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Département d’Informatique
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Abstract

We extend Meyer and Ritchie’s Loop language with higher-order procedures and
procedural variables and we show that the resulting programming language (called
Loopω) is a natural imperative counterpart of Gödel System T. The argument is
two-fold:

1. we define a translation of the Loopω language into System T and we prove
that this translation actually provides a lock-step simulation,

2. using a converse translation, we show that Loopω is expressive enough to
encode any term of System T.

Moreover, we define the “iteration rank” of a Loopω program, which corresponds to
the classical notion of “recursion rank” in System T, and we show that both trans-
lations preserve ranks. Two applications of these results in the area of implicit
complexity are described.

1 Introduction

Primitive recursive functionals of finite type are representable as terms of the simply
typed λ-calculus equipped with a type of natural numbers and primitive recursion at all
types. This calculus (called System T) was first introduced by Gödel in its proof-theoretic
study of Peano arithmetic (see its Dialectica paper on the consistency of arithmetic
[Gödel, 1958], reproduced with English translation in [Gödel, 1990]). Moreover,
System T is well suited to give a formal semantics to constructs found in (higher-order)
programming languages [Girard et al., 1989].

The Loop language [Meyer and Ritchie, 1976] is a core imperative language in which
programs consist only of assignments, sequences, and bounded loops. Meyer and Ritchie’s
proved in particular that Loop programs compute exactly the class of primitive recursive
functions. The Loop language has since been widely studied in the literature (see for
instance the textbooks [Davis and Weyuker, 1983] and [Calude, 1988]).

In this paper, we introduce a statically typed extension of the Loop language (called
Loopω) with higher-order procedures and procedural variables and we argue that this
programming language is a natural imperative counterpart of Gödel System T. The argu-
ment is two-fold:

1. we define a translation of the Loopω language into System T and we prove that
this translation actually provides a lock-step simulation,

2. using a converse translation, we show that Loopω is expressive enough to encode
any term of System T.

The first result is the main contribution of this paper: we prove that Loopω is not only
extensionally equivalent to System T, but also intensionally. In order to develop this
point, we need to give some details about the formal semantics of Loopω. The overall
design of the language follows mostly the principles advocated in [Schmidt, 1994]. The
operational semantics of Loopω is presented first as a natural semantics (also called “big-
step” semantics) in the style of [Kahn, 1987]. Then a transition semantics (also
called “small-step” semantics [Plotkin, 1981]) tailored of the lock-step simulation and
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which refines the natural semantics is defined. The simulation theorem states that each
evaluation step of a Loopω program (according to the transition semantics) is mapped to
one reduction step of the transformed program in System T (using a call-by-value
strategy). As a corollary of this theorem, we obtain that all Loopω programs are always
terminating.

Note that Loopω is a genuine imperative language with first-class procedures (true clo-
sures) and mutable procedural variables (aka function pointers). For instance, any Loopω

can easily be written using C# syntax (where anonymous first-class procedures are called
delegates [ISO, 2003]) and then compiled with a C# compiler. However, it is a “pure”
imperative language in the following sense: its type system forbids side-effects, parameter-
induced aliasing (which are controversial features known to complicate the semantics).
Moreover the type system forbids the well-known back-patching technique which exploits
procedural variables to define arbitrary recursive procedures [Landin, 1964] (and Loopω is
thus a “total” programming language as advocated in [Turner, 2004]). As a consequence of
these choices, both semantics presented in this paper are simple but rather unusual for
imperative languages: they are both location-free semantics (see [Donahue, 1977],
[Plotkin, 1981] and [Felleisen and Friedman, 1987]) and they rely crucially on the distinc-
tion between mutable and read-only (immutable) variables.

The second result is obtained by defining a converse translation (from System T into
Loopω) and proving that the composition the two translations yields the identity in
System T (up to βπ-equivalence). Since both translations are syntax directed (composi-
tional) and type-preserving, we can be even more specific about the correspondence
between a functional program and its imperative counterpart. Recall that a major result
concerning System T from [Kreisel, 1951] states that functions on the natural numbers
that are definable in this system correspond exactly to functions that are provably total
in first-order Peano arithmetic (see also the survey [Avigad and Feferman, 1998] or the
textbook [Schütte, 1967]). More precisely, that there is a syntactic hierarchy of fragments
Tn of System T such that the class of functions representable in Tn is identical to the
class of functions provably recursive in the fragment of Peano arithmetic where induction
is restricted to Σn+1 formulas. In particular, T0 corresponds to the class of primitive
recursive functions.

We define thus a similar hierarchy of fragments Loopn of Loopω and we show that
both translations relate programs of Loopn and terms of Tn. As a corollary, we obtain
that the functions representable in a language with higher-order procedures but without
procedural variables (which is a sub-language of Loop0) are primitive recursive. This
corollary generalizes thus previous results presented in [Crolard et al., 2006] where Meyer
and Ritchie’s Loop language was translated into T0. On the other hand, the Ackermann
function which is known not to be primitive recursive is representable in T1 and thus also
in Loop1. As far as we know, Loopω is the first total imperative language allowing to
program the Ackermann function.

Applications. A first application of these results is extensional: we derive a new charac-
terization of the class of Csillag-Kalmar elementary functions (the class E3 in Grzegorczyk
hierarchy). In [Beckmann and Weiermann, 2000], such a characterization is based on a
syntactic restriction on terms of a variant of Gödel System T. As a corollary of various
properties of our two translations we provide an imperative counterpart of this restriction.
In particular, we obtain that any Loopω program in which any bound of loop is a read-
only input variable is elementary.

A second application is intensional and is related to the so-called minimum problem. In
[Colson and Fredholm, 1998], the authors proved that in call-by-value System T, any algo-
rithm which computes a non-trivial binary function (where trivial means constant or pro-
jection plus constant), has a time-complexity which is at least linear in one of the inputs.
As a consequence of this property, there is no term that computes the minimum of two
natural numbers n and m in time O(min(n,m)). As a corollary of the lock-step simulation
we obtain a similar negative result for Loopω programs.
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Related works. There has been a lot of work on the semantics of Algol (major contribu-
tions are collected in [O’Hearn and Tennent, 1997]) and this work has influenced the
design of most modern programming languages. For instance, the Loopω language is very
close in spirit to the language partially described in [Reynolds, 1978] whose purpose was
in particular to show that it is possible to avoid aliasing while retaining Algol-like higher-
order procedures. More generally, our work can also be seen as providing a denotational
semantics for an imperative language using a λ-calculus and thus follows the Scott-Stra-
chey tradition [Stoy, 1977].

The idea of translating an imperative program into a functional one actually goes back
to [McCarthy, 1960]. However, our translation is somewhat closer to the state monad
[Moggi, 1991, Wadler, 1990] used to encode a mutable state (or references) in a pure func-
tional language. Although this encoding is usually global and thus changes the type of all
terms, a local encoding can be obtained if an effect system [Gifford and Lucassen, 1986] is
used for the source language (instead of a conventional type system). A simulation based
on such an encoding is described in [Wadler, 1998].

Similarly, in [Filliâtre, 2003], the author defines a monadic translation of simply-typed
functional programs with references (annotated with Floyd-Hoare assertions) into a type
theory. Their translation provides the core of the proof technique developed afterward for
imperative programs [Filliâtre and Marché, 2004]. Although similar to the one described
in this paper, their translation is only considered in the context of program verification
(no simulation is defined).

Finally, compiling one programming language into another in order to derive com-
plexity properties is a common approach. The reader is referred for instance to
[Jones, 1997] for various applications of this technique.

Plan of the paper. In Section 2, we present our variant of Gödel System T. In Section 3,
we describe the Loopω language (syntax, type system and semantics). In Section 4, we
show how to translate Loopω programs into functional programs and we prove the simu-
lation theorem. In Section 5, we define the converse translation, and we use it to prove
that Loopω is as expressive as System T. Finally, in Section 6, we describe the two appli-
cations.

2 Gödel System T

Gödel System T is usually defined as the simply typed λ-calculus extended with a type of
natural numbers and with primitive recursion at all types. We consider in this paper a
variant of System T with product types (tuples and n-ary functions) and a constant-time
predecessor operation. Moreover, since we are mainly interested here in the call-by-value
evaluation strategy, we formulate this system directly as a context semantics (a set of
reduction rules together with an inductive definition of evaluation contexts). As usual, we
consider terms up to α-conversion and the set FId(t) of free identifiers of a term t is
defined in the standard way. The rewriting system is summarized in Figure 2.1, where
variables x, x1, , xn range over a set of identifiers and t[v1/x1, , vn/xn] denotes the
usual capture-avoiding substitution. We also recall the type system in Figure 2.2 and we
consider only well-typed terms in the sequel.

Remark 2.1. In order to distinguish the successor S (which is a constructor) from the
successor seen as an operation (whose evaluation should imply a reduction step), we use
the keyword succ as an abbreviation for λx.S(x). Note that we also consider a primitive
constant-time predecessor (called pred) for complexity reasons: although this function is
clearly definable in System T its complexity would be at least linear under the call-by-
value evaluation strategy [Colson and Fredholm, 1998]. More details on this question are
given in Section 6.2 and Appendix A.

Notation 2.2. We use the more verbose syntax fn (x : σ ) ⇒ t instead of simply λx.t

whenever we wish to make the types explicit. Moreover, we write τ × as an abbreviation
for τ1× × τn and we consider unit as the special case of τ × obtained when n= 0.
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(types)
τ ::= int

| unit
| τ1→ τ2
| τ1× × τn

(terms)
t ::= x

| 0
| S(t)
| pred(t)
| t1 t2
| λ(x1, , xn).t
| (t1, , tn)
| rec(t1, t2, t3)

(values)
v ::= x

| 0
| S(v)
| (v1, , vn)
| λ(x1, , xn).t

(contexts)
C[ ] ::= [ ]

| C[ ] t

| v C[ ]
| S(C[ ])
| pred(C[ ])
| rec(C[ ], t2, t3)
| rec(v1, C[ ], t3)
| rec(v1, v2,C[ ])
| (v1, vi−1, C[ ], ti+1 , tn)

(evaluation rules)
C[pred(0)] ! C[0]

C[pred(S(v))] ! C[v]
C[rec(0, v2, λx.t)] ! C[v2]

C[rec(S(v1), v2, λx.t)] ! C[t[S(v1)/x] rec(v1, v2, λx.t)]
C[λ(x1, , xn).t (v1, , vn)] ! C[t[v1/x1, , vn/xn]]

Figure 2.1. Gödel System T

x: τ ∈Γ

Γ$x: τ
(ident)

Γ$ 0: int (zero)

Γ$ t: int

Γ$S(t): int
(succ)

Γ$ t: int

Γ$pred(t): int
(pred)

Γ$ t1: τ1 Γ$ tn: τn

Γ$ (t1, , tn): τ1× × τn

(tuple)

Γ, x1: τ1, , xn: τn$ t:σ

Γ$λ(x1, , xn).t : (τ1× × τn)→σ
(abs)

Γ$ t1:σ→ τ Γ$ t2: σ

Γ$ t1 t2 : τ
(app)

Γ$ t1: int Γ$ t2: τ Γ$ t3: int→ τ → τ

Γ$ rec(t1, t2, t3): τ
(rec)

Figure 2.2. Functional type system

Remark 2.3. As usual [Landin, 1964], we write let (x1, , xn) = u in t be an abbrevia-
tion for the redex λ(x1, , xn).t u. The following typing rule and evaluation rule can be
obtained:

Γ#u: (τ1× × τn) Γ, x1: τ1, xn: τn# t: σ

Γ# let (x1, , xn)= u in t: σ

C[let (x1, , xn) = (v1, , vn) in t] ! C[t[v1/x1, , vn/xn]]
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Finally, note that let (x1, , xn)= [ ] in t is an evaluation context.

Let us recall the well-known infinite syntactic hierarchy of fragment Tn of Gödel
System T. We call “recursion rank” of a term t the maximum degree of the types of the
recursors which occur in t, where the degree of a type is defined as follows:

Definition 2.4. The degree ∂(τ ) of a type τ is defined inductively by:

− ∂(int)=0

− ∂(σ→ τ ) =max (∂(σ)+ 1, ∂(τ ))

− ∂(τ1× × τn)=max (∂(τ1), , ∂(τn))

Remark 2.5. Using standard type isomorphisms, any type is isomorphic either to unit
or to some type which does not contain unit . Thus we may consider without restriction
that τ does not contain unit in the above definition.

Definition 2.6. The fragment Tn of System T is defined as the set of terms with recur-
sion rank less or equal to n.

2.1 Example: the Ackermann function

Our running example in this paper is the Ackermann function. This function is known
not to be primitive recursive [Peter, 1968] but it can be represented in System T, for
instance as follows:

ack(m, n)= (rec(m, λy.succ(y), λi.λh.λy.rec(y, (h S(0)), λj.λk.(h k))) n)

It is well-known (see [Avigad and Feferman, 1998] for instance) that functions of type
Nk→N that can be represented by a term of T0 correspond exactly to primitive recursive
functions. Not surprisingly, the term given in the above definition does not belong to T0

but to T1 (the outermost rec in the above definition has type int → int and thus has
degree 1).

3 The higher-order Loop language

In this section, we present the Loopω language. First, we describe the syntax and the type
system, then we detail the semantics of the language. Since the structured operational
semantics is tailored for the lock-step simulation, we first present the natural semantics.
Our purpose is to give evidence that the various syntactic constructs have the usual
semantics. In particular, this semantics extends the usual semantics for first order Loop
programs with full-fledged higher-order procedures.

However natural semantics relates a program and an initial store directly to some final
store and thus describes only the evaluation of terminating programs. In particular, it
fails to distinguish between a non-terminating program and a run-time error. For this
reason, we also define a transition semantics which refines the natural semantics. We use
the transition semantics for proving the soundness of type systems and the simulation
theorem (in order to derive that Loopω programs are always terminating).

Both semantics are location-free semantics. The benefit is clear: this kind of semantics
is simpler than a traditional two-level semantics (where the environment binds variables
to locations and the store maps locations to values). The main drawback is the difficulty
to account for advanced features such as variable aliasing. However, for our purpose, a
location-free semantics is sufficient. A discussion on this subject can be found in
[Plotkin, 1981] p. 70 (see also [Felleisen and Friedman, 1987], [Donahue, 1977] and
[Reynolds, 1981]).
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3.1 Syntax

The syntax of imperative types and phrase types is the following:

σ, τ ::= int | proc (in τ ;out σ )

T ::= τ | comm | seq

Note that we consider only two formal parameter modes in and out (borrowed from Ada
[DOD, 1980]) which specify “abstractly” the direction of data flow between caller and
callee (without implying a specific parameter-passing mechanism).

The raw syntax of imperative programs is given below. There is nothing particular to
this syntax except that we annotate each block {s}x with a list of variables x (see
Remark 3.2). In the following grammar, x, y, z range over a set of identifiers, q̄ ranges
over natural numbers (i.e., constant literals) and ε denotes the empty sequence.

(command) c ::= {s}x

| for y 1 to e {s}x

| y e | inc(y) | dec(y)

| p(e ; y )

(sequence) s ::= ε

| c ; s

| cst y = e; s

| var y: τ e; s

(anonymous procedure) a ::= proc (in y : τ ;out z : σ ) {s}z

(expression) e ::= y | q̄ | a

(procedure) p ::= y | a

(value) w ::= q̄ | a

Remark 3.1. Note that the body of a procedure is annotated exactly by its out parame-
ters. Besides, since anonymous procedures are not very popular in imperative languages,
we use in the examples the more conventional notation for declaring local (named) proce-
dures:

proc p(in y : τ ;out z : σ ) {s1}z ; s2

Following Landin’s correspondence principle [Landin, 1964], this notation is defined as an
abbreviation for a constant declaration:

cst p =proc (in y : τ ;out z : σ ) {s1}z ; s2

3.2 Type system

The type system of Loopω may be seen as a simple effect system
[Gifford and Lucassen, 1986, Talpin and Jouvelot, 1994] since it is able to guarantee the
absence of side-effects, aliasing and fix-points in well-typed programs. Its main feature is
the distinction between mutable variables and read-only variables. More formally, a
typing environment has the form Γ; Ω where Γ and Ω are (possibly empty) lists of pairs x:
τ (x ranges over variables and τ over types). Γ stands for read-only variables (constants
and in parameters) and Ω stands for mutable variables (local variables and out parame-
ters). The type system is given in Figure 3.1. As usual, we consider programs up to

6



x: τ ∈Γ;Ω

Γ;Ω$x: τ
(t.env)

Γ;Ω$ q̄ : int (t.num)

Γ;Ω$ ε: seq
(t.seq-i)

Γ; Ω$ c: comm Γ;Ω$ s: seq

Γ; Ω$ c ; s : seq
(t.seq-ii)

Γ;Ω$ e: τ Γ, y: τ ; Ω$ s: seq

Γ;Ω$ cst y = e; s : seq
(t.cst)

Γ;Ω$ e: τ Γ; y: τ , Ω$ s: seq s ε

Γ;Ω$var y: τ e; s : seq
(t.var)

x ⊂Ω Γ; x : σ $ s: seq

Γ; Ω$ {s}x :comm
(t.comm)

y: int ∈Ω

Γ;Ω$ inc(y): comm
(t.inc)

y: int ∈Ω

Γ; Ω$dec(y):comm
(t.dec)

y: τ ∈Ω Γ; Ω$ e: τ

Γ;Ω$ y e: comm
(t.assign)

x ⊂Ω Γ;Ω$ e: int Γ, y: int; x : σ $ s: seq

Γ; Ω$ for y 1 to e {s}x :comm
(t.for)

z ∅ Γ, y : τ ; z : σ $ s: seq

Γ;Ω$proc (in y : τ ;out z :σ ){s}z :proc (in τ ;out σ )
(t.proc)

Γ;Ω$ p:proc (in τ ;out σ) Γ;Ω$ e : τ r :σ ∈Ω

Γ;Ω$ p(e ; r ): comm
(t.call)

Figure 3.1. Imperative type system

renaming of bound variables, where the notion of free variable of a command is defined in
the standard way.

Remark 3.2. (scoping rules). As usual for C -like languages, the scope of a constant
(rule t.cst) or a variable (rule t.var) extends from the point of declaration to the end of
the block containing the declaration. Moreover, the type system guarantees that in a
block {s}x , the variables x are visible and they contain all the free mutable variables
occurring in the sequence. For simplicity, we assume that these annotations are supplied
by the programmer, but missing annotations can automatically be inferred as follows:

− a block or a loop is annotated by its free mutable variables,

− the body of a procedure is annotated by its out parameters.

Remark 3.3. (no aliasing). In order to avoid parameter-induced aliasing problems, we
assume that all ri are pairwise distinct in rule (t.call). Indeed, we will see that in our
semantics, mutable variables directly denote values and consequently different variables
cannot refer to the same location in the store. However, aliasing is known to be problem-
atic for most aspects of programming languages (see for instance
[Gellerich and Plödereder, 2001] and [Filliâtre, 2003]) and we regard the absence of
parameter-induced aliasing in Loopω more as a feature than as a limitation.
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Remark 3.4. (no side-effects). Rule (t.proc) implies that the only mutable variables
which may occur inside the body of a procedure are its out parameters and its local
mutable variables. This is enough to guarantee the absence of side-effects (i.e., modifica-
tion of non-local variables). The purpose of this restriction is mainly to simplify the
semantics of the language. However, side-effects can still be simulated in most cases by
passing the non-local variable as an explicit in out parameter. This simulation is often
referred to as the “state-passing transform” (see for instance [Filinski, 1994] and
[Wadler, 1990]).

Remark 3.5. (no fix-points). Rule (t.proc) also forbids the reading of non-local
mutable variables: this is necessary to prevents the definition of fix-points in the language.
Indeed, there is a well-known technique called “tying the recursive knot” [Landin, 1964]
which takes advantage of higher-order mutable variables (or function pointers) to define
arbitrary recursive functions. This technique is used for instance in Scheme’s semantics of
the letrec construct [Kelsey et al., 1998]. Here is such a definition of a fix-point in the
Loopω syntax, where fix : proc (out int) is a mutable variable, but this command is not
typable in Loopω (since fix occurs in the body of f):

{
var f : proc (out int) := proc (out x : int){ fix (x ); }x;
fix := f ;

}fix

On the other hand, local procedures are not required to be closed: non-local read-only
variable (such as in parameters of enclosing procedures) are allowed. We shall see that
this is sufficient to encode a pure functional language.

3.3 Natural semantics

Since the evaluation relation in only defined for well-typed states, we also need to define
the notion of well-typed store.

Definition 3.6. A store µ is a finite mapping from (mutable) variables to closed impera-
tive values (i.e., integer literals and procedures). A state is a pair (c, µ) consisting of a
command c and µ.

Definition 3.7. (store typing). We say that µ is typable in Ω, which we write as Ω # µ,
if and only if for all x: τ ∈Ω, x∈ dom(µ) and ∅; ∅# µ(x): τ.

Definition 3.8. (state typing). We say that a state (c, µ) is typable in Ω, which we write
as Ω# (c, µ), if and only if ∅; Ω# c: comm and Ω# µ.

Note that expressions do not require any evaluation (since they are either variables or
values), but only fetching the corresponding value from the store whenever the expression
is a mutable variable. We introduce thus the following notation:

Notation 3.9. Given a store µ, let ϕµ be the trivial extension of µ to expressions defined
as follows ϕµ(x) = µ(x) if x is a variable and ϕµ(w) = w otherwise. In the sequel, we
write e =µ w for ϕµ(e) =w.

In order to assign default values to out parameters, we define a closed imperative value
for each imperative type.

Definition 3.10. For each type σ, we define inductively a default closed imperative value
ǫ(σ) as follows:

− ǫ(int) =0

− ǫ(proc (in τ ;out σ))=proc (in y : τ ;out z: σ ){}z

8



Lemma 3.11. The typing judgment ∅; ∅# ǫ(σ):σ is derivable.

Remark 3.12. Default values could be dispensed with using standard data-flow analysis
(see [Appel, 1998] for instance). This technique (also called liveness analysis) allows to
determine whether there is a potential execution path on which a variable is used before
it has been assigned an initial value. We preferred not to complicate the static analysis of
Loopω programs although such an analysis is certainly convenient from a practical stand-
point.

Remark 3.13. In the sequel, we shall allow for uninitialized local variables: they are
assumed to be implicitly initialized by the default value corresponding to their type. More
precisely, var y: τ ; s is an abbreviation for: var y: τ ǫ(τ ); s.

Notation 3.14. Let c be a command. We write c[x ← w] for the substitution of a read-
only variable x by a closed imperative value w and c[y z] for the renaming of a mutable
variable y by a mutable variable z. The formal definitions are given in Appendix B.

We are now ready to define the natural semantics of Loopω. The inductive definition of
the evaluation relation written ⇓ is summarized in Figure 3.2 (where µ[y←w] denotes the
store obtained by replacing the value of variable y in µ by w and (µ, y ← w) denotes the
store obtained by extending the store µ with a new variable y mapped to w).

(s, µ)⇓µ′

({s}z , µ)⇓µ′
(n.block)

(s, µ)⇓µ′

(({}z ; s), µ)⇓µ′
(n.seq-i)

(c, µ)⇓µ′ (s, µ′)⇓µ′′

((c; s), µ)⇓µ′′
(n.seq-ii)

(s, µ)⇓µ′

(({var y: τ e; }z ; s), µ)⇓µ′
(n.var-i)

e =µ w (s, (µ, y←w))⇓(µ′, y←w′))

((var y: τ e; s), µ))⇓µ′
(n.var-ii)

e =µ w (s, µ[y←w])⇓µ′

((y e; s), µ)⇓µ′
(n.assign)

µ(y)= q̄

(inc(y), µ))⇓ µ[y← q + 1]
(n.inc)

µ(y)= q̄

(dec(y), µ)⇓µ[y← q –̇ 1]
(n.dec)

e =µ w, p =µproc (in y : σ ;out z : τ ){s}z ({s[y ←w ][z r ]}r , µ[r ← ε(τ )])⇓µ′

(p(e ; r ), µ)⇓µ′
(n.call)

e=µ w (s[y←w], µ)⇓µ′

((cst y = e; s), µ)⇓µ′
(n.cst)

e=µ 0̄

(for y 1 to e {s}z , µ)⇓µ
(n.for-i)

e =µ q +1 (for y 1 to q̄ {s}z , µ)⇓µ′ ({s}z [y← q + 1], µ′)⇓µ′′

(for y 1 to e {s}z , µ)⇓µ′′
(n.for-ii)

Figure 3.2. Natural semantics
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Remark 3.15. We rely on the renaming and substitution meta-operations in rule
(N.call) in order to avoid building closures in the semantics. Besides, in parameters are
passed by copy (i.e., by value) whereas out parameters are passed by reference. Note that
since parameter-induced aliasing is forbidden, this latter choice has no consequence on the
denotational semantics of the language (but it is important from a complexity stand-
point).

3.4 Transition semantics

As expected, the transition semantics of Loopω is given by a transition system which
defines inductively a binary relation between states [Plotkin, 1981]. The main design
choices were influenced by the expected cost of each command. For instance, this explains
the rule (s.assign) where the assignment is dealt with directly inside the sequence. Simi-
larly, the notation =µ allows us to hide the cost of fetching the value of a variable from
the store. The transition semantics is summarized in Figure 3.3.

Remark 3.16. This semantics is clearly deterministic since there is always at most one
rule which can be applied (depending on the content of the store and the shape of the
command). Moreover, the only case where no rule can be applied corresponds to the final
state (when the program is reduced to an empty block).

Remark 3.17. It is worth mentioning that rules (s.var-i) and (s.var-ii) allows to give a
simple semantics to local variable without dealing with an explicit stack. Although this is
usual in natural semantics, this technique is not widespread in transition semantics. The
ingenious idea consisting in updating a local variable directly in the source (in rule s.var-
ii) is attributed to Eugene Fink in [Reynolds, 1998] p. 130. This technique is however
well-known in functional language semantics [Felleisen and Friedman, 1987].

As expected, the “subject reduction” property holds for the transition semantics. The
proof of the following theorem is given in Appendix B.

Theorem 3.18. For any environment Ω and any state (c, µ), we have that ∅; Ω # (c, µ)
and (c, µ) (c′, µ′) implies ∅; Ω# (c′, µ′) and dom(µ) = dom(µ′).

Moreover, the equivalence of the natural and transition semantics for Loopω can be
proved by establishing the following two usual lemmas.

Lemma 3.19. The relation ({s}x , µ) " ({}x , µ′) is closed under the defining conditions
of the ⇓ relation.

Lemma 3.20. The ⇓ relation is closed under head expansion: if ({s}x , µ) ({s′}x , µ′)
and ({s′}x , µ′)⇓µ′′ then ({s}x , µ)⇓µ′′.

4 Lock-step simulation

In this section, we show how to translate a Loopω program into a term of System T and
we prove the simulation theorem. Then we exhibit a hierarchy of fragments Loopn which
is an imperative counterpart of the fragments Tn of Gödel System T. Finally, we intro-
duce the notion of “singular” Loopω program whose translation does not require the pro-
duct type in System T.

4.1 Translation

In order to translate default imperative values, we shall need corresponding default func-
tional values.
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(s, µ) (s′, µ′)

({s}z , µ) ({s′}z , µ′)
(s.block)

(({}z ; s), µ) (s, µ) (s.seq-i)

(c, µ) (c′, µ′)

((c; s), µ) ((c′; s), µ′)
(s.seq-ii)

e =µ w (s, (µ, y←w)) (ε, (µ′, y←w′))

((var y: τ e; s), µ) (ε, µ′)
(s.var-i)

e =µ w (s, (µ, y←w)) (s′, (µ′, y←w′))

((var y: τ e; s), µ) ((var y: τ w′; s′), µ′)
(s.var-ii)

e =µ w

((y e; s), µ) (s, µ[y←w])
(s.assign)

µ(y)= q̄

(inc(y), µ) (y q + 1, µ)
(s.inc)

µ(y)= q̄

(dec(y), µ) (y q –̇ 1, µ)
(s.dec)

e =µ w p =µproc (in y : σ ;out z : τ ){s}z

(p(e ; r ), µ) ({s[y ←w ][z r ]}r , µ[r ← ε(τ )])
(s.call)

e =µ w

((cst y = e; s), µ) (s[y←w], µ)
(s.cst)

e =µ 0̄

(for y 1 to e {s}z , µ) ({}z , µ)
(s.for-i)

e=µ q + 1

(for y 1 to e {s}z , µ) ({for y 1 to q̄ {s}z ; s[y← q + 1]}z , µ)
(s.for-ii)

Figure 3.3. Transition semantics

Definition 4.1. For each type σ, we define inductively a default closed value δ(σ) as fol-
lows:

− δ(int)= 0

− δ(σ→ τ )= fn (x: σ)⇒ δ(τ )

− δ(σ1× × σn)= (δ(σ1), , δ(σn))

We also write δ(σ ) as an abbreviation for (δ(σ1), , δ(σn)).

Lemma 4.2. The typing judgment # δ(σ):σ is derivable.

We are now ready to define the translation of imperative types. Note that the transla-
tion of a procedure type encode exactly the data-flow specified by the formal parameter
modes in and out (and this is sufficient since side-effects are not allowed).

Definition 4.3. The translations σ" of an imperative type σ is defined inductively as fol-
lows:

− int" = int

− proc (in σ ;out τ )" = (σ")×→ (τ ")×

Moreover, if Γ is x1: τ1, , xn: τn, we define Γ" as x1: τ1
", , xn: τn

".

The intuition behind the translation of imperative programs is the following: a block
{c1; ; cn}x is translated into:

let x1 = c1
" in let xn = cn

" in x

11



where each xi ⊆ x corresponds to the “output” of command ci and x is the output of the
block. Note in particular that the same identifier is used again and again in order to sim-
ulate imperative updates. For instance, the block {inc(x); inc(x)}x is translated as:

let x = succ(x) in let x = succ(x) in x

Let us now give the formal definition of the translation and then present a complete
example.

Definition 4.4. For any expression e, block b, sequence s and variables x, the transla-
tions e", b" and (s)x

" into terms of System T are defined by mutual induction as follows:

− n̄ " = Sn(0)

− y" = y

− (proc (in y : σ ;out z : τ ){s}z )" = fn (y : σ ")⇒{s}z
" [δ(τ ")/z ]

− {s}x
" = (s)x

"

− (ε)x
" = x

− (var y: τ e; s)x
" = (s)x

" [e"/y]

− (cst y = e; s)x
" = let y = e" in (s)x

"

− (y e; s)x
" = let y = e" in (s)x

"

− (inc(y); s)x
" = let y = succ(y) in (s)x

"

− (dec(y); s)x
" = let y =pred(y) in (s)x

"

− (p(e ; z ); s)x
" = let z = p" e " in (s)x

"

− ({s1}z ; s2)x
" = let z = {s1}z

" in (s2)x
"

− (for y 1 to e {s1}z ; s2)x
" = let z = rec(e", z , λy.λz .{s1}z

") in (s2)x
"

Remark 4.5. It is possible to factor out the translation of commands in the above defi-
nition. Indeed, the translation of a non-empty block {c; s}x always follows the same pat-
tern: {c; s}x

" = let z = c" in {s}x
" where z is a list of “output” variables of depending on

the command c. The translation c" of a command c together with its output variables
O(c) are summarized in the following table:

c c" O(c)

y e e" y

inc(y) succ(y) y

dec(y) pred(y) y

p(e ; z ) p" e " z

{s}z {s}z
" z

for y 1 to e {s}z rec(e", z , λy.λz .{s}z
") z

Lemma 4.6. For any imperative type σ, we have ǫ(σ)" = δ(σ").

The following theorem states that translation ( )" is type-preserving (its proof is given
in Appendix C).

Theorem 4.7. For any environments Γ and Ω, any expression e and any block {s}x we
have:

− Γ; Ω# e: τ implies Γ", Ω"# e": τ"

− Γ; Ω, x : σ # s: seq implies Γ", Ω", x : σ"# (s)x
" : (σ")×

− Γ; x : σ # {s}x : comm implies Γ", x : σ"# {s}x
" : (σ ")×

12



4.2 Example: the Ackermann function

Here is an implementation of the Ackermann function as an anonymous procedure of
Loopω. This program was actually programmed by hand, but we shall see in Section 5
how to get almost the same program from the definition of ack in System T.

proc (in m:int , n : int ; out r : int) {
proc next(in y : int ; out p: int) {

p := y ;
inc(p);

}p;
var g : proc (in int ; out int);
g := next ;
for i := 1 to m {

cst h = g ;
proc aux (in y : int ; out p: int) {

h(1, p);
for j := 1 to y {

h(p; p);
}p;

}p;
g := aux ;

}g;
g(n, r);

}r;

By applying translation ( )", we obtain the following anonymous function. For clarity, we
use Standard ML derived forms [Milner et al., 1997] for declaring several functions (key-
word fun) and values (keyword val) within a unique let.

fn (m : int , n : int) ⇒ let

fun next(y : int) = let

val p = y
val p = succ(p)

in p end

val g = next
val g = rec(m, g , λi.λg.let

val h = g
fun aux(y : int) = let

val p = h S (0)
val p = rec(y , p, λj.λp.let

val p = h p
in p end)

in p end

val g = aux
in g end)

val r = g n
in r end

Note that although we could prove by hand that this functional program is equivalent to
the term ack given in Section 2.1, we shall see that this property is mostly an application
of the main theorem of Section 5.

4.3 Simulation theorem

Let us prove the main theorem which states that for any block {s}x , the evaluation of
{s}x runs in lock-step with the reduction of {s}x

" . We first need some preliminary substi-
tution lemmas:
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Notation 4.8. If µ is a store and x ⊂ dom(µ), we write µ(x ) for (µ(x1), , µ(xn)).
Moreover, if v = (v1, , vk) we write v " for the tuple (v1

", , vk
").

Lemma 4.9. For any block {s}z such that Γ; z : τ # {s}z : comm, the following equality
holds: {s}z

" [δ(τ )/z ] = {s[z r ]}r
" [δ(τ )/r ].

Lemma 4.10. For any command c, any read-only variable x and any closed imperative
value w, we have (c[x ←w ])" = c"[w"/x ].

Lemma 4.11. If e =µ w then either e = w or e is some variable xi with µ(xi) = w and

then c"[µ(x )"/x ] = c"[w"/xi][µ(x )"/x ].

Theorem 4.12. For any well-typed state (s, µ), if x = dom(µ) and z ⊆x we have:

(s, µ) (s′, µ′) implies (s)z
" [µ(x )"/x ] ! (s′)z

" [µ′(x )"/x ]

Proof. By induction on the derivation of (s, µ) (s′, µ′). For brevity, we write v for
µ(x ) and v ′ for µ′(x ).

• (s.block)

(s)z
" [v "/x ] ! (s′)z

" [v ′"/x ]

{s}z
" [v "/x ]) ! {s′}z

" [v ′"/x ]
Indeed:

{s}z
" [v "/x ]
= (s)z

" [v "/x ]

! (s′)z
" [v ′"/x ] by induction hypothesis (since z ⊆ x )

= {s′}z
" [v ′"/x ]

• (s.seq-i)

({}y ; s)z
" [v "/x ] ! (s)z

" [v "/x ]

Indeed:

({}y ; s)z
" [v "/x ]

= (let y = {}y
" in (s)z

")[v "/x ]

= (let y = y in (s)z )"[v "/x ]
! (s)z

" [v "/x ]

• (s.seq-ii)
c"[v "/x ] ! c′

"[v ′"/x ]

(c; s)z
" [v "/x ] ! (c′; s)z

" [v ′"/x ]

Indeed, if r =O(c) as defined in Remark 4.5, we have:

(c; s)z
" [v "/x ]
= (let r = c" in (s)z

")[v "/x ]
= (let r = c"[v "/x ] in (s)z

")[v "/x ]

! (let r = c′
"[v ′"/x ] in (s)z

")[v "/x ] by induction hypothesis

= (let r = c′
"
[v ′"/x ] in (s)z

")[v ′"/x ] since µ"(y) = µ′"(y) for any y r

= (let r = c′
"
in (s)z

")[v ′"/x ]

= (c′; s)z
" [v ′"/x ]

• (s.var-i)

(s)z
" [v"/x , w"/y] ! (ε)z

" [v ′"/x , w ′"/y]

(var y: τ e; s)z
" [v "/x ] ! (ε)z

" [v ′"/x ]

Since e=µ w, by lemma 4.11:
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(var y: τ e; s)z
" [v "/x ]

= ((ε)z
" [e"/y])[v "/x ]

= ((s)z
" [w"/y])[v "/x ]

! (ε)z
" [w"/y ′][v ′"/x ] by induction hypothesis (since z ⊆ x ⊆x , y)

= ((ε)z
" [v ′"/x ] since y z

• (s.var-ii)
(s)z

" [v"/x , w"/y] ! (s′)z
" [v ′"/x , w ′"/y]

(var y: τ e; s)z
" [v "/x ] ! (var y: τ w ′; s′)z

" [v ′"/x ]

Since e=µ w, by lemma 4.11:

(var y: τ e; s)z
" [v "/x ]

= ((s)z
" [e"/y])[v "/x ]

= ((s)z
" [w"/y])[v "/x ]

! ((s′)z
" [w ′"/y])[v ′"/x ] by induction hypothesis (since z ⊆ x ⊆{x , y})

= (var y: τ w ′; s′)z
" [v ′"/x ]

• (s.assign)

(y e; s)z
" [v "/x ] ! (s)z

" [v ′"/x ]

with v ′= µ[y←w](x ). Since e =µ w, by lemma 4.11:

(y e; s)z
" [v "/x ]

= (let y = e" in (s)z
")[v "/x ]

= (let y = w" in (s)z
")[v "/x ]

! (s)z
" [w"/y][v "/x ]

= (s)z
" [v ′"/x ]

• (s.inc)

(inc(y))"[v "/x ] ! q + 1"[v "/x ]

Indeed, since µ(y)= q̄ :

(inc(y))"[v "/x ]
= succ(y)[v "/x ]
= succ(Sq(0))

! (Sq+1(0)))
= q +1"

• (s.dec) This case is similar to (s.inc).

• (s.call)

p(e , r )"[v "/x ] ! {s[z r ][y ←w ]}r
" [v ′"/x ]

where v ′ = µ′(x ) = µ[r ← ǫ(τ )](x ). By Lemma 4.11, since e =µ w and p =µ proc

(in y : σ ;out z : τ ){s}z :

p(e , r )"[v "/x ]
= (p" e ")[v "/x ]
= (proc (in y : σ ;out z : τ ){s}z )" w")[v "/x ]
= (fn (y : σ")⇒{s}z

" [δ(τ ")/z ]) w")[v "/x ]
! {s}z

" [δ(τ ")/z ][w"/y ][v "/x ]
= {s[z r ]}r

" [δ(τ ")/r ][w"/y ][v "/x ] by Lemma 4.9
= {s[z r ]}r

" [w"/y ][ǫ(τ )"/r ][v "/x ] by Lemma 4.6
= {s[z r ][y ←w ]}r

" [ǫ(τ )"/r ][v "/x ] by Lemma 4.10

= {s[z r ][y ←w ]}r
" [v ′"/x ] since r ⊆ x.
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• (s.cst)

(cst y = e; s)z
" [v "/x ] ! (s[y←w])z

" [v "/x ]

Since e=µ w, by Lemma 4.11:

(cst y = e; s)z
" [v "/x ]

= (let y = e" in (s)z
")[v "/x ]

= (let y = w" in (s)z
")[v "/x ]

! ((s)z
" [w"/y])[v "/x ]

= (s[y←w])z
" [v "/x ] by Lemma 4.10

• (s.for-i)

(for y 1 to e {s}z )"[v "/x ] ! {}z
" [v "/x ]

Since e=µ 0, by Lemma 4.11:

(for y 1 to e {s}z )"[v "/x ]
= rec(e", z , λy.λz .{s}z

")[v "/x ]
= rec(0, z , λy.λz .{s}z

")[v "/x ]
! z [v "/x ]
= {}z

" [v "/x ]

• (s.for-ii)

(for y 1 to e {s}z
")[v "/x ] ! {for y 1 to q̄ {s}z ; s[y← q + 1]}z

" [v "/x ]

Since e=µ q +1, by Lemma 4.11:

(for y 1 to e {s}z )"[v "/x ]
= rec(e", z , λy.λz .{s}z

")[v "/x ]

= rec(Sq+1(0), z , λy.λz .{s}z
")[v "/x ]

! ((λz .{s}z
" [Sq+1(0)/y]) rec(Sq(0), z , λy.λz .{s}z

"))[v "/x ]
= (let z = rec(Sq (0), z , λy.λz .{s}x

" ) in {s[y← q + 1]}z
")[v "/x ]

= (let z =(for y 1 to q̄ {s}z )" in {s[y← q + 1]}z
")[v "/x ]

= {for y 1 to q̄ {s}z ; s[y← q + 1]}z
" [v "/x ]

"

Corollary 4.13. All programs of Loopω are terminating.

Proof. Indeed, since System T is strongly normalizing (see [Girard et al., 1989] for
instance). "

Let us now focus on the imperative counterpart of the hierarchy of fragment Tn of
Gödel System T. We define first the level of an imperative type and then the “iteration
rank” of a Loopω program as follows:

Definition 4.14. The level ℓ(τ ) of an imperative type τ is defined inductively by:

− ℓ(int) =0

− ℓ(proc (in y : σ ;out z : τ ){s}z ) =max (ℓ(σ )+ 1, ℓ(τ ))
where ℓ(τ )=max (ℓ(τ1), , ℓ(τn)).

Definition 4.15. We call “iteration rank” of a Loopω program p the maximum level of
the types of mutable variables which annotate a loop of p.

Definition 4.16. The fragment Loopn of Loopω is defined as the set of programs with
iteration rank less than n.
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Lemma 4.17. For any imperative types τ, ∂((τ ")×) = ℓ(τ ).

Proposition 4.18. For any Loopω program p, the iteration rank of p is the same as the
recursion rank of p".

Proof. Indeed, since for any loop which occurs in p with mutable variables z : τ we have:

(for y 1 to e {s}z )" = rec(e", z , λy.λz .{s}z
")

where this recursor has type (τ ")× and ∂((τ ")×)= ℓ(τ ) by lemma 4.17. "

Remark 4.19. A function computable in the fragment Loop0 is thus computable in T0,
hence it is primitive recursive. Consequently, adding only higher-order procedures
(without procedural variables) to the Loop language does not increase its expressive
power.

In the next section, we shall be interested in Loopω programs which are translated into
terms which contain no pairing and no pattern matching. The following lemma is
straightforward (by definition of the translation).

Definition 4.20. We call “singular” a Loopω program in which all procedures have
exactly one in parameter and one out parameter and all blocks are annotated by exactly
one mutable variable.

Lemma 4.21. For any singular Loopω program p, the term p" contains no product types
(no tuples and no pattern matching).

5 Expressiveness

In this section, we show how to represent any functional of Gödel’s system T by some
Loopω program. However, since there is no direct counterpart to pattern-matching in
Loopω, we consider in this section a variant of System T with explicit pairing function
and projections. On the other hand, it is straightforward to encode a (lazy) pair as an
anonymous procedure with no input parameter (a thunk).

Definition 5.1. We define (σ ∗ τ ) as unit → (σ × τ ) and call S the set of types built
inductively from int using the type constructors → and ∗ .

Definition 5.2. For any terms t: σ, u: τ we write < t, u > : σ ∗ τ as an abbreviation for
the term fn () ⇒ (t, u). Moreover, we define πσ,τ

1 : σ ∗ τ → σ and πσ,τ
2 : σ ∗ τ → τ as the fol-

lowing abbreviations:

πσ,τ
1 (z)= let (x, y) = z() in x and πσ,τ

2 (z)= let (x, y)= z() in y

Lemma 5.3. The following reduction rules are derivable (where v, w are values):

πσ,τ
1 <v, w > !" v πσ,τ

2 <v, w >!" w

Definition 5.4. For any type σ ∈S the translation σ# is defined as follows:

− int #= int

− (σ→ τ)#=proc (in σ#;out τ#)

− (σ ∗ τ )#=proc (out σ#, τ#)

Lemma 5.5. For any type σ ∈S, we have (σ#)" =σ.
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We are now ready to translate terms of System T into Loopω programs. More pre-
cisely, a term t of type σ is translated into a command c with exactly one free mutable r

variable of type σ# for the result (i.e., O(c) = r). For simplicity, we shall define the trans-
lation only for terms that obey some syntactic criterion:

Definition 5.6. We call V and L the subset of values and terms of System T defined by
the following syntax:

v, w : : = x | Sn(0) | λx.t | <t, u >

t, u : : = v | succ(v) | pred(v) | rec(v, u, λy.λz.t)

| (v w) | (t v) | (v u) | πσ,τ
1 (v) | πσ,τ

2 (v)

Remark 5.7. Clearly, terms of L can be seen as terms of System T since succ, πσ,τ
1 ,

πσ,τ
2 and < t, u > are just macro-definitions. Conversely, any term of System T (as

defined in figure 2.1) is clearly equivalent to a term of L. Indeed, the requirements that v

be a value in any sub-term of the form πσ,τ
1 (v), πσ,τ

2 (v) or rec(v, u, λy.λz.t) and that

either t or u be a value in an application (t u) are easily fulfilled by naming intermediate
results when necessary (using a β-redex to simulate a let).

Definition 5.8. For any value v in V and any term t in L such that Γ # t: σ, the transla-
tion v# and tr

# where r is a fresh variable of type σ# are defined by mutual induction as fol-
lows (the types of the terms are written as superscript when required):

− Sn(0)# = n̄

− y# = y

− (fn x: τ ⇒ tω)# = proc (in x: τ#;out y: ω#) ty
#

− ( <t, u > )# = proc (out x: σ#, y: τ#){tx
#; uy

#}x,y

− (v)r
# = r v#

− succ(v)r
# = {r v#; inc(r)}r

− pred(v)r
# = {r v#; dec(r)}r

− rec(v, u, λy.λz.t)r
# = {ur

#; for y 1 to v# {cst z = r; tr
#}r}r

− (v w)r
# = v#(w#; r)

− (v uτ)r
# = {var y: τ#; uy

#; v#(y; r)}r

− (tτ→ω v)r
# = {var x: (τ →ω)#; tx

#; x(v#; r)}r

− πσ,τ
1 (v)r

# = {var y: τ#; v#(r, y)}r

− πσ,τ
2 (v)r

# = {var x: σ#; v#(x, r)}r

Remark 5.9. In Definition 5.8, we tried to reach a compromise between the simplicity of
the translation and the effort required to prepare the term before its translation. It is
however possible to generalize the above translation to arbitrary terms of System T
(without restricting them to L). For instance, rec(e, u, λz.λy.t)r

# where e is an arbitrary
terms (not necessarily a value) can be translated as follows:

rec(e, u, λz.λy.t)r
#= {ur

#; var n: int ; en
# ; for y 1 to n {cst z = r; tr

#}r}r

Example 5.10. Recall the definition of the Ackermann function given in Section 2:

ack(n, m)= (rec(m, λy.succ(y), λh.λi.λy.rec(y, (h S(0)), λk.λj.(h k))) n)

By applying the translation with variable r: int for the result, we get the following block
for ack(n, m)r

#:
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{
var g : proc (in int ; out int); {

g := proc (in y : int ; out p: int) {
p := y;
inc(p);

}p;
for i := 1 to m {

cst h = g ;
g := proc (in y : int ; out p: int) {

h(1; p);
for j := 1 to y {

cst k = p;
h(k ; p);

}p;
}p;

}g;
}g;
g(n; r);

}r;

We obtain thus essentially the body of the imperative version of the Ackermann function
given in Section 2.1 (apart from non-mandatory blocks and constant declarations).

Note that all identifiers of the source term are mapped to read-only variables (hence
the introduction of a constant declaration in the translation of a recursor). This property
ensures that mutable variables do not occur in the body of procedures in the resulting
Loopω program: the only mutable variables are fresh variables introduced during the
translation.

Lemma 5.11. Given a term t∈L such that Γ# t: σ and a fresh mutable variable r of type
σ# we have Γ#; r: σ## tr

#: comm.

Proof. By induction on t. "

For any term t ∈ L, the fresh mutable variable r in tr
# is always initialized before it is

read, and thus r is not free in (tr
#)". This property is stated more formally by the fol-

lowing lemma.

Lemma 5.12. Given a term t∈L such that Γ# t: σ and a fresh mutable variable r of type
σ# we have r FId((tr

#)").

Proof. By induction on t. "

Let us write # for the reflexive, transitive and contextual closure (with respect to
arbitrary contexts) of the following general βπ-reduction rule (where t1, , tn are not nec-
essarily values):

let (x1, , xn)= (t1, , tn) in u u[t1/x1, , tn/xn]

As expected, the translated (tr
#)" of a term t requires several “administrative” reductions

in order to recover the original term.

Theorem 5.13. Given a term t ∈ L such that Γ # t: σ and a fresh mutable variable r of
type σ# we have (tr

#)" # t.

Proof. By mutual induction, we prove that for any value v ∈V such that Γ# v: τ we have
(v#)" # v and for any term t ∈ L such that Γ # t: σ and any fresh mutable variable r of
type σ# we have (tr

#)" # t.

• (Sn(0)#)" = n̄ " = Sn(0)
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• (y#)" = y" = y

• ((fn x: τ ⇒ tω)#)"

= (proc(in x: τ#;out y: ω#) ty
#)"

= fn (x: τ )⇒ (ty
#)"[δ(ω)/y]

= fn (x: τ )⇒ (ty
#)" since y FId((ty

#)")
# fn x: τ ⇒ t by induction hypothesis.

• ( <t, u >r
# )"

= (proc(out x: σ#, y: τ#){tx
#; uy

#}x,y)
"

= (fn ()⇒ let x =(tx
#)" in let y = (uy

#)" in (x, y))
# fn ()⇒ ((tx

#)", (uy
#)")

# <t, u > by induction hypothesis.

• ((v)r
#)"

= (r v#)"

= (v#)"

# v by induction hypothesis.

• (succ(v)r
#)"

= {r v#; inc(r)}r
"

= let r = (v#)" in let r = succ(r) in r

# let r = succ((v#)") in r

# succ((v#)")
# succ(v) by induction hypothesis.

• The case of pred is similar to succ.

• (rec(v, u, λy.λz.t)r
#)"

= {ur
#; for y 1 to v# {cst z = r; tr

#}r}r
"

= let r = (ur
#)" in let r = rec((v#)", r, λy.λr.let z = r in (tr

#)") in r

# let r = rec((v#)", (ur
#)", λy.λz.let z = z in (tr

#)") in r since r FId((tr
#)")

# rec((v#)", (ur
#)", x, λz.λy.(tr

#)")
# rec(v, u, λz.λy.t) by induction hypothesis.

• ((vτ→σ w)r
#)"

= (v#(w#; r))"

= (v#)"(w#)"

# (v w) by induction hypothesis.

• ((tτ→σ v)r
#)"

= {var p: (τ →σ)#; tp
#; p(v#; r)}r

"

= (let p = (tp
#)" in let r = p (v#)" in r)[δ(τ →σ)/p]

= let p= (tp
#)" in let r = p (v#)" in r since p FId((tp

#)")

# (tp
#)" (v#)"

# (t v) by induction hypothesis.

• ((vτ→σ u)r
#)"

= {var y: τ#; uy
#; v(y; r)}r

"

=(let y = (uy
#)" in let r = (v#)" y in r)[δ(τ)/y]

= let y = (uy
#)" in let r =(v#)" y in r since y FId((uy

#)")

# (v#)" (uy
#)"

# (v u) by induction hypothesis.

• (πσ,τ
1 (v)r

#)" =

= {var y: τ#; v#(r, y)}r
"

=(let (r, y)= (v#)"() in r)[δ(τ )/y]
= let (r, y)= (v#)"() in r since y FId((v#)")
# let (r, y)= v() in r by induction hypothesis.

= πσ,τ
1 (v) by definition of πσ,τ

1 .
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• The case of πσ,τ
2 is similar to πσ,τ

1 . "

Lemma 5.14. For any functional type τ, ∂(τ#)= ℓ(τ).

Proposition 5.15. Given a term t ∈ L such that Γ # t: σ and a fresh mutable variable p

of type σ#, the iteration rank of tp
# is the same as the recursion rank of t.

Proof. Indeed, any occurrence of a recursor type τ in t is translated as follows:

rec(x, u, λy.λz.s)r
#= {ur

#; for y 1 to x {cst z = r; sr
#}r}r

where r is a mutable variable of type τ#. We can conclude since r occurs inside a loop
and ∂(τ#)= ℓ(τ ) by lemma 5.14. "

Remark 5.16. Note that a term with no product types (no pairs and no projections) is
translated into a singular Loopω program.

6 Applications

6.1 Characterizing elementary functions

A first application of the results of this paper is extensional: we give a new characteriza-
tion of the class of Csillag-Kalmar elementary recursive functions (the class E3 in Grzegor-
czyk hierarchy). In [Beckmann and Weiermann, 2000], the authors consider a variant of
System T with an explicit discriminator D and an iterator I instead of a recursor and
they prove the following theorem:

Theorem 6.1. [Beckmann and Weiermann, 2000] The set of terms of System T which
contain no λ-abstraction of the form λx I(t, ) where x occurs in t compute exactly the
class of elementary recursive functions.

It is well-known that both operators D and I are special cases of the recursor where
D(n, a, b) ≡ rec(n, a, λi.λx.b) and I(n, b, λy.a) ≡ rec(n, b, λi.λy.a) where x, i are fresh
identifiers. On the imperative side, these operators correspond respectively to the stan-
dard compound statements if then else and loop n { } (where there is no iter-
ation variable available inside the body of the loop).

Given a term t, their restriction amounts to requiring that in any sub-term I(u, ) of t

the free identifiers of u are actually free identifiers of t (input identifiers). Let us now
define the imperative counterpart of this restriction.

Definition 6.2. We call “elementary” any singular Loopω program p such that Γ; r:
int # p: comm and any loop has the form {var n: int ; {s1}n; loop n {s2}z}z where the
only free read-only variables of s1 are in Γ.

Remark 6.3. In this definition, the loop statement corresponds to a macro-definition for
a for loop in which the iteration variable does not occur. Note also that if then

else statements are allowed without restriction in p. In particular, we obtain that any
Loopω program in which any bound of loop is a read-only input variable is elementary.

As a corollary of Theorems 4.12 and 5.13 we obtain the following result:

Corollary 6.4. The elementary singular Loopω programs compute exactly the class of
elementary recursive functions.

Proof. Indeed, let p be and elementary singular Loopω program. For any occurrence of
a loop statement in p we have:
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{var n: int ; {s1}n; loop n {s2}z}z
"

= let n= {s1}n
" in let z = rec(n, z, λz.λy.{s2}z

") in z

# rec({s1}n
" , z , λy.λz.{s2}z

") =I({s1}n
" , z , λz.{s2}z

")

Since the only free read-only variables of {s1}n
" are input variables, the term p" computes

thus an elementary function. Conversely, for any term t: σ of System T which obeys Beck-
mann and Weirmann’s restriction, the term tr

# (where r is a fresh mutable variable of type
σ#) is an elementary singular Loopω programs (see remark 5.9). "

Remark 6.5. If x is an identifier in rec(x, z, λy.λz.{s}z
") there is no need for introducing

the local variable n in its imperative translation and we obtain thus the following simpler
form loop x {s}z. As a special case, we obtain thus that any Loopω program in which
any bound of a loop is an input read-only variable is elementary. Actually, we conjecture
that such programs are sufficient to represent any elementary function (a proof of this
result would follow step by step the proof given for System T in Section 4 of
[Beckmann and Weiermann, 2000]).

Remark 6.6. For simplicity, we restricted ourselves to singular Loopω programs since
[Beckmann and Weiermann, 2000] do not consider product types. However, since their
result is extensional, any encoding of product types in System T (which does not use the
recursor) would allow to generalize the above corollary to non-singular elementary Loopω

programs. Such an encoding is the following:
The product σ × τ is defined by induction on σ and then on τ . Firstly, int × int is

encoded as int → int where 〈t, u〉int×int
≡ λb.D(b, t, u) and with πint×int

1 (p) ≡ (p 0) and

πint×int
2 (p) ≡ (p S(0)). Now int × (σ → ς) is defined as σ → (int × ς) and (σ → ς) × τ as

σ → (ς × τ ). The corresponding pairing functions and projections are summarized below.
It is straightforward to prove that π1〈t, u〉 = t and π2〈t, u〉 = u for any types σ , τ (note
however that the η-rule is required).

〈t, u〉
int×(σ→ς)

= λx: σ.〈t, (u x)〉int×ς
〈t, u〉(σ→ς)×τ

=λx: σ.〈(t x), u〉
ς×τ

πint×(σ→ς)
1 (z) = πint×ς

1 (z δ(σ)) π(σ→ς)×τ
1 (z) =λx: σ.πς×τ

1 (z x)

πint×(σ→ς)
2 (z) = λx: σ.πint×ς

2 (z x) π(σ→ς)×τ
2 (z) =πς×τ

2 (z δ(σ))

6.2 The minimum problem

The second application is intensional and is related to the so-called minimum problem. In
[Colson and Fredholm, 1998], the authors proved that in call-by-value System T, any algo-
rithm which computes a non-trivial binary function (where trivial means constant or pro-
jection plus constant), has a time-complexity which is at least linear in one of the inputs.
As a consequence, they obtain the following result:

Theorem 6.7. [Colson and Fredholm, 1998] There is no term of call-by-value System T
which computes the minimum of two natural numbers with time-complexity O(min(n, m)).

Remark 6.8. It is worth noticing that this property depends strongly on the reduction
rules used for the recursor (and not only on the strategy). For instance, the property does
not hold if we consider the following reduction rule for rec (which is derivable in call-by-
name, but not in call-by-value):

rec(S(n), v, λx.λy.t) ! t[n/x, rec(n, b, λx.λy.t)/y]

Indeed, since we consider weak reduction and since y may occurs under the scope of a λ-
abstraction in t, there no reason that rec(n, b, λx.λy.t) be the next redex to contract. In
fact, one can easily show that call-by-name evaluation can be simulated under call-by-
value evaluation using this rule and the usual thunk-based encoding
[Hatcliff and Danvy, 1997].
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Note that [Colson and Fredholm, 1998] do not consider product types nor a predecessor
operation. However, as a direct corollary of this theorem and the lock-step simulation, we
can still obtain:

Corollary 6.9. There is no singular Loopω program without dec which computes the
minimum of two natural numbers n,m with time-complexity O(min(n, m)).

In order to generalize this result to arbitrary Loopω programs, we need to extend first
Colson and Fredholm’s theorem. Although their proof technique seems to apply to pro-
duct types, we did not succeed in extending it with a one-step predecessor operation.
However, we present a direct proof of the result for our variant of System T in
Appendix A and then we get the expected corollary.

Corollary 6.10. There is no Loopω program which computes the minimum of two nat-
ural numbers n,m with time-complexity O(min(n, m)).

Appendix A Ultimate Obstinacy

In this appendix, we show that (non-trivial) terms of System T are “ultimately obstinate”
(this terminology is borrowed from [Colson, 1991]) even in the presence a one-step prede-
cessor operation and product types. However, since the techniques developed in
[Colson and Fredholm, 1998] do not seem to generalize easily to this case, we present here
a direct proof of this result.

We first extend the syntax of terms and values with an infinite number of constants ⊥i
k

of type N and we supplement our set of reduction rules with the following rule:

C[pred(⊥i
k)]! C[⊥i

k+1]

We denote by !⊥ this extended rewriting system. Intuitively, a constant ⊥i
k represents

a “sufficiently large” natural number (on which the predecessor can be applied at least k

times). The strong normalization of reduction !⊥
∗ for well-typed terms is a consequence

of the following lemma (since the reduction ! is strongly normalizing for well-typed
terms).

Lemma A.1. If t[⊥1
k1/x1, , ⊥n

kn/xn] ! u[⊥1
k1/x1, , ⊥n

kn/xn] for some terms t, u then
t[0/x1, , 0/xn] ! u[0/x1, , 0/xn].

Since terms now possibly contain constants ⊥i
k of type N , even a well-typed term can

get stuck during evaluation (the term cannot be evaluated further) although it is not yet
a value. This lemma allows us to split the set of terms into constant, trivial and ulti-
mately obstinate terms.

Lemma A.2. Given a well-typed term t of type N with free variables x1, , xn of type N,
if t[⊥1

0/x1, , ⊥n
0/xn] !

⊥

p
v where v is in normal form then one of the following cases

holds:

− v is a value Sk(0) (we say that t is “constant”)

− v is a value Sk(⊥i
m) with m $ p (we say that t is “trivial”)

− there is an evaluation context C[ ] such that v =C[rec(⊥i
m, v2, v3)] and m $ p

(we say that t is “ultimately obstinate”)

Proof. By inspection of normal forms (and then by induction on the derivation to show
that m $ p). "

Definition A.3. The S-substitution t!S(⊥i)/⊥i" is the homomorphic extension of the
basic function defined as follows:

− ⊥i
0!S(⊥i)/⊥i"= S(⊥i

0)
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− ⊥i
k+1!S(⊥i)/⊥i"=⊥i

k

We write t!Sp(⊥i)/⊥i" for the generalized S-substitution defined by induction on p with

t
#
S0(⊥i)/⊥i

$
= t and t

#
Sp+1(⊥i)/⊥i

$
= t!S(⊥i)/⊥i"!Sp(⊥i)/⊥i".

Lemma A.4. For any terms t, u, if t ! u then t!S(⊥i)/⊥i" ! u!S(⊥i)/⊥i"

Proof. Check that S-substitution commutes with the reduction rules given in Figure 2.1
and with the rule C[pred(⊥i

k)]! C[⊥i
k+1]. "

The following lemma (together with Lemma A.1) allows us to apply Lemma A.2 on
genuine natural numbers.

Lemma A.5. Given a well-typed term t with constants ⊥1
0, , ⊥n

0 of type N, if t !⊥ v

then t!Sp(⊥1)/⊥1, , Sp(⊥n)/⊥n" !⊥ v!Sp(⊥1)/⊥1, , Sp(⊥n)/⊥n"

Proof. Apply Lemma A.4 repeatedly p times for each ⊥i. "

Lemma A.6. (constant terms) Given a well-typed constant term t: N with free vari-
ables x1, , xn of type N, there exist k, p ∈N such that for any p1 % 0, , pn % 0, t[Sp1(0)/
x1, , Spn(0)/xn] !p Sk(0).

Proof. Let t′ = t[⊥1
0/x1, , ⊥n

0/xn] and p, k be such that t′ !p Sk(0) by Lemma A.2.
Since by Lemma A.5, t′!Sp1(⊥1)/⊥1, , Spn(⊥n)/⊥n" !

⊥

p
Sk(0) and since t[Sp1(⊥1

0)/x1, ,

Spn(⊥n
0)/xn] = t′!Sp1(⊥1)/⊥1, , Spn(⊥n)/⊥n" we have t′!Sp1(⊥1)/⊥1, , Spn(⊥n)/

⊥n" !
⊥

p
Sk(0). We conclude by Lemma A.1 that t[Sp1(0)/x1, , Spn(0)/xn] !p Sk(0). "

Lemma A.7. (trivial terms) Given a well-typed trivial term t: N with free variables
x1, , xn of type N, there exist i, m, p, k with 1 $ i $ n and m $ p such that for any p1 %

0, , pn % 0, t[Sp1(0)/x1, , Spn(0)/xn] !p Spi –̇ m+k(0).

Proof. Let t′ = t[⊥1
0/x1, ,⊥n

0/xn] and p, k, m be such that t′ !p Sk(⊥i
m) by Lemma A.2.

By Lemma A.5, t′!Sp1(⊥1)/⊥1, , Spn(⊥n)/⊥n" !
⊥

p
Sk(Spi−m(⊥i

0)) if pi % m, and

t′!Sp1(⊥1)/⊥1, , Spn(⊥n)/⊥n" !
⊥

p
Sk(⊥i

m−pi) if pi < m. Since t[Sp1(⊥1
0)/x1, , Spn(⊥n

0)/
xn] = t′!Sp1(⊥1)/⊥1, , Spn(⊥n)/⊥n", we conclude by Lemma A.1 that t[Sp1(0)/x1, ,

Spn(0)/xn] !p Sk(Spi –̇ m(0)). "

Remark A.8. Clearly, trivial terms compute only functions definable (with the usual
mathematical notation) as (x1, , xn) (xi –̇m) + k (for some constants m, k).

Lemma A.9. Given an evaluation context C[ ], if C[rec(Sk(0), v2, v3)] is well-typed and

k > 0 then C[rec(Sk(0), v2, v3)] ! C ′[rec(Sk−1(0), v2, v3)] where C ′[ ] is again an evalua-
tion context.

Proof. Indeed, C ′= C[(v3 [ ] Sk(0))]. "

Theorem A.10. (ultimately obstinate terms) Given an ultimately obstinate term t

of type N with free variables x1, , xn of type N, there exist i, m ∈N with 1 $ i $ n such
that for any p1 % p, , pn % p, t[Sp1(0)/x1, , Spn(0)/xn] reaches its normal form in at
least pi reductions steps.

Proof. If t′ = t[⊥1
0/x1 , ⊥n

0/xn], by Lemma A.2, t′ !
⊥

p
C[rec(⊥i

m, v2, v3)] for some p, m.

Now, t[Sp1(⊥1
0)/x1 , Spn(⊥n

0)/xn] = t′!Sp1(⊥1)/⊥1 , Spn(⊥n)/⊥n" and since pi % m,

t′!Sp1(⊥1)/⊥1 , Spn(⊥n)/⊥n" !
⊥

p
C[rec(⊥i

pi−m
, v2, v3)] by Lemma A.5. We have then

t[Sp1(0)/x1 , Spn(0)/xn] !p C[rec(Spi−m(0), v2, v3)] by Lemma A.1. Finally
C[rec(Spi−m(0), v2, v3)] !pi−m C ′[rec(0, v2, v3)] by Lemma A.9 and we can conclude since
p % m and thus p + pi −m % pi. "
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Appendix B Subject reduction for Loop
ω

B.1 Substitution and renaming

Recall that renaming is only defined for mutable variables and that the imperative substi-
tution is only defined for read-only variables. Since we consider commands up to α-con-
version, we may assume that no variable capture can occur.

Definition B.1. The renaming meta-operation on commands, sequences and expressions,
denoted respectively by c[x y], {s}z [x y] and e′[x y] is defined in Table B.1.

x[x y] = y

z[x y] = z if x z

w[x y] = w

ε[x y] = ε

(c; s)[x y] = c[x y]; s[x y]
(cst x = e′; s)[x y] = cst x = (e′[x y]); s

(cst z = e′; s)[x y] = cst z = (e′[x y]); (s[x y]) if x, y z

(var x: τ e′; s)[x y] = var x: τ (e′[x y]); s

(var z: τ e′; s)[x y] = var z: τ (e′[x y]); (s[x y]) if x, y z

{s}z [x y] = {s[x y]}z [x y]

(for x 1 to e′ {s}r )[x y] = for x 1 to (e′[x y]) {s}r

(for z 1 to e′ {s}r )[x y] = for z 1 to (e′[x y])({s}r [x y]) if x, y z

(x e′)[x y] = y (e′[x y])
(z e′)[x y] = z (e′[x y]) if x z

(inc(x))[x y] = inc(y)
(inc(z))[x y] = inc(z) if x z

(dec(x))[x y] = dec(y)
(dec(z))[x y] = dec(z) if x z

(e′(e ′′, y ))[x y] = e′[x y](e ′′[x y], y [x y])

Table B.1. The renaming meta-operation

Definition B.2. The substitution meta-operation on commands, sequences and expres-
sions, denoted respectively by c[x← e], {s}z [x← e] and e′[x← e] is defined in Table B.2.

Lemma B.3. If Γ, x: τ ; Ω# c: T and ∅; ∅ # e: τ then Γ; Ω# c[x← e]: T.

x[x← e] = e

y[x← e] = y if x y

q̄ [x← e] = q̄

(proc (in y , x: σ ;out z : τ ) {s}z )[x← e] = proc (in y , x: σ ;out z : τ ) {s}z

(proc (in y : σ ;out z , x: τ ) {s}z )[x← e] = proc (in y : σ ;out z , x: τ ) {s}z

(proc (in y : σ ;out z : τ ) {s}z )[x← e] = proc (in y : σ ;out z : τ )({s}z [x← e]) if x y , z

ε[x← e] = ε

(c; s)[x← e] = c[x← e]; s[x← e]
(cst x = e′; s)[x← e] = cst x = (e′[x← e]); s

(cst y = e′; s)[x← e] = cst y = (e′[x← e]); (s[x← e]) if x y

(var x: τ e′; s)[x← e] = var x: τ (e′[x← e]); s

(var y: τ e′; s)[x← e] = var y: τ (e′[x← e]); (s[x← e]) if x y

{s}z [x← e] = {s[x← e]}z

(for x 1 to e′ {s}z )[x← e] = for x 1 to (e′[x← e]) {s}z

(for y 1 to e′ {s}z )[x← e] = for y 1 to (e′[x← e])({s}z [x← e]) if x y

(y e′)[x← e] = y (e′[x← e])
(inc(y))[x← e] = inc(y)
(dec(y))[x← e] = dec(y)
(e′(e ′′, y ))[x← e] = e′[x← e](e ′′[x← e], y )

Table B.2. The substitution meta-operation
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Proof. Straightforward induction on c. "

Lemma B.4. If Γ; x: τ , Ω# c: T then Γ; y: τ , Ω# c[x y]: T.

Proof. Straightforward induction on c. "

B.2 Preliminary lemmas

Lemma B.5. If Ω# µ and for all ∆⊂Ω, ∅; ∆# e: τ and e =µ w, then we have ∅; ∅ #w: τ.

Proof. The case e = w is trivial and if e is some variable x then by definition of Ω# µ, we
have ∅; ∅ # µ(x)= w: τ . "

Lemma B.6. If Ω# µ, then for all Γ⊂Ω, we have Γ# µ.

Proof. By definition of store typing. "

B.3 Proof of Theorem 3.18

Theorem 3.18. For any environment Ω and any state (c, µ), we have that

• ∅; Ω# (c, µ) and (c, µ) (c′, µ′) implies ∅; Ω# (c′, µ′)

• ∅; Ω# (s, µ) and (s, µ) (s′, µ′) implies ∅; Ω# (s′, µ′)

and dom(µ) = dom(µ′).

Proof. By induction on the derivation of (c, µ) (c′, µ′), and then by analysis of the
typing derivation.

• (s.block): we have Ω# µ and

z ⊂Ω Γ; z : σ # s: seq

∅; Ω# {s}z : comm

By Lemma B.6 we get z : σ # µ, and by induction hypothesis on z : σ # (s, µ), we
obtain dom(µ) = dom(µ′) and z : σ # (s′, µ′) which gives us ∅; Ω# s′: seq and Ω# µ′.
We can build the following typing derivation:

z ⊂Ω Γ; z : σ # s′: seq

∅; Ω# {s′}z : comm

• (s.seq-i): we have Ω# µ and

z ⊂Ω ∅; z : σ # ε : seq

∅; Ω# {}z : comm ∅; Ω# s : seq

∅; Ω# {}z ; s : seq

then we get Ω# µ and ∅; Ω# s: seq.

• (s.seq-ii): we have Ω# µ and

∅; Ω# c: comm ∅; Ω# s: seq

∅; Ω# c; s: seq

By induction hypothesis on Ω # (c, µ), we obtain dom(µ) = dom(µ′) and Ω # (c′, µ′)
which gives us ∅; Ω # c′: comm and Ω # µ′. We can build the following typing
derivation:

∅; Ω# c′: comm ∅; Ω# s: seq

∅; Ω# c′; s: seq
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• (s.var-i): we have Ω# µ and

∅; Ω# e: τ ∅; Ω, y: τ # s: seq

∅; Ω#var y: τ e; s: seq

By Lemma B.5, ∅; Ω # e: τ , Ω # µ and e =µ w implies ∅; ∅ # w: τ . By definition of
store typing, Ω # µ then implies Ω, y: τ # (µ, y←w). By induction hypothesis, since
Ω, y: τ # (s, (µ, y ← w)) is derivable, we obtain dom(µ, y ← w) = dom(µ′, y ← w ′),
that is dom(µ) = dom(µ′), and Ω, y: τ # (ε, (µ′, y ←w ′)) which gives us Ω, y: τ # µ′,

y←w ′, that is Ω# µ′. We get ∅; Ω# ε: seq.

• (s.var-ii): we have Ω# µ and

∅; Ω# e: τ ∅; Ω, y: τ # s: seq

∅; Ω#var y: τ e; s: seq

By Lemma B.5, ∅; Ω # e: τ , Ω # µ and e =µ w implies ∅; ∅ # w: τ . By definition of
store typing, Ω # µ then implies Ω, y: τ # (µ, y←w). By induction hypothesis, since
∅; Ω, y: τ # (s, (µ, y← w)) is derivable, we obtain dom(µ, y← w) = dom(µ′, y ← w ′)
which implies dom(µ) = dom(µ′), and Ω, y: τ # (s′, (µ, y ← w ′)) which implies ∅;
Ω # var y: τ w ′ ; s′ and Ω, y: τ # (µ′, y ←w ′). This last assertion trivially implies
Ω # µ′ by definition of store typing, and ∅; ∅ # w ′: τ . We can then build the fol-
lowing typing derivation to conclude:

∅; Ω#w ′: τ ∅; Ω, y: τ # s′: seq

∅; Ω#var y: τ w ′; s′: seq

• (s.assign): we have Ω# µ and

y: τ ∈Ω ∅; Ω# e: τ

∅; Ω# y e: comm ∅; Ω# s: seq

∅; Ω# y e; s : seq

then we get ∅; Ω # s: seq. By Lemma B.5, we have ∅; ∅ #w: τ , and since y: τ ∈Ω we
get Ω# µ[y←w] and dom(µ)= dom(µ[y←w]).

• (s.inc): we have Ω# µ and
y: int∈Ω

∅; Ω# inc(y): comm
then we easily get Ω# µ and

y: int∈Ω ∅; Ω# q +1: int

∅; Ω# y q +1: comm
• (s.dec): similar to above.

• (s.call): we have Ω# µ and

∅; Ω# p:proc (in σ ;out τ ) ∅; Ω# ei: σi rj: τj ∈Ω

∅; Ω# p(e , r ): comm

By Lemma B.5, ∅; Ω # ei: σi, Ω # µ and e =µ w implies ∅; ∅ #wi: σi. Still by Lemma
B.5, ∅; Ω # p: proc(in σ ; out τ ), Ω # µ and p =µ proc(in y : σ ; out z : τ ){s}z

implies ∅; ∅#proc(in y : σ ;out z : τ ){s}z :proc(in σ ;out τ ), that is

z ∅ ∅; y : σ ; z : τ # s: seq

∅; ∅ #proc (in y : σ ;out z : τ ){s}z :proc(in σ ;out τ )

By Lemmas B.3 and B.4, y : σ ; z : τ # s: comm and ∅; ∅ # wi: σi implies ∅; r :
τ # s[y ←w ][z r ]: comm, and since rj: τj ∈Ω, the typing rule (t.comm) gives us
∅; Ω # {s[y ← w ][z r ]}r : comm. By Lemma 3.11, we have ∅; ∅ # ǫ(τj): τj, and
since rj: τj ∈Ω, we obtain Ω# µ[r ← ǫ(τ )].
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• (s.cst): we have Ω# µ and

∅; Ω# e: τ y: τ ; Ω# s: seq

∅; Ω# cst y = e; s: seq

We trivially have Ω # µ. By Lemma B.5, ∅; Ω # e: τ , Ω # µ and e =µ w implies ∅;
∅ #w: τ . By Lemma B.3, y: τ ; Ω# s: seq and ∅; ∅#w: τ implies ∅; Ω# s[y←w]: seq.

• (s.for-i): we have Ω# µ and

z ⊂Ω ∅; Ω# e: int y: int ; z : σ # s: seq

∅; Ω# for y 1 to e {s}z : comm

We clearly have Ω# µ and ∅; Ω# {}z : comm.

• (s.for-ii): we have Ω# µ and

z ⊂Ω ∅; Ω# e: int y: int ; z : σ # s: seq

∅; Ω# for y 1 to e {s}z : comm

By Lemmas B.3, y: int ; z : τ # s: seq and ∅; ∅ # q + 1: int implies ∅; z : τ # s[y ←
q + 1]: seq. We clearly have Ω# µ and the following rule is easily derivable:

z ⊂Ω

z ⊂ z : σ ∅; Ω# q̄ : int y: int ; z : σ # s: seq

∅; z : σ # for y 1 to q̄ {s}z : comm ∅; z : σ # s[y← q + 1]: seq

∅; z : σ # for y 1 to q̄ {s}z ; s[y← q +1]: seq

∅; Ω#{for y 1 to q̄ {s}z ; s[y← q + 1]}z : comm

"

Appendix C Translation ( )" is type-preserving

C.1 Preliminary lemmas

Lemma C.1. For any environment Γ, variable y, and terms t and e of System T, if Γ,

y: τ # t: τ ′ and Γ, Ω# e: τ then Γ, Ω# t[e/y]: τ ′.

Proof. By induction on t. "

Lemma C.2. For any environment Γ, variable y, type τ ′ and term t of System T, if
y∈FId(t) then Γ, y: τ ′# t: τ implies Γ# t: τ.

Proof. By induction on the typing judgment of t. "

Notation C.3. For any environment Γ = (x1: τ1, , xn: τn), we write Γ× for τ1× × τn.

Lemma C.4. For any environment Γ, dom(Γ)= dom(Γ") and x: τ ∈Γ implies x: τ"∈Γ".

C.2 Proof of Theorem 4.7

Theorem 4.7. For any environments Γ and Ω, any expression e and any sequence s and
any block {s}x we have:

− Γ; Ω# e: τ implies Γ", Ω"# e": τ"

− Γ; Ω, x : σ # s: seq impliesΓ", Ω", x : σ "# (s)x
" : (σ")×

− Γ; Ω, x : σ # {s}x : comm implies Γ", Ω", x : σ"# {s}x
" : σ×
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Proof. By induction on e, s, and {s}x .

• e = n̄ . We have:

Γ; Ω# n̄ : int

and then

Γ", Ω"#Sn(0): int

is clearly derivable.

• e = y. We have:

y: τ ∈Γ, Ω

Γ; Ω# y: τ
and then

Γ", Ω"# y: τ"

since by Lemma C.4, y: τ ∈Γ, Ω implies y: τ"∈Γ", Ω".

• e =proc (in y : σ ;out z : τ ){s}z . We have:

z ∅ Γ, y : σ ; z : τ # s: seq

Γ; Ω#proc (y : in σ ; z :out τ ){s}z :proc (in σ ;out τ )

Since Γ, y : σ ; z : τ # {s}z : comm is derivable, we obtain by induction hypothesis Γ",

y : σ", z : τ " # {s}z
" : (τ ")×, and by Lemma 4.2 # δ(τi): τi

". By Lemma C.1, we then
get Γ", y : σ ", Ω"#{s}z

" [δ(τ )/z ]: (τ ")×. We build the following typing derivation:

Γ", y : σ", Ω"# {s}z
" [δ(τ )/z ]: (τ ")×

Γ", Ω"# fn (y : σ")⇒{s}z
" [δ(τ )/z ]: (σ ")×→ (τ ")×

• {s}x . We have:

x ⊂Ω, x : σ Γ; x : σ # s: seq

Γ; Ω, x : σ # {s}x : comm

Since Γ; x : σ # s: seq is derivable, we obtain by induction hypothesis the required
typing derivation Γ"; x : σ "# (s)x

" : (σ")×.

• s = ε. We have:

Γ; Ω, x : σ # ε: seq

and then Γ", Ω", x : σ "# x : (σ")× by Lemma C.4.

• s =var y: τ e; s′ with s′ ε. We have:

Γ; Ω, x : σ # e: τ Γ; Ω, x : σ , y: τ # s′: seq

Γ; Ω, x : σ #var y: τ e; s′: seq

By induction hypothesis, we obtain Γ", Ω", x : σ ", y: τ" # (s′)x
" : (σ ")× and Γ", Ω", x :

σ "# e": τ". By Lemma C.1, we obtain Γ", Ω", x : σ"# (s′)x
" [e"/y]: (σ")×.

• s = cst y = e; s′. We have:

Γ; Ω, x : σ # e: τ Γ, y: τ ; Ω, x : σ # s′: seq

Γ; Ω, x : σ # cst y = e; s′: seq

By induction hypothesis, we obtain Γ", Ω", x : σ ", y: τ" # (s′)x
" : (σ ")× and Γ", Ω", x :

σ "# e": τ". We build then the following typing derivation :

Γ", Ω", x : σ "# e": τ" Γ", Ω", x : σ", y: τ"# (s′)x
" : (σ")×

Γ", Ω", x : σ "# let y = e" in (s′)x
" : (σ")×
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• s = y e; s′. We have:

y: τ ∈Ω, x : σ Γ; Ω, x : σ # e: τ

Γ; Ω, x : σ # y e: comm Γ; Ω, x : σ # s′: seq

Γ; Ω, x : σ # y e, s′: seq

By induction hypothesis on Γ; Ω, x : σ # e: τ , we obtain Γ", Ω", x : σ" # e": τ" and by
induction hypothesis on Γ; Ω, x : σ # s′: seq, we obtain Γ", Ω", x : σ" # (s′)x

" : (σ")×.
We build then the following typing derivation :

Γ", Ω", x : σ"# e": τ" Γ", Ω", x : σ "# (s′)x
" : (σ ")×

Γ", Ω", x : σ "# let y = e" in (s′)x
" : (σ")×

• s = inc(y); s′. We have:

y: int ∈Ω, x : σ

Γ; Ω, x : σ # inc(y): comm Γ; Ω, x : σ # s′: seq

Γ; Ω, x : σ # inc(y); s′: seq

We remark that since y: int ∈ Ω, x : σ , by Lemma C.4, we get (y: int) ∈ Ω", x : σ"

and we have Ω", x : σ", y: int = Ω", x : σ ". By induction hypothesis, we obtain Γ", Ω",

x : σ"# (s′)x
" : (σ")×. We can then build the following typing derivation :

Γ", Ω", x : σ "# y: int

Γ", Ω", x : σ"# succ(y): int Γ", Ω", x : σ"# (s′)x
" : (σ")×

Γ", Ω", x : σ"# let y = succ(y) in (s′)x
" : (σ ")×

• s =dec(y); s′. Similar to the previous case.

• s = p(e ; z ); s′. We have:

Γ;Ω, x : σ $ p:proc (in τ ;out τ ′) Γ;Ω, x :σ $ ei: τi zj: τj
′∈Ω, x : σ

Γ;Ω, x :σ $ p(e ; z ):comm Γ; Ω, x : σ $ s′: seq

Γ; Ω, x : σ $ p(e ; z ); s′: seq

By induction hypothesis, we obtain Γ", Ω", x : σ " # ei
": τi

" and Γ", Ω", x : σ" # p":
(τ ")×→ (τ ′")× and Γ", Ω", x : σ" # (s′)x

" : (σ ")×. Note that since zj: τj
′ ∈Ω, x : σ ", by

Lemma C.4, we get z : τ ′" ⊂ Ω", x : σ" and then Ω", x : σ", z : (τ ′")× = Ω", x : σ". We
can then build the following typing derivation :

Γ", Ω", x : σ"$ p": (τ ")×→ (τ ′")× Γ", Ω", x :σ"$ e ": τ "

Γ",Ω", x :σ"$ p" e ": (τ ′")× Γ", Ω", x : σ"$ (s′)x
" : (σ")×

Γ",Ω", x :σ"$ let z = p" e " in (s′)x
" : (σ")×

• s = {s′}z
" ; s′′. We have:

Γ; Ω, x : σ # {s′}z : comm Γ; Ω, x : σ # s′′: seq

Γ; Ω, x : σ # {s′}z
" ; s′′: seq

By induction hypothesis, we obtain Γ", Ω", x : σ" # {s′}z
" : (τ ")× where z : τ ⊂Ω, x : σ

(and then Ω", x : σ", z : (τ ")× = Ω", x : σ") and Γ", Ω", x : σ" # (s′′)x
" : (σ")×. We can

then build the following typing derivation :

Γ", Ω", x : σ "#{s′}z
" : (τ ")× Γ", Ω", x : σ"# (s′′)x

" : (σ")×

Γ", Ω", x : σ"# let z = {s′}z
" in (s′′)x

" : (σ")×

• s = for y 1 to e {s′}z ; s′′. We have:

z ⊂Ω, x : σ Γ; Ω, x : σ # e: τ Γ, y: τ ; z : τ ′# s′: seq

Γ; Ω, x : σ # for y 1 to e {s′}z : comm Γ; Ω, x : σ # s′′: seq

Γ; Ω, x : σ # for y 1 to e {s′}z ; s′′: seq
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where z : τ ′⊂ Ω, x : σ (and then Ω", x : σ", z : τ ′" = Ω", x : σ"). By induction hypoth-
esis, we obtain Γ", y: τ", z : τ ′"# {s′}z

" : (τ ′")× and Γ", Ω", x : σ"# e": τ" and Γ", Ω", x :
σ "# (s′′)x

" : (σ ")×. We build then the following typing derivation :

Γ", Ω", x : σ "# e": τ" Γ", Ω", x : σ "# z : (τ ′")× Γ", Ω", x : σ ", y: τ"# {s}z
" : (τ ′")×

Γ", Ω", x : σ"# rec(e", z , λy.λz .{s′}z
"): (τ ′")×

and then:

Γ", Ω", x : σ "# rec(e", z , λy.λz .{s′}z
"): (τ ′")× Γ", Ω", x : σ "# (s′′)x

" : (σ")×

Γ", Ω", x : σ "# let z = rec(e", z , λy.λz .{s′}z
") in (s′′)x

" : (σ")×
"
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