
HAL Id: hal-00385203
https://hal.science/hal-00385203

Preprint submitted on 18 May 2009

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Data Backup for Mobile Nodes : a Cooperative
Middleware and Experimentation Platform

Marc-Olivier Killijian, Matthieu Roy, Gaétan Séverac, Christophe Zanon

To cite this version:
Marc-Olivier Killijian, Matthieu Roy, Gaétan Séverac, Christophe Zanon. Data Backup for Mobile
Nodes : a Cooperative Middleware and Experimentation Platform. 2009. �hal-00385203�

https://hal.science/hal-00385203
https://hal.archives-ouvertes.fr


Data Backup for Mobile Nodes :

a Cooperative Middleware and Experimentation Platform

Marc-Olivier Killijian, Matthieu Roy, Gaétan Séverac, Christophe Zanon

CNRS ; LAAS ; 7 avenue du colonel Roche; F-31077 Toulouse, France

Université de Toulouse ; UPS, INSA, INP, ISAE ; LAAS ; F-31077 Toulouse, France

Contact: http://www.laas.fr/˜mkilliji ; mkilliji@laas.fr

Abstract

In this paper, we present a middleware for depend-

able mobile systems and an experimentation platform

for its evaluation. The middleware proposed is based

on three original building blocks: a Proximity Map,

a Trust and Cooperation Oracle, and a Cooperative

Data Backup service. A Distributed Black-box is used

as an illustrative application and evaluated on top of

the proposed mobile platform.

1. Problem Statement

Finding the proper abstractions to design middle-

ware for the provision of dependable distributed appli-

cations on mobile devices is still a big challenge[1].

The number of mobile communicating devices one

can meet in every-day life is dramatically increasing:

mobile phones, PDAs, handheld GPS, laptops and

notebooks, portable music and video players. Those

devices benefit from an amazing number of sensors

and communication interfaces. The interconnection of

these systems does not only result in a huge distributed

system. New technical and scientific challenges emerge

due to the mobility of users and of their devices,

or due to the massive scale of uncontrolled devices

that constantly connect and disconnect, fail, etc. To

handle those systems’ dynamics, cooperation-based

approaches à la peer-to-peer seem attractive. An im-

portant question is thus to know if and how can we

design a sound middleware that offers useful building

blocks for this type of system. Another crucial question

is to study how we can correctly evaluate those highly

mobile and dynamic systems.

This work was partially supported by the French National Center

for Scientific Research (CNRS), the European Hidenets project (EU-

IST-FP6-26979), and the European ReSIST network of excellence

(EU-IST-FP6-26764).

This paper answers these two questions: we present

a middleware architecture dedicated to the provision

of cooperative data backup on mobile nodes and a

platform for its experimental evaluation. This archi-

tecture is exemplified by implementing a Distributed

Black-Box (DBB) application which provides a virtual

device, whose semantics is similar to avionics black-

boxes, that tracks cars’ history in a way that can be

replayed in the event of a car accident. This application

ensures information is securely stored using replica-

tion mechanisms, by means of exchanging positions

between cars. Our implementation is based on three

original services: a Proximity Map, a Trust and Coop-

eration Oracle, and a Cooperative Data Backup.

This DBB application is a good illustration of the

use of the various middleware services and applications

that users can benefit thanks to mobile communicating

devices, such as in the automobile context with car-

to-car communication. As a “classical” black-box, its

aim is to record critical data, such as: engine / vehicle

speed, brake status, throttle position, and even the state

of the driver’s seat belt switch. As a “smart” black-

box, it can also be used for extending the recorded

information with contextual information concerning

the neighboring vehicles, possibly the various vehicles

involved in an accident. Indeed, information stored by

the application leverages vehicle-based parameters and

communication-induced information.

The proposed architecture is based on four main

middleware building blocks, namely a Networking

service, a Proximity Map, a Trust and Cooperation

Oracle, and a Cooperative Data Backup service. This

architecture and the DBB application will be described

in Section 2. This distributed architecture being tar-

geted to mobile nodes (e.g. automobiles), it has been

implemented and evaluated on top of a mobile robot

platform described in section 3. Finally, we give some

further trails of research in Section 4.



Cooperative Data Backup

Robot Platform

Location HW Reduced WiFi SmartCard

Location Svce
Networking 

Svce
Trust&Coop. 

Ocle

OS X 10.5.6 + Java 1.5

Proximity Map

Figure 1. Overall Architecture

2. Architecture and system model

This work was conducted in the course of the

Hidenets project. HIDENETS (HIghly DEpendable ip-

based NETworks and Services) was a specific targeted

research project funded by the European Union under

the Information Society Sixth Framework Programme.

The aim of HIDENETS was to develop and analyze

end-to-end resilience solutions for distributed applica-

tions and mobility-aware services in ubiquitous com-

munication scenarios.

The overall architecture used in this work is depicted

on Fig. 1. The mobile platform, the hardware and

other experimental settings will be described later in

Section 3. This architecture is a partial implementation

of the Hidenets architecture and has been detailed in

the projects deliverables, see e.g. [2] or [3]. Apart

from standard hardware-related services (networking,

localization...), we propose three new building blocks,

targeted for mobile systems, that are described in the

following subsections. The rationale of these building

blocks is as follows:

• Proximity map. Before being able to backup data,

a mobile node has first to discover its neighbors

and the resources and services they offer. The

proximity map represents the local knowledge a

node has about its vicinity.

• Trust and cooperation oracle. In order to interact

with a priori unknown neighbors for critical ser-

vices (e.g., collaborative backup), a node has to

evaluate the level of trust it can assign to each

of its neighbors. The purpose of the trust and

cooperation oracle is to evaluate this level of trust

and to incite nodes to cooperate with one another.

• Cooperative data backup. The provision of a

cooperative backup service at the middleware

level is the major contribution of the architecture

described in this paper. This service acts as a

peer-to-peer storage resource sharing service for

backup and restoration of critical data.

2.1. Communication and network layer

Since Java provides no specific support for ad hoc

networking, we implemented a specific package for

handling multiple WiFi interfaces. This package sup-

ports both UDP broadcasting and TCP unicasting. It

handles indexing, choping and unchoping of arbitrary

size messages and deals with typed messages. As

we are only interested in local interactions within an

entity’s neighborhood, our network layer implements

one-hop interactions only, and does not address the

problem of routing in an ad-hoc network.

2.2. Localization and Proximity Map

For many applications for mobile nodes, and es-

pecially for cooperation-based applications, a node

needs to interact with its neighbors. Furthermore, the

quality of service that may be provided by a given

component can vary according to the vicinity, e.g.

the quantity of neighbors, their density, etc. It is

then necessary to formalize this view of the vicinity

into a more abstract representation. To that means,

we propose the Proximity Map building block, that

provides an abstraction of the physically attainable

network of entities. The aim of this building block is to

provide applications with information aggregated from

localization and networking layers.

Indeed, the goal of the proximity map is to gather

physical information about nodes in the vicinity. When

using its proximity map, a given node has a view of the

nodes in its vicinity (defined as being the nodes which

are reachable within H hops), their location informa-

tion, and the freshness of the pieces of information.

This problem has similarities with neighbor discov-

ery protocols for ad-hoc routing algorithms, that can be

divided into pro active schemes and reactive schemes.

In a reactive scheme, information about routing is

constructed on demand, i.e., as soon as a message has

to be sent to a previously unknown destination. In a pro

active scheme, the entity periodically sends messages

on the network to look for new neighbors, and to check

the availability and reachability of already discovered

requested by the application/caller. Since we are only

interested in local interactions, and due to the fact that

the set of entities is large and unknown to participants,

we designed the proximity map as a pro active service.

Intuitively each node periodically beacons its prox-

imity map to its 1-hop neighbors, and collects similar



information from its direct neighbors. When merging

these pieces of information, it is able to update its prox-

imity map with new nodes that appeared as neighbors

of neighbors, nodes which have moved, nodes whose

connectivity changed, etc. The preliminary ideas about

the proximity map can be found in [4].

To implement the proximity map, we use location-

stamped beacons. Each node keeps a map of its knowl-

edge of the location and connectivity of other nodes,

which is represented as a graph.This graph is regularly

updated when the node receives a beacon and is also

regularly sent to the node’s neighbors in its beacons.

2.3. Trust and Cooperation Oracle

The trust and cooperation oracle (TCO) is our sec-

ond basic building block for cooperative services. A

cooperative service emerges from the cooperation of

entities that are generally unknown to one another.

Therefore, these entities have no a priori trust rela-

tionship and may thus be reluctant to cooperate. In

cooperative systems without cooperation incentives,

entities tend to behave in a rational way in order

to maximize their own benefit from the system. The

goal of the trust and cooperation oracle is therefore

to evaluate locally the level of trust of neighboring

entities and to manage cooperation incentives [5].

Synergy is the desired positive effect of cooperation,

i.e., that the accrued benefits are greater than the

sum of the benefits that could be achieved without

cooperation. However synergy can only be achieved

if nodes do cooperate rather than pursuing some indi-

vidual short-term strategy, i.e. being rational. There-

fore, cooperative systems need to have cooperation

incentives and rationality disincentives. There are sev-

eral approaches to this, some are based on micro-

economy and some others are based on trust. Typically,

for micro-economic approaches, a node has to spend

“money” for using a service and earns “money” for

servicing other nodes. Regarding trust, a common

approach is to use the notion of reputation, a level

representing the level of trust that may be placed on

a node, which can be computed locally by a single

node, or collectively and transitively by a set of nodes.

Another approach based on the notion of trust relies on

the use of trusted hardware, e.g. a smart-card. What-

ever the most appropriate approach in a given context,

the TCO leverages this information by providing a

single interface with simple semantics. Given a node

identifier n, it returns the probability that this node n

cooperates correctly for the next interaction:

float trustLevel(NodeID n)

In an automotive context, we consider that there are

a limited number of different middleware providers.

We can also state that it is at least unusual and

potentially dangerous for vehicle owners to modify

the software their vehicle is running, and that software

updates are relatively rare. As a result, there are only

a few different legacy middleware versions. We can

thus consider that the middleware is certified, i.e., a

trusted authority within the infrastructure domain can

generate and distribute certificates. These certificates

can be verified in the ad-hoc domain by a trusted

hardware, in our platform a smart-card.

2.4. Cooperative Data Backup service

The cooperative backup service aims to improve the

dependability of data stored by participating nodes by

providing them with mechanisms to tolerate hardware

or software faults, including permanent faults such as

loss, theft, or physical damage. To tolerate permanent

faults, the service must provide mechanisms to store

the users’ data on alternate storage nodes using the

available communication means. The problem of co-

operative backup of critical data can be divided in

three steps: i) discovering storage resources in the

vicinity (this step is performed using the proxim-

ity map service), ii) negotiating a contract with the

neighboring nodes for the use of their resources (this

step uses the trust and cooperation oracle), and iii)
handling a set of data chunks to backup and assigning

these chunks to the negotiated resources according to

a data encoding scheme and with respect to desired

properties of dependability, privacy, availability and

confidentiality. The service is also in charge of the

recovery phase, i.e., the data restoration algorithm.

The Cooperative Data Backup service provision is

designed using the following principles.

• A client of the service provides a data stream to

be backed up to the backup operation with a

unique identifier for the stream.

• The stream passes through a series of chopping

and indexing operations in order to produce a set

of small (meta-) data chunks to be backed up

(more details can be found in [6]).

• A backup thread runs periodically. It processes the

block buffer, queries the Proximity Map service

and the Trust and Cooperation Oracle in order

to produce a potential contributors list. Then

it places data blocks on contributors according

to given placement and replication strategies, as

described in [6] and [7].

When the client wants to restore data, it can either

submit the unique identifier of the stream to the asyn-



chronous restore operation and then poll it periodically,

or it can directly call the synchronous restore operation

that will return when the data has been successfully

restored. To that means, a periodic thread handles

the restoration waiting queue: it looks for given IDs,

unpacks the received blocks and potentially adds new

identifiers to the waiting queue according to the de-

coding operation on received data chunks (i.e. data or

meta-data).

2.5. The Distributed Black-Box application

Using the above described services, we implemented

a Distributed Black-Box application. This application

backs up a stream of data for every car that consists

of a periodic sampling of a car’s proximity map. In

our implementation, the cooperative backup service

replicates these streams among neighboring cars, or

to an infrastructure when connectivity permits it. The

stream of any participant (be it crashed or not) can

then be restored either from neighboring devices (cars

in ad-hoc mode), or from the infrastructure.

3. The ARUM experimental platform

To the best of our knowledge, little research has

been done on the evaluation of resilience in ubiquitous

systems. Most of the literature in this domain concerns

evaluation of users experience and human-computer

interfaces. However, some work is also looking at

defining appropriate metrics for the evaluation of dis-

tributed applications running on ubiquitous systems

[8], [9]. [10] is looking at a general approach to

evaluate ubiquitous systems. In the paper, the authors

argue that quantitative measurements should be com-

plemented with qualitative evaluation. The argument is

that there is a number of problems for which evaluation

cannot be easily quantified. Thus an evaluation should

be conducted using an hybrid quantitative/qualitative

strategy.

It is clear that the area of resilient computing has

proposed a number of contributions concerning the

evaluation of distributed systems and this paper will

not survey this domain. Analytical evaluation is prob-

ably the most popular technique, such as within Assert

[11] in the avionics application domain. More recently,

experimental evaluation started to gain attention. The

approach taken is often based on dependability bench-

marking, for example DBench [12] addresses depend-

ability benchmarking of operating systems.

In the ubiquitous and mobile computing area, eval-

uation of resilient mechanisms remains an open prob-

lem. In most cases, the proposed algorithms are evalu-

ated and validated using network simulators [13], [14].

Since simulators use a model of physical components,

such as wireless network cards and location systems,

this raises concerns on the coverage of the assump-

tions that underlie the simulation [15]. Little work

concerning the evaluation of algorithms in a realistic

environment is available.

Scale ability. This calls for the development of a

realistic platform, at a laboratory scale, to evaluate

and validate fault-tolerance algorithms (e.g., group

membership and replication protocols, storage mech-

anisms, etc.) targeting systems comprising a large

number of communicating mobile devices equipped

with various sensors and actuators. The goal is to have

an experimentation platform allowing for reproducible

experiments (including mobility aspects) that will com-

plement validation through simulation. As we will see,

an important issue within this platform is related to

changes of scale so as to emulate as many various

systems as possible.

We are developing an experimental evaluation plat-

form composed of both fixed and mobile devices

[16]. Technically speaking, each mobile device is com-

posed of some programmable mobile hardware able

to carry the device itself, a lightweight processing

unit equipped with one or several wireless network

interfaces and a positioning device. The fixed counter-

part of the platform contains the corresponding fixed

infrastructure: an indoor positioning system, wireless

communication support, as well as some fixed servers.

Our platform is set up in a room of approximately

100m
2 where mobile devices can move around. By

changing scale, we can emulate systems of different

sizes. Hardware modeling of this type of system re-

quires a reduction or increase of scale to be able to

conduct experiments within the laboratory. To obtain

a realistic environment, all services must be modified

according to the same scale factor.

For example, if we consider a VANET experiment

like the DBB, a typical GPS in a moving car is accurate

to within 5 − 20m. So, for our 100m
2 indoor envi-

ronment to be a scaled down representation of (say)

a 250000m
2 outdoor environment (a scale reduction

factor of 50), the indoor positioning accuracy needs to

be 10 − 40cm.

Technological aspects. To reach such a level of ac-

curacy for indoor positioning, we used a dedicated

motion capture technology that tracks objects based

on real-time analysis of images captured by infra-red

cameras. The Cortex system is able to localize objects

at the millimeter scale, which is more than enough for

the VANET setting.

Another important question is how to make the



devices actually mobile. Obviously, when conducting

experiments, a human operator cannot be behind each

device, so mobility has to be automated. This is why

we considered the use of simple small robot platforms

in order to carry around the platform devices. The task

of these robots is to “implement” the mobility of the

nodes. The carried devices communicate with the robot

through a serial port. This way they can control the

mobility, i.e. the trajectory, the stops and continuations,

the fault-injection, etc.

The last and most important design issue for the

platform concerns wireless communications. Indeed,

the communication range of the participants (mobile

nodes and infrastructure access-points) has to be scaled

according to the experiment being conducted. For

example, with a VANET experiment, a typical auto-

mobile has a wireless communication range of a few

hundred meters, say 200m. With a scale reduction

factor fixed at 50, the mobile devices communication

range has to be limited to 4m. However, to cope with

other experiments and other scale reduction factors,

this communication range should ideally be variable.

A satisfying solution consists in using, for this

purpose, signal attenuators placed between the WiFi

network interfaces and their antennas. An attenuator

is an electronic device that reduces the amplitude or

power of a signal without appreciably distorting its

waveform. Attenuators are passive devices made from

resistors. The degree of attenuation may be fixed,

continuously adjustable, or incrementally adjustable.

In our case, the attenuators are used to reduce the

signal received by the network interface. The necessary

capacity of the attenuators depends on many parame-

ters such as the power of the WiFi interfaces and the

efficiency of the antennas, but also on the speed of

the robot movements, the room environment, etc. We

tried to characterize the relationship between all these

parameters but had to fall back to an empirical method

to choose the appropriate attenuators. For example,

for the Distributed Black-Box case we used 26DB

attenuators.

Application scenario. As can be seen on Fig 1, the

middleware described in this article is running on

top of Apple OS X.5.6 and Java 1.5. The hardware

(Macbook with additional WiFi interface and some lo-

calization hardware) is carried by a Lynxmotion 4WD

rover. The resulting platform can be seen on Fig. 2. We

currently own four fully equipped robots. We were thus

able to emulate the Distributed Black-Box in a setting

with three cooperating cars and a police coming after

an accident has taken place. During the first part of

the scenario, the three cars backup the Black-Box data

for each other, then one of the cars looses control and

Figure 2. The ARUM platform

leaves the circuit track to crash in a wall. After the

accident has been reported, including the ID of the

crashed car and the approximated time of the accident,

the police enters the scene and requests restoration of

the black box data for a given period of time that

surrounds the accident. Once the data is successfully

restored, the police is then able to replay the film of

the accident, and to identify the other involved cars if

there is any. A movie of this scenario is available at

http://theresumeexperience.blogspot.com/ and will be

shown at DSN’2009. The software described in this

paper should be released under a GPL license soon, a

link will be posted on the same blog.

4. Conclusion and Further Work

We presented a middleware architecture for de-

pendable ubiquitous mobile applications that provides

new building blocks based on cooperative approaches.

We believe that those building blocks provide useful

abstractions in the context of future emerging applica-

tions in the future mobiquitous society. In this work,

we were concerned with the provision of a critical

data backup service, a trust and cooperation oracle,

a proximity map. These services help building reliable

mobile applications as we shown on a distributed black

box example for automobiles.

We also described a new platform for the experi-

mental evaluation of this type of mobile application.

Indeed, the evaluation of mobile systems is often

based on the use of network simulators, which are

often not satisfying, especially when dependability is

an important issue. This platform is able to emulate

mobile systems of variable size.

We believe that the usual mobility models used for

the evaluation of mobile systems are not satisfactory.

A mobility model dictates how the nodes, once dis-

tributed in the space, move. A mobility model involves

the nodes’ location, velocity and acceleration over



time. The topology and movement of the nodes are key

factors in the performance of the system under study.

Because the mobility of the nodes directly impacts the

performance of the protocol, if the mobility model does

not reflect realistically the environment under study,

the result may not reflect the performance of the system

in the reality. The majority of the existing mobility

models for ad hoc networks do not provide realistic

movement scenarios [17]. We are currently working

on the use of real mobility traces from various sources

in order to build more realistic mobility models to use

in our analytical and experimental evaluation.

We are also improving the software that controls

the mobility aspects of the platform. At the moment

the robots follow a tape track on the ground. The

next version will enable the setup of virtual tracks and

allow for the differentiation of the various robots: i.e.

each robot will be able to follow its own trajectory.

Once upgraded, the evaluation platform described in

this paper will be able to run experiments according

to the realistic mobility models mentioned above, since

the platform will be able to use any “mobility pattern”

as an input for performing reproducible experiments.

References

[1] M. Roy, F. Bonnet, L. Querzoni, S. Bonomi, M.-O.
Killijian, and D. Powell, “Geo-registers: An abstraction
for spatial-based distributed computing,” in Int. Conf.
On Principles Of DIStributed computing (OPODIS),
LNCS 5401, 2008, pp. 534–537.

[2] J. Arlat and M. Kaâniche(editors), “Hidenets. revised
reference model. deliverable nr. d1.2,” LAAS-CNRS,
Contract Report nr. 07456, September 2007.

[3] A. Casimiro(editor), “Hidenets resilient architecture
(final version). deliverable nr. d2.1.2,” LAAS-CNRS,
Contract Report nr. 08068, 2008.

[4] M.-O. Killijian, R. Cunningham, R. Meier, L. Mazare,
and V. Cahill, “Towards group communication for
mobile participants,” in in Proceedings of Principles
of Mobile Computing (POMC), 2001, pp. 75–82.

[5] L. Courtès, M.-O. Killijian, and D. Powell, “Security
rationale for a cooperative backup service for mobile
devices,” in Proceedings of the Latin-American Sym-
posium on Dependable Computing (LADC). Springer-
Verlag, 2007, pp. 212–230.

[6] L. Courtes, M. Killijian, and D. Powell, “Storage trade-
offs in a collaborative backup service for mobile de-
vices,” in European Dependable Computing Conference
(EDCC), 2006, pp. 129–138.

[7] L. Courtes, O. Hamouda, M. Kaaniche, M. Killijian,
and D. Powell, “Dependability evaluation of coopera-
tive backup strategies for mobile devices,” in Pacific
Rim Dependable Computing, 2007, pp. 139–146.

[8] P. Basu, W. Ke, and T. D. C. Little, “Metrics
for performance evaluation of distributed application
execution in ubiquitous computing environments,”
Workshop on Evaluation Methodologies for Ubiquitous
Computing at Ubicomp’01, 2001. [Online]. Available:
http://zing.ncsl.nist.gov/ubicomp01/

[9] P. Castro, A. Chen, T. Kremenek, and
R. Muntz, “Evaluating distibuted query processing
systems for ubiquitous computing,” Workshop
on Evaluation Methodologies for Ubiquitous
Computing at Ubicomp’01, 2001. [Online]. Available:
http://zing.ncsl.nist.gov/ubicomp01/

[10] M. Burnett and C. P. Rainsford, “A hybrid evaluation
approach for ubiquitous computing environments,”
Workshop on Evaluation Methodologies for Ubiquitous
Computing at Ubicomp’01, 2001. [Online]. Available:
http://zing.ncsl.nist.gov/ubicomp01/

[11] J. Arlat, M. R. Barone, Y. Crouzet, J.-C. Fabre,
M. Kaaniche, K. Kanoun, S. Mazzini, M. R. Nazzarelli,
D. Powell, M. Roy, A. E. Rugina, and H. Waese-
lynck, “Dependability needs and preliminary solutions
concerning evaluation, testing and wrapping,” LAAS,
Toulouse, Tech. Rep. 05424, 2005.

[12] K. Kanoun, H. Madeira, F. Moreira, M. Cin, and
J. Garcia, “Dbench - dependability benchmarking,”
in Proc. of the Lecture Notes in Computer Science
(LNCS), Springer-Verlag, Fifth European Dependable
Computing Conference (EDCC-5), April 2005.

[13] S. R. Das, R. Castañeda, and J. Yan, “Simulation-based
performance evaluation of routing protocols for mobile
ad hoc networks,” in Mob. Netw. Appl., vol. 5, no. 3.
Hingham, MA, USA: Kluwer Academic Publishers,
2000, pp. 179–189.

[14] E. B. Hamida, G. Chelius, and J. M. Gorce, “On the
complexity of an accurate and precise performance
evaluation of wireless networks using simulations,” in
11th ACM-IEEE Int. Symp. on Modeling, Analysis and
Simulation of Wireless and Mobile Systems (MSWIM),
2008.

[15] D. Cavin, Y. Sasson, and A. Schiper, “On the accuracy
of manet simulators,” in POMC ’02: Proceedings of the
second ACM international workshop on Principles of
mobile computing. New York, NY, USA: ACM Press,
2002, pp. 38–43.

[16] M. Killijian, N. Rivière, and M. Roy, “Experimental
evaluation of resilience for ubiquitous mobile systems,”
in Proc. of UbiComp, Workshop on Ubiquitous Systems
Evaluation (USE), 2007, pp. 283–287.

[17] M. Musolesi and C. Mascolo, “Mobility Models for
Systems Evaluation. A Survey,” in Middleware for
Network Eccentric and Mobile Applications. State of
the Art. Springer, to appear.


