiz cos α cos βJ0(z sinα sin β) =

√
2π

kr

∑

n≥0

in
(
n +

1

2

)
Jn+ 1

2
(z)C

1
2
n (cosα)C

1
2
n(cosβ),
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where Cλ
n(x) is the Gegenbauer polynomial of indexes n and λ and of variable x. And,

third, according to Eq. 2.21.5.1, p. 527 [56], we have the integral representation

∫ 1

−1

dξ e−(∓σe,hr)ξC
1
2
n (ξ) = (±1)n

√
2π

σe,hr
In+ 1

2
(σe,hr),

where Iν(x) is the modified Bessel function of the first kind of index ν and variable x.

We straightforwardly deduce that
∫ π

0

dθ sin θe±σe,hr cos θeikr cos θ cos θ′
∫ 2π

0

dϕ e−ikr sin θ sin θ′ cos(ϕ−ϕ′)

= 2π

∫ π

0

dθ sin θe±σe,hr cos θeikr cos θ cos θ′J0(kr sin θ sin θ′)

= 2π

√
2π

kr

∑

n≥0

in
(
n +

1

2

)
Jn+ 1

2
(kr)C

1
2
n (cos θ′)

∫ 1

−1

dξ e±σe,hrξ
C

1
2
n(ξ)

=
4π2

r

√
1

σe,hk

∑

n≥0

(±i)n

(
n +

1

2

)
Jn+ 1

2
(kr)In+ 1

2
(σe,hr)C

1
2
n (cos θ′).

Therefore, after some trivial manipulations, we obtain

F
[
ϕ2

e,hψ
2
010

]
(k)

=
2π

R

√
1

σe,hk

∑

n≥0

(±i)n

(
n +

1

2

)
C

1
2
n (cos θ′)

∫ 1

0

dx

x
sin2(πx)Jn+ 1

2
(kRx)In+ 1

2
(σe,hRx).

Appendix A.2.2. Calculation of 〈Φ|Φ〉
We put the value of F

[
ϕ2

e,hψ
2
010

]
(k) in the previous expression for 〈Φ|Φ〉 and obtain

〈Φ|Φ〉

=
−4π

R2
√
σeσh

∂σ

∫ 1

0

∫ 1

0

dx

x

dy

y
sin2(πx) sin2(πy)

∑

n≥0

(−1)n

(
n+

1

2

)
In+ 1

2
(σeRx)In+ 1

2
(σhRy)

∫ ∞

0

dk

σ2 + k2
kJn+ 1

2
(kRx)Jn+ 1

2
(kRy),

after performing the integral over θ′, using the Gegenbauer polynomials orthonogality

(c.f. Eq. 2.21.18.10, p. 563 [56]). Furthermore, if 0 ≤ x < y ≤ 1, the integral over k

should be evaluated, according to Eq. 2.12.32.11 p. 213 [56], as

∫ ∞

0

dk

σ2 + k2
kJn+ 1

2
(kRx)Jn+ 1

2
(kRy) = In+ 1

2
(σRx)Kn+ 1

2
(σRy).

At this point, the last remaining problem consists in getting a compact expression for

∑

n≥0

(−1)n

(
n+

1

2

)
In+ 1

2
(σe,hRx)In+ 1

2
(σRx)In+ 1

2
(σh,eRy)Kn+ 1

2
(σRy),

where 0 ≤ x < y ≤ 1.
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To this end, we find an advantageous integral representation for the product of

modified Bessel functions In+ 1
2
(σe,hRy)Kn+ 1

2
(σRy). In fact, in the weak field limit we

should have σe,h < σ. Therefore, Eq. 3.8.2, p. 90 [58] is applicable and we can write

In+ 1
2
(σe,hRy)Kn+ 1

2
(σRy) =

1

2

√
σh

σ

∫ 1

−1

dξC
1
2
n (ξ)

e−ρe,h(ξ)σRy

ρe,h(ξ)
.

Moreover, under the validity of the consistency condition (9), according to Eq. 5.13.3.6,

p. 713 [56], in the case of the modified Bessel functions of the first kind, we deduce that

∑

n≥0

(−1)n

(
n+

1

2

)
In+ 1

2
(σe,hRx)In+ 1

2
(σRx)C

1
2
n (ξ) =

1

π

√
σe,h

σ

sinh(ρe,h(ξ)σRx)

ρe(ξ)
.

Then, by grouping together the last two expressions, we obtain the result we have

expected
∑

n≥0

(−1)n

(
n+

1

2

)
In+ 1

2
(σe,hRx)In+ 1

2
(σRx)In+ 1

2
(σh,eRy)Kn+ 1

2
(σRy)

=

√
σeσh

2πσ

∫ 1

−1

dξ
sinh(ρe,h(ξ)σRy)

ρe,h(ξ)

e−ρh,e(ξ)σRy

ρh,e(ξ)
.

It finally shows that 〈Φ|Φ〉 satisfies Eq. (8). And, if
σe,h

σ
→ 0, we observe that

〈Φ|Φ〉 → 〈φ|φ〉.

Appendix B. Constants

In the following tables, we sum up all appearing constants and give their approximate

values, where the function Si(x) denotes the sine integral

Si(x) =

∫ x

0

dt

t
sin(t).

Appendix B.1. Constants occurring in Stark effect expressions without polarization

energy

Table B1 presents constants analytical expressions and approximate values when we

only include the Coulomb potential.

Appendix B.2. Constants occurring in Stark effect expressions with polarization energy

We evaluate the polarization energy mean value using Eq. (20). To this end, we compute

integral representations of the polarization energy terms depending only on the radial

coordinates re,h of the electron and the hole following the reasoning, made in Subsection

3.2 in order to get Eq. (8). This reasoning does not apply to the angular part. However,

we are able to provide exact expressions for all the constants which appear in the

calculations, except for δ′′′, γ′′′ and γ′′′′. For these, we obtain integral representations,
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Table B1. Definition, analytical expression and approximate value of constants when

only the Coulomb interaction is taken into account.

Name Expression Value

A 2 − 1

π

{
Si(2π) − Si(4π)

2

}
1.7861

B1
2

3
− 5

8π2
0.6033

B2
2

9
+

13

24π2
+

1

2π3

{
Si(2π) − Si(4π)

2

}
0.2879

B B1 +
B2

3
0.6993

B′ AB − 1 0.2489

C
1

3
− 1

2π2
0.2827

C ′ A(B2 − C) − B

2
0.0189

C ′
1

B1 − 2AC

12
-0.0339

C ′
2

B2

18
0.0160

D1
2

5
− 13

8π2
+

147

64π4
0.2589

D2
2

15
− 1

8π2
− 21

64π4
0.1173

D3
2

25
+

37

120π2
− 1153

320π4
− 3

2π5

{
Si(2π) − Si(4π)

2

}
0.0710

D
5D1 + 10D2 +D3

30
0.2539

D′ 3D1 + 4D2 +D3

6
0.2195

D′′ 5D2 −D3

45
0.0115

C ′′ D′ + 3D′′ −BC

3
0.0187
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which cannot be analytically computed at the moment. Their approximative values are

then computed numerically by using Wolfram Research Mathematica R© 7. Moreover, as

exact expressions for other constants are quite cumbersome, we give their approximate

values.

Let us define the constants β ′, β ′′, γ′, γ′′, γ′′′, γ′′′′, δ′, δ′′ and δ′′′ by the expressions

〈Φ| 1

1 − r2
e

R2

+
1

1 − r2

h
R2

|Φ〉

= − 2

R2
∂σ

∫ 1

−1

dξ

∫∫

D

dx

x

dy

y
sin2(πx) sin2(πy)

{
1

1 − x2
+

1

1 − y2

}

×
{

sinh(ρe(ξ)σRx)

ρe(ξ)

e−ρh(ξ)σRy

ρh(ξ)
+

sinh(ρh(ξ)σRx)

ρh(ξ)

e−ρe(ξ)σRy

ρe(ξ)

}

= β ′ − γ′σR+ δ′σ2R2 +
δ′

6
(σ2

e + σ2
h)R

2 + O(σ3R3),

− 〈Φ| log

(
1 − r2

e

R2

)
+ log

(
1 − r2

h

R2

)
|Φ〉

= − 2

R2
∂σ

∫ 1

−1

dξ

∫∫

D

dx

x

dy

y
sin2(πx) sin2(πy)

{
log(1 − x2) + log(1 − y2)

}

×
{

sinh(ρe(ξ)σRx)

ρe(ξ)

e−ρh(ξ)σRy

ρh(ξ)
+

sinh(ρh(ξ)σRx)

ρh(ξ)

e−ρe(ξ)σRy

ρe(ξ)

}

= β ′′ − γ′′σR+ δ′′σ2R2 +
δ′′

6
(σ2

e + σ2
h)R

2 + O(σ3R3),

2〈Φ|
∑

l≥0

(rerh
R2

)l

Pl(cos θeh)|Φ〉

= 2 − γ′′′σR − δ′′′σ2R2 + 2C

{
σ2σ

2
e + σ2

h

6

}
R2 − σeσh

18
R2 + O(σ3R3),

2〈Φ|
∑

l≥1

1

l

(rerh
R2

)l

Pl(cos θeh)|Φ〉

= − γ′′′′σR− δ′′′σ2R2 − σeσh

18
R2 + O(σ3R3).

Table B2 presents approximate values for constants which appear in the polarization

energy diagonal matrix element 〈Φ|P (re, rh)|Φ〉, while Table B3 defines constants which

appear in the polarization mean value Eq. (19) and gives their approximate values in

CdS0.12Se0.88 micro-crystals.

Appendix C. Matrix elements 〈ψlnm|r cos θ|ψ010〉

Let l, l′ ∈ N; n, n′ ∈ N∗ and m,m′ ∈ [[−l, l]]× [[−l′, l′]]. Here, we present the general

computation of the matrix element

〈ψlnm|r cos θ|ψl′n′m′〉 = 4RI ll′

nn′Jmm′

ll′ ,
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Table B2. Approximate value of constants appearing in 〈Φ|P (re, rh)|Φ〉.

Name Value Name Value

β ′ 3.1144 β ′′ 0.7524

γ′ 2.3218 γ′′ 0.5992

δ′ 0.9973 δ′′ 0.2708

γ′′′ 1.3263 γ′′′′ -0.0704

δ′′′ 0.0533

Table B3. Definition and approximate value of constants appearing in the polarization

mean value Eq. (19) in CdS0.12Se0.88 micro-crystals.

Name Expression Value for CdS0.12Se0.88

β(εr)
1

2

εr − 1

εr + 1

{
β ′ − 2 +

εr

εr + 1
β ′′

}
0.5149

γ(εr)
1

2

εr − 1

εr + 1

{
γ′ − γ′′′ +

εr

εr + 1
(γ′′ − γ′′′′)

}
0.4594

δ1(εr)
εr − 1

εr + 1

{
δ′ − 2C +

εr

εr + 1
δ′′

}
0.3891

δ2(εr)
εr − 1

2

2εr + 1

(εr + 1)2
0.5400

δ(εr)
εr − 1

εr + 1

{
δ′ + δ′′′ − 2C +

εr

εr + 1
(δ′′ + δ′′′)

}
0.4467

A(εr) −β(εr) -0.4467

B′(εr) −β(εr)B + γ(εr) -0.0993

C ′(εr) −β(εr)(B
2 − C) + γ(εr)B − δ(εr)

2
-0.0083

C ′
1(εr) −δ1(εr) − 2β(εr)C

12
-0.0082

C ′
2(εr) −δ2(εr)

18
-0.0300
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where we respectively introduce radial and angular integrals as



I ll′

nn′ =

∫ 1

0

dxx2Jνl′
(kl′n′x)Jνl

(klnx),

Jmm′

ll′ =

∫ 2π

0

∫ π

0

sin θdθdϕY m′

l′ (θ, ϕ) cos θY m
l (θ, ϕ).

The basic idea to determine the angular integrals Jmm′

ll′ consists in determining the

angular function cos θY m
l (θ, ϕ) coordinates in the spherical harmonic functions basis

applying by angular momentum theory. This calculation is treated in [54] and it is

proved that

cos θY m
l (θ, ϕ) =

√
(l +m+ 1)(l −m+ 1)

(2l + 3)(2l + 1)
Y m

l+1(θ, ϕ) +

√
(l +m)(l −m)

(2l + 1)(2l− 1)
Y m

l−1(θ, ϕ).

Then, after integrating through the angles θ and φ by using the spherical harmonic

functions orthonormal relations, we deduce that

Jmm′

ll′ =

√
(l +m)(l −m)

(2l + 1)(2l− 1)
δl′l−1δ

m′m +

√
(l +m+ 1)(l −m+ 1)

(2l + 3)(2l + 1)
δl′l+1δ

m′m.

As angular integrals vanish if and only if l′ 6= l±1 and m 6= m′, we should focus only

on radial integrals of type I ll±1
nn′ . Furthermore, we should recall the standard recurrence

relation of Bessel functions of different indices, ∀z ∈ C and ∀ν > 0

Jν±1(z) =
ν

z
Jν(z) ∓ J′

ν(z).

Thus, we can write

I ll±1
nn′ =

1

2J′
νl
(kln)J′

νl±1(kl±1n′)

∫ 1

0

dxxJνl
(klnx)

{
νl

kl±1n′

Jνl
(kl±1n′x) ∓ xJ′

νl
(kl±1n′x)

}

=
1

2J′
νl
(kln)J′

νl±1(kl±1n′)

{
νl

kl±1n′

∓ d

dkl±1n′

}∫ 1

0

dxxJνl
(klnx)Jνl

(kl±1n′x)

According to Eq. 1.8.3.10, p. 41 [56], we have
∫ 1

0

dxxJνl
(klnx)Jνl

(kl±1n′x) =
klnJνl+1(kln)Jνl

(kl±1n′) − kl±1n′Jνl
(kln)Jνl+1(kl±1n′)

k2
l±1n′ − k2

ln

= kln

Jνl+1(kln)Jνl
(kl±1n′)

k2
l±1n′ − k2

ln

,

where the simplification in the last equality can be made, because of the definition of

the wave numbers {kln}ln as the nth non-zero root of the Bessel function Jνl
. Then, after

performing some straightforward algebraic manipulations, we arrive at

I ll±1
nn′ = − klnkl±1n′

(
k2

l±1n′ − k2
ln

)2 .

Finally, putting the previous results together, we obtain the expected matrix

elements, for l ∈ N, n ∈ N∗ and m ∈ [[−l, l]], as

〈ψlnm|r cos θ|ψ010〉 = 4RI l0
n1K

l0
m0 = −4R

3

πk1n

(k2
1n − π2)2

δl1δ
m0.
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Hermann éditeurs des sciences et des arts), Ch. VI p.689-670.

[55] A. P. Prudnikov, Yu. A. Brychkov and O. I. Marichev 1998 Integrals and Series

Vol. 1 Elementary Functions (Gordon and Breach Science Publishers).

[56] A. P. Prudnikov, Yu. A. Brychkov and O. I. Marichev 1998 Integrals and Series

Vol. 2 Special Functions (Gordon and Breach Science Publishers).

[57] I. S. Gradshteyn and I. M Ryzhik 2000 Table of Integrals, Series, and Products

— Sixth Edition (San Diego: Academic Press).

[58] W. Magnus, F. Oberheittinger and R. P. Soni 1966 Formulas and Theorems

for the Special Functions of Mathematical Physics (New York: Springer).


