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The Inf function in the system F

We give a λ term of type Nat, Nat->Nat in the system F that computes the minimum of 2 Church numerals in time O(inf.log(inf)). This refutes a conjecture of the "λ folklore".

I Introduction

It is known (see [11] ) that the representation of the integers by the Church numerals in the second order lambda calculus (the Girard-Reynolds system F) has -as far as efficiency is concerned -the drawback that the predecessor cannot be computed (even in the pure lambda calculus) in constant time. Though this is not a serious problem for the predecessor itself ( nobody will use the unary notation for the integers on a computer and in binary notation it is quite normal to compute the predecessor in time the length of its notation) this becomes a real problem if the predecessor operation has to be iterated for example to compute the difference or the minimum of 2 integers. B Maurey has given a term Inf = λnλm ((n F λx n) (m F λx m)) where F = λfλg (g f) that computes the Inf function in time O(inf) but JL.Krivine ([6,13]) has shown that this term cannot be typed of type Nat, Nat -> Nat in the system F where Nat is ∀x ((x->x)->(x->x)). There is a term (see below) of type Nat, Nat -> Nat that computes the Inf function in time O(inf 2 ) and it was usually thought that this was the best that can be done, because there would be no way to "alternate" the decrementation of 2 arguments in a typed context. We show that this is not the case and give here a lambda term of type Nat, Nat -> Nat that computes the Inf function in time O( inf.log(inf)) . I guess that it could be shown (I have not checked it ) that this term can be typed in Krivine's system AF2 (the second order functional arithmetic which is -essentially -a first order extension of the system F) of type : ∀x∀y(Nat(x), Nat(y)->Nat(inf(x,y))) where the function (*) This work has been partially supported by URA 753 (Logic group in Paris 7 ) and the LIP at the ENS-Lyon symbol inf is defined by the usual equations : inf(x,0)=0 ; inf(0,sy)=0 ; inf(sx,sy)=s inf(x,y). This is not at all a trivial exercice since the following facts (to mention only a few of them) are used in the proof but their proof have no algorithmic content in the term itself so the typing has -in some way-to take care of this : -the transitivity of < . It is used in : if n>2 k and m≤2 k then we know that n>m.

-(k+2)(k+3)/2 < 2 k +8 . It is used to prove that inf(n,m) iterations are enough to find the minimum.

-the algorithm given to compute the predecessor of an integer in binary notation really computes the predecessor.

-and so on... I conjecture that there is no typed term computing the Inf function in time O(inf).

In [12]( also see [10]) M.Parigot introduces the type system TTR (recursive type theory), the main reason for that was to give a typed representation of the integers with a typed predecessor working in constant time. TTR is an extension of AF2 where inductive definitions for types are allowed . For exemple Nat_TTR is there defined by : Nat_TTR(x)=µN ∀X (∀y(N(y) -> X(s(y))), X(0) -> X(x)) that is we mean : Nat_TTR(x)<=>∀X (∀y(Nat_TTR(y) -> X(s(y))), X(0) -> X(x)) and we do not give any algorithmic content to <=> . The representation of the integers in this system is then : zero = λfλx x, the successor succ=λnλfλx (f n), the predeccesor pred=λn (n Id zero) where Id=λx x. There is a ( typed and linear time ) transformation between the AF2 representation and the TTR representation. One way is trivial.

λn (n succ zero) : ∀x (Nat_AF2 (x)-> Nat_TTR(x) ) where Nat_AF2(x) = ∀X (∀z (X(z) -> X(Sz) ), X(0) -> X(x) )
The other way is more tricky and uses the technic of storage operators ( see [9,10]). It is -essentially-proved in [10] (p 28) that λν (ν ρ τ ρ) where : τ= λdλf (f zero) ρ= λyλz (G (y z τ z)) G= λxλy (x λz (y (s z))) can be typed of type ∀x ( Nat_TTR(x) -> Nat_AF2(x) ) and transforms, in linear time, the TTR representation of n to its AF2 representation. Since the term given by Maurey can be typed -in TTR -with type ∀x∀y(Nat_AF2(x) -> Nat_AF2(y) -> Bool(inf(x,y) )) it is easy to find a term of type ∀x ∀y (Nat_TTR (x) -> Nat_TTR(y) -> Bool(inf(x,y))) that computes the inf in time O(inf) .

II Basic notations

The notations are standard (see [1], [8] ). I adopt the following usual abbreviations:

(a b 1 b 2 ...b n ) for (...((a b 1 ) b 2 )...b n ) A 1 ,A 2 ,...,A n ->B for (A 1 ->(A 2 ->...(A n ->B)...) ≈ is the β equivalence nf(t)
is the normal form of t . hdnf(t) is the head normal form of t . t -> h t' : t reduces to t' by some steps of head reduction . time(t) = the number of β reductions to go (by left reduction) from t to its normal form. hdtime(t) = the number of β reductions to go (by head reduction) from t to its head normal form. 

Main types

Nat = ∀x ((x->x)->(x->x)) Bool = ∀x (x->(x->x)) List = ∀x ((Bool, x->x)->(x->x)) Nat × Νat =

Storage operators

The role of the storage operators is to force -during a head reduction -a call by value . For details on the computation, type and time see [9,10] 

Nstore = λn (n H δ) : ∀o(Nat* -> ¬¬Nat)
where Nat* = ∀x ((¬x -> ¬x) -> (¬x -> ¬x)) and ¬x = x->o δ= λf (f zero) and H= λxλy (x λz (y (s z)))

Nstore is a storage operator for Nat, that is (Nstore t n g) reduces -by head reduction-to (g {n}) in time O(time(t n )) if g is a variable and t

n ≈[n] So time (( Nstore t n G)) = O(time (t n )) + time ((G {n})) Bstore = λb (b λf (f true) λf (f false)) : ∀o(Bool* -> ¬¬Bool) where Bool* = ∀x (¬x -> (¬x -> ¬x))
Bstore is a storage operator for Bool , that is (Bstore b g) reduces -by head reduction-to (g true) (resp (g false) ) in time O(time(b)) if b ≈ true (resp false) and g is a variable Lstore = λl (l H δ) : ∀o(List*-> ¬¬List) where List* = ∀x ((Bool*, ¬x -> ¬x) -> (¬x -> ¬x))

H= λa (Bstore a λbλrλf (r λz (f (cons b z)))) and δ = λf (f nil) Lstore is a storage operator for List, that is (Lstore l g) reduces -by head reduction-to (g {a 0 ...a k }) in time O(time(l)) if g is a variable and l ≈ [a 0 ,...a k ]

III The inf term

Before giving good_inf I remind here easy_inf the " usual " term for the function : n, m->if n<m then n else m ; easy_inf is such that : The two basic tricks of the algorithm are the following :

time ( (easy_inf [n] [m] )) = O(((inf(n,m)) 2 ) ( see [2] ) easy_inf = λnλm (n A
1) compare n and m in the following way : (this is the same idea as in [4] ) Iterate the following function (with initial arguments (n, m, 0, 0) and local arguments (n', m', k', p') ) if m'=0 then answer false else if n'=0 then answer true else : if n'>2 k' and m'>2 k' then iterate with arguments (n', m', (k'+1), k') that is : compare n' and m' with 2 k'+1 , and remember that n'>2 k' and m'>2 k' else if n>2 k' and m≤2 k' then answer false else if n≤2 k' and m>2 k' then answer true else if n≤2 k' and m≤2 k' then iterate with arguments (n'-2 p' , m'-2 p' , 0, 0) that is : compare n'-2 p' and m'-2 p' where p' is the largest integer such that n' , m' > 2 p'

2) compute n-2 k or compare n to 2 k in the following way : iterate n times the decrementation of 1 starting from 2 k ; n is used as the iterator whereas 2 k -and its predecessors -are written in binary notation (the higher order bit being -on the opposite to the usual notation -on the right, that is at the end of the list of length k ) . It is convenient to assume that the useless "0" bits of high order at the right of the representation l of an integer are kept, i.e the length of l and (pred l) are the same . The main point is : since we are making head reductions, we donot have to compute entirely n -2 k ( see the proof of lemma 4 ) and so, even if n is much larger than 2 k , the time to compare n with 2 k is O(k 2 k ) .

The next lemma is crucial and used without mention in almost all the other lemmas .

Lemma 0

Let u, v, v 1 ,...,v n be λ terms and u' = hdnf( u ). Then : hdtime( (u v 1 ... v n ) )= hdtime( u ) + hdtime( (u' v 1 ...v n ) ) hdtime(u[v/x]) = hdtime(u) + hdtime (u'[v/x]) . proof : Easy , by induction on hdtime(u) . see [9,10] .

Theorem

For every natural numbers n and m : 1 O( inf(n,m) . log(inf(n,m)))

) (inf [n] [m] ) ≈ [inf(n,m)] 2) time( (inf [n] [m] ) ) =
Proof : We show that at most inf(n,m) +8 iterations are enough to find the minimum . It is then clear that the roles of n and m are -in factsymetric; assume then that n ≤ m and let k be such that 2 k < n ≤2 (k+1) . Note that Init -the initialisation of the iteration -will then never be used and so any thing -of the good type -would in fact do .

-If m > 2 (k+1) : the algorithm find the minimum in k+2 iterations and the

computation time is O ( ∑ i=1 k+2 i 2 i ) = O(k 2 k ) = O(inf Log(inf)) .
-If m ≤2 (k+1) : after k+2 iterations the head normal form is (iteration r Init {n-2 k } {m-2 k } zero zero ) for some r . By repeating the argument ( since n-2 k ≤ 2 k ) it is then clear that the maximum number of iterations to find the minimum is : (k+2) +(k+1)+...+1 = (k+2)(k+3)/2 which is easily seen to be less than 2 k +8 , and that the computation time is at most :

∑ i=1 k+1 ∑ j=1 i+1 O( j.2 j ) = O(k.2 k ) = O(inf log(inf)) .

The complete term

The following term has been tested on computers . The experiences made show that the computation time (number of β left reductions ) is less than 300 inf log(inf) . 

  ∀y ((Nat->Nat->y)->y) Some constructors on these types s = the successor = λnλfλx (f (n f x)) : Nat->Nat zero (also called false, nil) = λfλx x : Nat ( also of type Bool, List ) true = λxλy x : Bool not = λaλxλy (a y x) : Bool->Bool cons = the concatenation on List = λbλlλfλx (f b (l f x)) : Bool, List->List {a 0 ,...a k } = (cons a 0 (cons ... (cons a k nil)...))

  λp zero m ) : Nat,Nat->Nat where A = λuλm (m H <zero,zero> false) : (Nat->Nat)->(Nat->Nat) H = λc <(s (c true)),(s (u (c true)))> : Nat × Νat->Nat × Νat and <a,b> is λf (f a b) It is more convenient to define first inf (= the function : n, m-> if n<m then true else false) and then good_inf (= the function : n, m->if n<m then n else m) Nat,Nat->Nat λnλm (inf n m n m)

  =λbλlλfλx (f b (l f x)) d1= λf (f zero) H1= λxλy (x λz (y (s z))) Nstore = λn (n H1 d1) Bstore =λb (b λf (f true) λf (f false)) d2 = λf (f nil) H2= λa (Bstore a λbλrλf (r λz (f (cons b z)))) Lstore =λl (l H2 d2) B=λbλr (b false r) test_list =λlλnλm (l B true n m) cons_0 = λlλfλx (f false (l f x)) list =λk (k cons_0 (cons true nil)) not = λaλxλy (a y x) G = λaλyλb (b (cons a (y true)) (cons (not a) (y a))) D = λb nil pred= λl (l G D false) next =λgλl (test_list l (s (g l)) (Lstore (pred l) g)) Dif =λnλk (n next λx zero (list k)) Test=λnλkλaλb (n next λx zero (list k) λx a b) Init =λnλmλpλq true Iteration =λgλnλmλkλp (m λx (n λx (Test n k (Test m k (g n m (s k) k) false) (Test m k true ((Nstore (Dif m p) (Nstore (Dif n p) g)) zero zero))) true) false)

Abbreviations

[n] =λfλx (f (f ...(f x)...)) [a 0 ,...a k ] = λfλx (f a 0 (f ...(f a k x)...)) {n} = (s (s ...(s zero)...) I now introduce -in the following lemmas -some sub-terms of the λ term inf and give their properties . 

Lemma 4

Let next = λgλl (test_list l (s (g l)) (Lstore (pred l) g)) :

2) It follows from the properties of Lstore and the previous lemmas that if g is a variable, the a i are true or false and l = {a 0 , ..., a k } represents -in binary -a non zero integer p then hdnf (next g l ) = (g {b 0 , ..., b k }) where [b 0 , ..., b k ] represents p-1 and hdtime ((next g l ) )= O(k) . Thus let u=({n} next λx zero (list {k})) and v= ({n} next λx zero (list {k}) λx a b) ; -If n ≤ 2 k then u-> h (λx zero l') for some l' and so u ≈ zero , v ≈ b and time

3) Finally it is easy to see that ((next p λx zero) {false, ..., false}) reduces to [p] in time O(p k) . This proves 3) .

Lemma 5

Let n, m, p be integers such that 2 p < n, m ≤ 2 p+1 , g is a variable and u = (Nstore (Dif {m} {p}) (Nstore (Dif {n} {p}) g)) , then hdnf( u ) = (g {m-2 p } {n-2 p }) and hdtime(u) = O(p 2 p ) proof : This follows easily from the lemma 4 and the properties of Nstore .

Lemma 6

Let Let n, m, k, p be integers, g a variable and u be the head normal form of (Iteration g {n} {m} {k} {p}) then : 1) -if m=0 then u= false else -if n=0 then u= true else -if n>2 k and m>2 k then u= (g {n} {m}, {k+1}, {k}) else -if n>2 k and m≤2 k then u= false else -if n≤2 k and m>2 k then u= true else -if n≤2 k and m≤2 k then u= (g {n-2 p} {m-2 p} zero zero) 2) hdtime((Iteration g {n} {m} {k} {p})) = O(k 2 k ) proof : This follows from the lemma 5 .

Definition

Let inf = λnλm ((s 8 n) Iteration Init n m zero zero) : Nat,Nat->Bool where Init = λnλmλpλq true : (Nat,Nat,Nat,Nat->Bool) inf =λnλm (s (s (s ( s (s (s ( s (s n))))))) Iteration Init n m zero zero) good_inf =λnλm (inf n m n m)

IV a term in TTR Proposition 1

There is a term of type ∀x ∀y (Nat_TTR(x), Nat_TTR(y) -> Bool(inf(x,y)) that computes the inf function in time O(inf) where Bool(b) is the TTR (or AF2 -it's the same ! ) type for the booleans i.e Bool(b) := ∀X(X(true), X(false) -> X(b) ) and inf is specified by : inf(0,y)=true inf(Sx,0)=false inf(Sx,Sy)=inf(x,y) .

proof : this follows easily from the linear time transformation from TTR to AF2 mentionned in the introduction and the next lemma .

Lemma

The term λnλm ((n F1 λx true ) (m F2 λx false )) where F1=F2=λfλg (g f) has in TTR the type : ∀x ∀y (Nat_AF2(x), Nat_AF2(y) -> Bool(inf(x,y))

proof : This typing is -essentially -due to JL Krivine (see [6] ). Let U be such that : U(x) <=> ∀y(∀z(U(z)->Bool(inf(Sz,y)))->Bool(inf(x,y)))

Fact 1 :  F1 : ∀x(U(x)->U(Sx)) proof : f:U(x), g: ∀z(U(z)->Bool(inf(Sz,y)))  (g f) :Bool(inf(Sx,y) . So f:U(x)  λg (g f) : U(Sx) .

Fact 2 :  λx true : U(0) proof :  true : Bool(true) = Bool(inf(o,y))

Fact 4 :  F2 : ∀y(∀x(U(x)->Bool(inf(Sx,y))) -> ∀x(U(x)-> Bool(inf(Sx,Sy))) proof : f: ∀x(U(x)->Bool(inf(Sx,y))), g:U(x) {<=> ∀y(∀z(U(z)->Bool(inf(sz,y)))->Bool(inf(x,y)))}  (g f) : Bool(inf(x,y)) and Bool(inf(Sx,Sy))=Bool(inf(x,y))

Fact 5 :  λx false : ∀x(U(x)-> Bool(inf(Sx,0)))

Fact 6 : m:Nat(y)  (m F2 λx false ) : ∀x(U(x)->Bool(inf(Sx,y)))=∀z(U(z) ->Bool(inf(Sz,y)))

Fact 7 : n: Nat(x), m:Nat(y)  ((n F1 λx true ) (m F2 λx false )) : Bool(inf(x,y)) proof : by fact 3 {and U(x) <=>∀y(∀z( U(z)-> Bool(inf(sz,y)))-> Bool(inf(x,y))) } and fact 6. 
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