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Introduction

It is well known that Jacobi polynomials P (α,β) n (t) satisfy the classical secondorder Jacobi differential equation:

(1t 2 )y ′′ (t) + (βα -(α + β + 2)t)y ′ (t) + n(n + α + β + 1)y(t) = 0.

(

Let ℓ α,β [y](t) be the Jacobi differential operator:

ℓ α,β [y](t) = 1 (1 -t) α (1 + t) β -(1 -t) α+1 (1 + t) β+1 y ′ (t) ′ .
Then, equation (1.1) is equivalent to say that y = P (α,β) n (t) is a solution of ℓ α,β [y](t) = n(n + α + β + 1)y(t).

In [START_REF] Everitt | Jacobi-Stirling numbers, Jacobi polynomials, and the left-definite analysis of the classical Jacobi differential expression[END_REF]Theorem 4.2], for each n ∈ N, Everitt et al. gave the following expansion of the n-th composite power of ℓ α,β :

(

1 -t) α (1 + t) β ℓ n α,β [y](t) = n k=0 (-1) k P (α,β) S k n (1 -t) α+k (1 + t) β+k y (k) (t) (k) 
, where P (α,β) S k n are called the Jacobi-Stirling numbers of the second kind. They [5, (4.4)] also gave an explicit summation formula for P (α,β) S k n numbers, showing that these numbers depend only on one parameter z = α + β + 1. So we can define the Jacobi-Stirling numbers as the connection coefficients in the following equation: where JS k n (z) = P (α,β) S k n , while the Jacobi-Stirling numbers of the first kind can be defined by inversing the above equation:

x n = n k=0 JS k n (z) k-1 i=0 (x -i(z + i)), (1.2 
n-1 i=0 (x -i(z + i)) = n k=0 js k n (z)x k , (1.3) 
where js k n (z) = P (α,β) s k n in the notations of [START_REF] Everitt | Jacobi-Stirling numbers, Jacobi polynomials, and the left-definite analysis of the classical Jacobi differential expression[END_REF]. It follows from (1.2) and (1.3) that the Jacobi-Stirling numbers JS k n (z) and js k n (z) satisfy, respectively, the following recurrence relations:

JS 0 0 (z) = 1, JS k n (z) = 0, if k ∈ {1, . . . , n}, JS k n (z) = JS k-1 n-1 (z) + k(k + z) JS k n-1 (z), n, k ≥ 1.
(1.4) and js 0 0 (z) = 1, js k n (z) = 0, if k ∈ {1, . . . , n},

js k n (z) = js k-1 n-1 (z) -(n -1)(n -1 + z) js k n-1 (z), n, k ≥ 1.
(

The first values of JS k n (z) and js k n (z) are given, respectively, in Tables 1 and2. As remarked in [START_REF] Everitt | Legendre polynomials, Legendre-Stirling numbers, and the left-definite spectral abalysis of the Legendre differential expression[END_REF][START_REF] Everitt | Jacobi-Stirling numbers, Jacobi polynomials, and the left-definite analysis of the classical Jacobi differential expression[END_REF][START_REF] Andrews | A combinatorial interpretation of the Legendre-Stirling numbers[END_REF], the previous definitions are reminiscent to the wellknown Stirling numbers of the second (resp. the first) kind S(n, k) (resp. s(n, k)), which are defined (see [START_REF] Comtet | Advanced combinatorics[END_REF]) by

x n = n k=0 S(n, k) k-1 i=0 (x -i), n-1 i=0 (x -i) = n k=0 s(n, k)x k .
and satisfy the following recurrences:

S(n, k) = S(n -1, k -1) + kS(n -1, k), n, k ≥ 1, (1.6) 
s(n, k) = s(n -1, k -1) -(n -1)s(n -1, k), n, k ≥ 1. (1.7)
The starting point of this paper is the observation that the central factorial numbers of the second (resp. the first) kind T (n, k) (resp. t(n, k)) seem to be more appropriate for comparaison. Indeed, these numbers are defined in Riordan's book [8, p. 213-217] by

x n = n k=0 T (n, k) x k-1 i=1 x + k 2 -i , (1.8) 
and

x n-1 i=1 x + n 2 -i = n k=0 t(n, k)x k . (1.9)
Therefore, if we denote the central factorial numbers of even indices by U (n, k) = T (2n, 2k) and u(n, k) = t(2n, 2k), then :

Table 2. The first values of js k n (z) 

k\n 1 2 3 4 5 1 1 -z -1 2z 2 + 6z + 4 -6z 3 -36z 2 -66z -36 24z 4 + 240z 3 + 840z 2 + 1200z + 576 2 1 -3z -5 11z 2 + 48z + 49 -50z 3 -404z 2 -1030z -820 3 1 -6z -14 35z 2 + 200z + 273 4 1 -10z -30 5 1 U (n, k) = U (n -1, k -1) + k 2 U (n -1, k), (1.10) u(n, k) = u(n -1, k -1) -(n -1) 2 u(n -1, k). ( 1 
(z) = a (0) n,k + a (1) n,k z + • • • + a (n-k) n,k z n-k , (1.12) (-1) n-k js k n (z) = b (0) n,k + b (1) n,k z + • • • + b (n-k) n,k z n-k , (1.13) then a (n-k) n,k = S(n, k), a (0) 
n,k = U (n, k), b (n-k) n,k = |s(n, k)|, b (0) 
n,k = |u(n, k)|. Note that when z = 1, the Jacobi-Stirling numbers reduce to the Legendre-Stirling numbers of the first and the second kinds [START_REF] Everitt | Legendre polynomials, Legendre-Stirling numbers, and the left-definite spectral abalysis of the Legendre differential expression[END_REF]:

LS(n, k) = JS k n (1), ls(n, k) = js k n (1). (1.14)
Th integral nature of the involved coefficients in the above polynomials ask for combinatorial interpretations. Indeed, it is folklore (see [START_REF] Comtet | Advanced combinatorics[END_REF]) that the Stirling number S(n, k) (resp. |s(n, k)|) counts the number of partitions (resp. permutations) of [n] := {1, . . . , n} into k blocks (resp. cycles). In 1974, in his study of Genocchi numbers, Dumont [START_REF] Dumont | Interprétations combinatoires des nombres de Genocchi[END_REF] discovered the first combinatorial interpretation for the central factorial number U (n, k) in terms of couples of supdiagonal quasi-permutations of [n] (cf. § 2). Recently, Andrews and Littlejohn [START_REF] Andrews | A combinatorial interpretation of the Legendre-Stirling numbers[END_REF] interpreted JS k n (1) in terms of set partitions (cf. § 2).

Several questions arise naturally in the light of the above known results:

• First of all, what is the combinatorial refinement of Andrews and Littlejohn's model which gives the combinatorial counterpart for the coefficient a

(i)
n,k ? • Secondly, is there any connection between the model of Dumont and that of Andrews and Littlejohn? • Thirdly, is there any combinatorial interpretation for the coefficient b

(i) n,k
in the Jacobi-Stirling numbers of the first kind, generalizing that for the Stirling number |s(n, k)|? The aim of this paper is to settle all of these questions. Additional results of the same type are also provided.

In Section 2, after introducing some necessary definitions, we give two combinatorial interpretations for the coefficient a

(i) n,k in JS k n (z) (0 ≤ i ≤ n-k),
and explicitly construct a bijection between the two models. In Section 3, we give a combinatorial interpretation for the coefficient b

(i) n,k in js k n (z) (0 ≤ i ≤ n -k).
In Section 4, we give the combinatorial interpretation for two sequences which are multiples of the central factorial numbers of odd indices and we also establish a simple derivation of the explicit formula of Jacobi-Stirling numbers.

2. Jacobi-Stirling numbers of the second kind JS k n (z) 2.1. First interpretation. For any positive integer n we define

[±n] 0 := {0, 1, -1, 2, -2, 3, -3, . . ., n, -n}.
The following definition is equivalent to that given by Andrews and Littlejohn [START_REF] Andrews | A combinatorial interpretation of the Legendre-Stirling numbers[END_REF] in order to interpret Legendre-Stirling numbers, where 0 is added to avoid empty block and also to be consistent with the model for the Jacobi-Stirling numbers of the first kind. Definition 1. A signed k-partition of [±n] 0 is a set partition of [±n] 0 with k + 1 non-empty blocks B 0 , B 1 , . . . B k with the following rules:

(1) 0 ∈ B 0 and ∀i ∈

[n], {i, -i} ⊂ B 0 , ( 2 
) ∀j ∈ [k] and ∀i ∈ [n], we have {i, -i} ⊂ B j ⇐⇒ i = min B j ∩ [n].
For example, the partition π = {{2, -5} 0 , {±1, -2}, {±3}, {±4, 5}} is a signed 3-partition of [±5] 0 , with {2, -5} 0 := {0, 2, -5} being the zero-block.

Theorem 2. For any positive integers n and k, the integer a

(i) n,k (0 ≤ i ≤ n -k) is the number of signed k-partitions of [±n] 0 such that the zero-block contains i signed entries. Proof. Let A (i)
n,k be the set of signed k-partitions of [±n] 0 such that the zero-block contains i signed entries and ã(i)

n,k = |A (i) n,k |. By convention ã(0) 0,0 . Clearly ã(0) 1,1 = 1 and for ã(i) n,k = 0 we must have n ≥ k ≥ 1 and 0 ≤ i ≤ n -k. We divide A (i)
n,k into four parts:

(i) the signed k-partitions of [±n] 0 with {-n, n} as a block. Clearly, the number of such partitions is ã(i) n-1,k-1 . (ii) the signed k-partitions of [±n] 0 with n in the zero-block. We can construct such partitions by first constructing a signed k-partition of [±(n -1)] 0 with i signed entries in the zero block and then insert n into the zero block and -n into one of the k other blocks; so there are kã

(i)
n-1,k such partitions. (iii) the signed k-partitions of [±n] 0 with -n in the zero-block. We can construct such partitions by first constructing a signed k-partition of [±(n -1)] 0 with i -1 signed entries in the zero-block, and then placing n into one of the k non-empty blocks, so there are kã

(i-1)
n-1,k possibilities. (iv) the signed k-partitions of [±n] 0 where neither n nor -n appears in the zero-block and {-n, n} is not a block. We can construct such partitions by first choosing a signed k-partition of [±(n -1)] 0 with i signed entries in the zero block, and then placing n and -n into two different non-zero blocks, so there are k(k -1)ã

(i)
n-1,k possibilities. Summing up we get the following equation: By (1.4) it is easy to see that a

ã(i) n,k = ã(i) n-1,k-1 + kã (i-1) n-1,k + k 2 ã(i) n-1,k . (2.1)
(i)
n,k satisfies the same recurrence and initial conditions as ã(i) n,k , so they agree.

Since LS(n, k) = n-k k=0 a (i)
n,k , Theorem 2 implies immediately the following result of Andrews and Littlejohn [START_REF] Andrews | A combinatorial interpretation of the Legendre-Stirling numbers[END_REF].

Corollary 1. The integer LS(n, k) is the number of signed k-partitions of [±n] 0 .
By Theorems 1 and 2, we derive that he integer S(n, k) is the number of signed k-partitions of [±n] 0 such that the zero-block contains nk signed entries. By definition, in this case there is no positive entry in the zero-block. By deleting the signed entries in the remaining k blocks we recover then the following known interpretation for the Stirling number of the second kind. Proof. As U (n, k) = a (0) n,k , by Theorem 2, the integer U (n, k) counts the number of signed k-partitions of [±n] 0 such that the zero-block doesn't contain any signed entry. For any such a signed k-partition π, we apply the following algorithm: (i) move each positive entry j of the zero-block into the block containing -j to obtain a signed k-partition π ′ = {{0}, B 1 , . . . , B k }, (ii) π 1 is obtained by deleting the negative entries in each block B i of π ′ , and π 2 is obtained by deleting the positive entries and taking the opposite values of signed entries in each block of π

′ . For example, if π = {{3} 0 , {±1, -3, 4}, {±2, -4}} is the signed 2-partition of [±4] 0 , the corresponding couple of partitions is (π 1 , π 2 ) with π 1 = {{1, 3, 4}, {2}} and π 2 = {{1, 3}, {2, 4}}.
The following result shows that the coefficients in the expansion of the Jacobi-Stirling numbers JS k n (z) in the basis {(z + 1) i } i=0,...,n-k are also interesting.

Theorem 3. Let JS k n (z) = d (0) n,k + d (1) n,k (z + 1) + • • • + d (n-k) n,k (z + 1) n-k . (2.2)
Then the coefficient d

(i)
n,k is a positive integer, which counts the number of signed kpartitions of [±n] 0 such that the zero-block contains only zero and i negative values.

Proof. We derive from (1.4) that the coefficients d (i) n,k verify the following recurrence relation:

d (i) n,k = d (i) n-1,k-1 + kd (i-1) n-1,k + k(k -1)d (i) n-1,k . (2.3)
As for the a

(i)
n,k , we can prove the result by a similar argument in proof of Theorem 2

Corollary 4. The integer

J k n (-1) = d (0)
n,k is the number of signed k-partitions of [±n] 0 with {0} as zero-block.

Remark 1. A priori, it was not obvious that J k n (-1) = n-k i=i (-1) i a (i)
n,k was positive.

From Theorem 1 and (2.2), we derive the following relations :

a (i) n,k = n-k j=i j i d (j) n,k , U (n, k) = n-k j=i d (j) n,k , LS(n, k) = n-k j=i 2 j d (j) n,k . (2.4) 
We can give combinatorial interpretations for these formulas. For example, for the first one, we can split the set

A (i)
n,k by counting the total number j of elements in the zero-block (1 ≤ j ≤ nk). Then to construct such an element, we first take a signed k-partition of [±n] 0 with no positive values in the zero-block, so there are d (j) n,k possibilities, and then we choose the ji numbers that are positive among the j possibilities in the zero-block. Similar proofs can be easily described for the two other formulas.

Second interpretation.

We propose now a second model for the coefficient a (i) n,k , inspired by Foata and Schützenberger [START_REF] Foata | Théorie géométrique des polynômes eulériens[END_REF] and Dumont [START_REF] Dumont | Interprétations combinatoires des nombres de Genocchi[END_REF]. Let S n be the set of permutations of [n]. In the rest of this paper, we identify any permutation σ in

S n with its diagram D(σ) = {(i, σ(i)) : i ∈ [n]}.
For any finite set X, we denote by |X| its cardinality. If α = (i, j) ∈ [n] × [n], we define pr x (α) = i and pr y (α) = j to be its x and y projections. For any subset Q of [n] × [n], we define the x and y projections by

pr x (Q) = {pr x (α) : α ∈ Q}, pr y (Q) = {pr y (α) : α ∈ Q};
and the supdiagonal and subdiagonal parts by

Q + = {(i, j) ∈ Q : i ≤ j}, Q -= {(i, j) ∈ Q : i ≥ j}. Definition 2. A simply hooked k-quasi-permutation of [n] is a subset Q of [n] × [n] such that i) Q ⊂ D(σ) for some permutation σ of [n], ii) |Q| = n -k and pr x (Q -) ∩ pr y (Q + ) = ∅.
A simply hooked k-quasi-permutation Q of [n] can be depicted by darkening the nk corresponding boxes of Q in the n × n square tableau. Conversely, if we define the diagonal hook

H i := {(i, j) : i ≤ j} ∪ {(j, i) : i ≤ j} (1 ≤ i ≤ n),
then a black subset of the n × n square tableau represents a simply hooked quasi-permutation if there is no black box on the main diagonal and at most one black box in each row, in each column and in each diagonal hook. An example is given in Figure 1. 

(i) n,k (1 ≤ i ≤ n -k) is the number of couples (Q 1 , Q 2 )
of simply hooked k-quasi-permutations of [n] satisfying the following conditions:

Q - 1 = Q - 2 , |Q - 1 | = |Q - 2 | = i and pr y (Q 1 ) = pr y (Q 2 ).
(2.5)

Proof. Let C (i)
n,k be the set of couples (Q 1 , Q 2 ) of simply hooked k-quasi-permutations of [n] verifying (2.5), and let c [START_REF] Comtet | Advanced combinatorics[END_REF][START_REF] Everitt | Jacobi-Stirling numbers, Jacobi polynomials, and the left-definite analysis of the classical Jacobi differential expression[END_REF], [START_REF] Dumont | Interprétations combinatoires des nombres de Genocchi[END_REF][START_REF] Foata | Théorie géométrique des polynômes eulériens[END_REF], (4, 1), [START_REF] Everitt | Jacobi-Stirling numbers, Jacobi polynomials, and the left-definite analysis of the classical Jacobi differential expression[END_REF][START_REF] Foata | Principes de combinatoire classique[END_REF], (8, 2), (10, 9)}, [START_REF] Comtet | Advanced combinatorics[END_REF][START_REF] Dumont | Interprétations combinatoires des nombres de Genocchi[END_REF], [START_REF] Dumont | Interprétations combinatoires des nombres de Genocchi[END_REF][START_REF] Foata | Principes de combinatoire classique[END_REF], (4, 1), (5, 7), (8, 2), (10, 9)}, (

(i) n,k = |C (i) n,k |. For example, the couple (Q 1 , Q 2 ) with Q 1 = {(1, 3),
Q 2 = {(1, 5),
is an element of C

(3) 10,3 . A graphical representation is given in Figure 2. We divide the set C (i) n,k into three parts:

• the couples (Q 1 , Q 2 ) such that the n-th rows and n-th columns of Q 1 and Q 2 are empty. Clearly, there are c

(i) n-1,k-1 such elements. • the couples (Q 1 , Q 2 ) such that the n-th columns of Q 1 and Q 2 are not empty. We can first construct a couple (Q ′ 1 , Q ′ 2 ) of C (i-1)
n-1,k and then choose a box in the same position of the n-th column of both simply hooked quasipermutations, there are n -1 -(nk -1) = k positions available. So there are kc

(i-1) n-1,k such elements. • the couples (Q 1 , Q 2 ) such that the n-th rows of Q 1 and Q 2 are not empty. We can first construct a couple (Q ′ 1 , Q ′ 2 ) of C (i)
n-1,k and then add a black box in the top of both simply hooked quasi-permutations, the box can be In conclusion, we obtain the recurrence

c (i) n,k = c (i) n-1,k-1 + kc (i-1) n-1,k + k 2 c (i) n-1,k .
(2.7)

By (1.4) we see that a

(i)
n,k satisfies the same recurrence relation and the initial conditions as c (i) n,k , so they agree. Remark 2. In the first model, we don't have a direct interpretation for the integer k 2 in (2.1) because it results from after the simplification k + k(k -1) = k 2 . While in the second one, we can see what the coefficient k 2 counts in (2.7).

Definition 3. A supdiagonal (resp. subdiagonal ) quasi-permutation of [n] is a simply hooked quasi-permutation Q of [n] with Q -= ∅ (resp. Q + = ∅).
From Theorems 1 and 4, we recover Dumont's combinatorial interpretation for the central factorial numbers of the second kind [START_REF] Dumont | Interprétations combinatoires des nombres de Genocchi[END_REF], and Riordan's interpretation for the Stirling numbers of the second kind (see [START_REF] Foata | Théorie géométrique des polynômes eulériens[END_REF]Prop. 2.7]). Remark 3. To recover the classical interpretation of S(n, k) in Corollary 2, we can apply a simple bijection, say ϕ, in [START_REF] Foata | Théorie géométrique des polynômes eulériens[END_REF]Prop. 3]. Starting from a k-partition π = {B 1 , . . . , B k } of [n], for each non-singleton block B i = {p 1 , p 2 , . . . , p ni } with n i ≥ 2 elements p 1 < p 2 < . . . < p ni , we associate the subdiagonal quasi-permutation

Corollary 5. The integer U (n, k) is the number of couples (Q 1 , Q 2 ) of supdiagonal k-quasi-permutations of [n] such that pr y (Q 1 ) = pr y (Q 2 ).
Q i = {(p ni , p ni-1 ), (p ni-1 , p ni-2 ), . . . , (p 2 , p 1 )} with n i -1 elements of [n] × [n].
Clearly, the union of all such Q ′ i s is a subdiagonal quasi-permutation of cardinality nk. An example of the map ϕ is given in Figure 3.

Finally, we derive from Theorem 4 and (1.14) a new combinatorial interpretation for the Legendre-Stirling numbers of the second kind. The correspondence between the two models will be established in the next subsection.

Corollary 7. The integer LS(n, k) is the number of couples (Q 1 , Q 2 ) of simply hooked k-quasi-permutations of [n] such that pr y (Q 1 ) = pr y (Q 2 ).
Remark 4. We haven't found an interpretation neither for the numbers d

(i) n,k in (2.
2), nor for the formulas expressed in (2.4), in terms of simply hooked quasipermutations.

2.3.

The link between the two models. We introduce a third interpretation which permits to make the connection easier between the two previous models. Let Π n,k be the set of partitions of [n] in k non-empty blocks.

Definition 4. Let B (i)
n,k be the set of triples (π 1 , π 2 , π 3 ) in Π n,k+i × Π n,k+i × Π n,n-i such that: i) min(π 1 ) = min(π 2 ) and Sing(π 1 ) = Sing(π 2 ), ii) min(π 1 ) ∪ Sing(π 3 ) = Sing(π 1 ) ∪ min(π 3 ) = [n], where Sing(π) denotes the set of singletons in π.

We will need the following result. 

Lemma 5. For (π 1 , π 2 , π 3 ) ∈ B (i) n,k , we have: i) | min(π 1 ) ∩ min(π 3 )| = k, ii) |Sing(π 1 ) \ min(π 3 )| = i, iii) |Sing(π 3 ) \ min(π 1 )| = n -k -i.
| min(π 1 ) ∩ min(π 3 )| = | min(π 1 )| + | min(π 3 )| -| min(π 1 ) ∪ min(π 3 )| = k, and |Sing(π 1 ) \ min(π 3 )| = |Sing(π 1 )| -|Sing(π 1 ) ∩ min(π 3 )| = n -| min(π 3 )| = i.
In the same way, we obtain iii).

Theorem 6. There is a bijection between

A (i) n,k and B (i) n,k . Proof. Let π = {B 0 , B 1 , . . . , B k } be a signed k-partition in A (i)
n,k . We construct the triple (π 1 , π 2 , π 3 ) of partitions by the following algorithm. π 1 , π 2 :

• Let π ′ = {B ′ 0 , B ′ 1 , . . . , B ′ k } be the partition obtained by exchanging all j and -j in π if j ∈ B 0 (resp. j ∈ [n]).

• Let π ′′ = {B ′′ 0 , B ′′ 1 , . . . , B ′′ k } be the partition obtained by removing all the negative values in π ′ .

• Define π 1 (resp. π 2 ) to be the partition obtained by splitting the i positive elements in B ′′ 0 into i singletons and deleting 0 in π ′′ . The resulting partitions π 1 and π 2 are clearly elements of Π n,k+i and satisfy min(π 1 ) = min(π 2 ) and Sing(π 1 ) = Sing(π 2 ). π 3 :

• For all p ∈ [n] \ min π such that B 0 ∩ {±p} = ∅, move p into the zero-block and obtain the partition

π ′ = {B ′ 0 , B ′ 1 , . . . , B ′ k }. So there are n -k -i positive entries in the new B ′ 0 . • Let π ′′ = {B ′′ 0 , B ′′ 1 , . . . , B ′′
k } be the partition obtained by removing all the negative values in π ′ .

• Define π 3 to be the partition obtained by splitting the n-k -i positive elements in B ′′ 0 into i singletons and deleting 0 in π ′′ . The resulting partition π 3 is an element of Π n,n-i . For any p ∈ [n] \ min(π 1 ), if p / ∈ B 0 then B 0 ∩ {±p} = ∅, by definition p will be moved in the zero-block, otherwise p is already in the zero-block. Thus, the elements that are not in min(π 1 ) become singletons in π 3 . Hence min(π

1 ) ∪ Sing(π 3 ) = [n]. Similarly we have Sing(π 1 ) ∪ min(π 3 ) = [n].
For example, for the signed 3-partition of [±10] 0 : π = {{-4, 6, 7, -8, -10} 0 , {±1, 3, 4, -5, -7}, {±2, -3, 5, -6, 8}, {±9, 10}}, (2.8) the corresponding triple is (π 1 , π 2 , π 3 ) ∈ Π 10,6 × Π 10,6 × Π 10,7 with :

π 1 = {{1, 3, 7}, {2, 5, 6}, {4}, {8}, {9}, {10}}, π 2 = {{1, 5, 7}, {2, 3, 6}, {4}, {8}, {9}, {10}}, π 3 = {{1, 4}, {2, 8}, {3}, {5}, {6}, {7}, {9, 10}}. (2.9) Conversely, for any (π 1 , π 2 , π 3 ) ∈ B (i) n,k , we construct π = {B 0 , B 1 , . . . , B k } ∈ A (i)
n,k with the following procedure:

• Use the k elements of min(π 1 )∩min(π 3 ), say p 1 , . . . , p k and 0 to create k +1 blocks:

B 0 = {. . .} 0 , B 1 = {±p 1 , . . .}, . . . , B k = {±p k . . .}, (2.10) 
where ". . ." means that the blocks are not completed. For instance, for the triple (π 1 , π 2 , π 3 ) in (2.9), we create three blocks: {0, . . .}, {±1, . . .} and {±2, . . .}. • For each element x j of [n] \ min(π 3 ) (1 ≤ j ≤ i), suppose that x j appears in a non-singleton block C j of π 3 . Then put -x j into the zero-block B 0 and x j into the block in (2.10) that contains min(C j ). Note that we must show that min(C j ) ∈ min(π 1 ) ∩ min(π 3 ) to warrant the existence of such a block in (2.10). Indeed, if min(C j ) / ∈ min(π 1 ), then, by Definition 4, we would have min(C j ) ∈ Sing(π 3 ). For the current example, we place the number 4 in the block that contains 1.

• For each element y j of [n] \ min(π 2 ) (1 ≤ j ≤ nki), suppose that y j appears in a non-singleton block D j (resp. E j ) of π 2 (resp. π 1 ). Then put -p j into the block in (2.10) that contains min(D j ) and put p j into the block (2.10) that contains min(E j ) if this block dosn't contains -p j , into the zero-block B 0 otherwise. For the current example, we place the number -3 in the block that contains 2. and 5 in the block that contains 2, and 6 in the zero-block because the block that contains 2 already has -6.

Since ϕ described in Remark 3 maps each partition to a subdiagonal quasipermutation, for every triple (π 1 , π 2 , π 2 ) of partitions satisfying the conditions of Theorem 6, we can associate a triple (P 1 , P 2 , P 3 ) = (ϕ(π 1 ), ϕ(π 2 ), ϕ(π 3 )) of subdiagonal quasi-permutations. If P i denotes the supdiagonal quasi-permutation obtained from P i exchanging the x and y coordonates, then (Q 1 , Q 2 ) = (P 1 ∪ P 3 , P 2 ∪ P 3 ) is a couple of simply hooked quasi-permutations satisfying the conditions of Theorem 4. Thus, we obtain a bijection between the signed k-partitions and the couples of simply hooked quasi-permutations.

For example, for the signed 3-partition π in (2.8), the corresponding couple of simply hooked quasi-permutations (Q 1 , Q 2 ) is then given by (2.6) (cf. Figure 2). Definition 5. Given a word w = w(1) . . . w(ℓ) on the finite alphabet [n], a letter w(j) is a record of w if w(k) > w(j) for every k ∈ {1, . . . , j -1}. We define rec(w) to be the number of records of w and rec 0 (w) = rec(w) -1.

For example, if w = 574862319, then the records are 5, 4, 2, 1. Hence rec(w) = 4.

Theorem 7. The integer b

(i) n,k is the number of couples (σ, τ ) such that σ (resp. τ ) is a permutation of [n] 0 (resp. [n]) with k cycles, satisfying i) 1 ∈ Orb σ (0), ii) min σ = min τ , iii) rec 0 (w) = i, where w = σ(0)σ 2 (0) . . . σ l (0) with σ l+1 (0) = 0. Proof. Let E (i)
n,k be the set of couples (σ, τ ) satisfying the conditions of Theorem 7 and e

(i) n,k = E (i) n,k . We divide E (i)
n,k into three parts: (i) the couples (σ, τ ) such that σ -1 (n) = n. Then n forms a cycle in both σ and τ and there are clearly e

(i)
n-1,k-1 possibilities. (ii) the couples (σ, τ ) such that σ -1 (n) = 0. We can construct such couples by first choosing a couple (σ ′ , τ ′ ) in

E (i-1)
n-1,k and then inserting n in σ ′ as image of 0 (resp. in τ ′ ). Clearly, there are (n -1)e

(i-1) n-1,k possibilities. (iii) the couples (σ, τ ) such that σ -1 (n) ∈ {0, n}. We can construct such couples by first choosing a couple (σ ′ , τ ′ ) in E (i)
n-1,k and then inserting n in σ ′ (resp. in τ ′ ). Clearly, there are (n -1) 2 e (i) n-1,k possibilities. Summing up, we get the following equation: 4.2. Generating functions. In [START_REF] Everitt | Jacobi-Stirling numbers, Jacobi polynomials, and the left-definite analysis of the classical Jacobi differential expression[END_REF], the authors made a long calculation to derive an explicit formula for the Jacobi-Stirling numbers. Actually, we can derive an explicit formula for the Jacobi-Stirling numbers straightforwardly from the Newton interpolation formula:

e (i) n,k = e (i) n-1,k-1 + (n -1)e (i-1) n-1,k + (n -1) 2 e (i) n-1,k . ( 3 
x n = n j=0     j r=0 x n r k =i (x r -x k )     j-1 i=0 (x -x i ). (4.3)

Corollary 2 .

 2 The integer S(n, k) is the number of partitions of [n] in k blocks. For a partition π = {B 1 , B 2 , . . . , B k } of [n] in k blocks, denote by min π the set of minima of blocks min π = {min(B 1 ), . . . , min(B k )}. The following partition version of Dumont's interpretation for the central factorial number of even indices can be found in [6, Chap. 3]. Corollary 3. The integer U (n, k) is the number of couples (π 1 , π 2 ) of partitions of [n] in k blocks such that min(π 1 ) = min(π 2 ).

Figure 1 .Figure 2 .Theorem 4 .

 124 Figure 1. The diagonal hook H 4 and a simply hooked quasipermutation of [6]: Q = {(2, 5), (4, 2), (6, 3)}

Figure 3 .

 3 Figure 3. The subdiagonal quasi-permutation corresponding to a partition via the map ϕ

Corollary 6 .

 6 The integer S(n, k) is the number of subdiagonal (resp. supdiagonal) k-quasi-permutations of [n].

  Proof. By definition, we have | min(π 1 )| = k + i and | min(π 3 )| = ni. Since min(π 1 ) ∪ min(π 3 ) = [n], by sieve formula, we deduce

3 .

 3 Jacobi-Stirling numbers of the first kind js k n (z) For a permutation σ of [n] 0 := [n] ∪ {0} (resp. [n]) and for j ∈ [n] 0 (resp. [n]), denote by Orb σ (j) = {σ ℓ (j) : ℓ ≥ 1} the orbit of j and min(σ) the set of its cyclic minima, i.e., min(σ) = {j ∈ [n] : j = min(Orb σ (j) ∩ [n])}.

. 1 )Theorem 9 .Remark 6 .Example 1 .

 1961 By(1.5), it is easy to see that the coefficients b (i) n,k satisfy the same recurrence. We show now how to derive from Theorems 1 and 7 the combinatorial interpretations for the numbers |ls(n, k)|, |s(n, k)| and |u(n, k)|. Corollary 8. The integer |ls(n, k)| is the number of couples (σ, τ ) such that σ (resp. τ ) is a permutation of [n] 0 (resp. [n]) with k cycles, satisfying 1 ∈ Orb σ (0) and min σ = min τ . Corollary 9. The integer |s(n, k)| is the number of permutations of [n] with k cycles. Proof. By Theorem 7, the integer |s(n, k)| is the number of couples (σ, τ ) in E (n-k) n,k . Since σ and τ both have k cycles with same cyclic minima, the permutation σ is completely determinated by τ because Orb σ (1) is the only non singleton cycle, of cardinality nk + 2, so the nk elements different from 0 and 1 are exactly the elements of [n] \ min τ arranged in decreasing order in the word w = σ(0)σ 2 (0) . . . 1 with σ(1) = 0. The following result is the analogue interpretation to Corollary 3 for the central factorial numbers of the first kind. This analogy is comparable with that of Stirling numbers of the first kind |s(n, k)| versus the Stirling numbers of the second kind |S(n, k)|. The integer |v(n, k)| is the number of (n, k)-Riordan complexes. Proof. It is known that (see [8, p. 214]): n,k≥0 |v(n, k)|t k x n n! = sinh(t arcsin(x)), and arcsin(x) = n≥0 ((2n -1)!!) 2 x 2n+1 (2n + 1)! ,where (2n -1)!! = (2n -1)(2n -3)• • • 3 • 1.Since (2n -1)!! is the number of involutions without fixed points on [2n] (see[START_REF] Comtet | Advanced combinatorics[END_REF]), the integer ((2n -1)!!) 2 is the number of couples of involutions without fixed points on [2n + 1]\{2n + 1}. Define the numbers J(n, m) by: the theory of exponential generating functions (see[START_REF] Foata | Théorie géométrique des polynômes eulériens[END_REF] Chp. 3] and [9, Chp. 5]), the coefficient J(2n + 1, m) is the number of m-tuples(B 1 , σ 1 , τ 1 ), . . . , (B m , σ m , τ m ); where {B 1 , . . . , B m } is a partition of [2n + 1] with |B i | odd (1 ≤ i ≤ m), and σ i and τ i are involutions without fixed points on B i \ max(B i ). As sinh(x) = (e xe -x )/2, we have |v(n, m)| = J(2n + 1, 2k + 1) if m = 2k + 1, and |v(n, m)| = 0 if m is even. It is interesting to note that a proof of the two above theorems by using (4.1) or (4.2) is not obvious. There are ten (2, 1)-Riordan complexes. Since the numbers n and k are small, the involved involutions are identical transpositions.{1}, {(2, 3), 4}, {5}, {1}, {2}, {(3, 4), 5}, {(1, 2), 3}, {4}, {5}, {(1, 2), 5}, {3}, {4}, {(1, 3), 4}, {2}, {5}, {(1, 3), 5}, {2}, {4}, {(1, 2), 4}, {3}, {5}, {(1, 4), 5}, {2}, {3}, {1}, {(2, 3), 5}, {4}, {1}, {(2, 4), 5}, {3}, where {1}, {(2, 3), 4}, {5} means that π = {{1}, {2, 3, 4}, {5}}, and σ = τ = 13245.

Table 1 .

 1 ) The first values of JS k n (z)

	k\n	1	2	3	4	5	6
	1	1	z + 1	(z + 1) 2	(z + 1) 3	(z + 1) 4	(z + 1) 5
	2		1	5 + 3z	21 + 24z + 7z 2	85 + 141z + 79z 2 + 15z 3	341 + 738z + 604z 2 + 222z 3 + 31z 4
	3			1	14 + 6z	147 + 120z + 25z 2	1408 + 1662z + 664z 2 + 90z 3
	4				1	30 + 10z	627 + 400z + 65z 2
	5					1	55 + 15z
	6						1

Table 3 .

 3 The first values of JS k n (z) in the basis {(z + 1) i } i=0,...,n-k

	k\n	1	2	3	4	5
	1	1	(z + 1)	(z + 1) 2	(z + 1) 3	(z + 1) 4
	2		1	2 + 3(z + 1)	4 + 10(z + 1) + 7(z + 1) 2	8 + 28(z + 1) + 34(z + 1) 2 + 15(z + 1) 3
	3			1	8 + 6(z + 1)	52 + 70(z + 1) + 25(z + 1) 2
	4				1	20 + 10(z + 1)
	5					1
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Corollary 10. The integer |u(n, k)| is the number of couples (σ, τ ) ∈ S 2 n with k cycles, such that min(σ) = min(τ ).

Indeed, the integer |u(n, k)| is the number of couples (σ, τ ) in E (0) n,k . Theorem 7 implies that σ -1 (1) = 0. The result follows then by deleting the zero in σ.

Remark 5. By the substitution i → n+1-i, we can derive that the number |u(n, k)| is also the number of couples (σ, τ ) in S 2 n with k cycles, such that max(σ) = max(τ ), where max(σ) is the set of cyclic maxima of σ, i.e., max(σ) = {j ∈ [n] : j = max(Orb σ (j)}.

Further results

4.1.

Central factorial numbers of odd indices. For all n, k ≥ 0, set

Note that these numbers are also integers (see Table 4). By definition, we have the following recurrence relations :

The natural question is to find a combinatorial interpretation for these numbers. We can easily find it from combinatorial theory of generating functions.

Theorem 8. The integer V (n, k) is the number of partitions of [2n + 1] into 2k + 1 blocks of odd cardinality.

Proof. This follows from the known generating function (see [8, p. 214]):

and the classical combinatorial theory of generating functions (see [START_REF] Foata | Théorie géométrique des polynômes eulériens[END_REF]Chp. 3] and [9, Chp. 5]).

To interpret the integer |v(n, k)|, we need to introduce the following definition.

ii) σ i and τ i (1 ≤ i ≤ 2k + 1) are fixed point free involutions on B i \ max(B i ).

Indeed, making the substitutions x → m(z + m) and x i → i(z + i) in (4.3), we obtain

where