R David
email: david@univ-savoie.fr

The Inf function in the system F

We give a λ term of type Nat, Nat->Nat in the system F that computes the minimum of 2 Church numerals in time O(inf.log(inf)). This refutes a conjecture of the "λ folklore".

I Introduction

It is known (see [11]) that the representation of the integers by the Church numerals in the second order lambda calculus (the Girard-Reynolds system F) has -as far as efficiency is concerned -the drawback that the predecessor cannot be computed (even in the pure lambda calculus) in constant time. Though this is not a serious problem for the predecessor itself (nobody will use the unary notation for the integers on a computer and in binary notation it is quite normal to compute the predecessor in time the length of its notation) this becomes a real problem if the predecessor operation has to be iterated for example to compute the difference or the minimum of 2 integers. B Maurey has given a term Inf = λnλm ((n F λx n) (m F λx m)) where F = λfλg (g f) that computes the Inf function in time O(inf) but JL.Krivine ([6,13]) has shown that this term cannot be typed of type Nat, Nat -> Nat in the system F where Nat is ∀x ((x->x)->(x->x)). There is a term (see below) of type Nat, Nat -> Nat that computes the Inf function in time O(inf 2) and it was usually thought that this was the best that can be done, because there would be no way to "alternate" the decrementation of 2 arguments in a typed context. We show that this is not the case and give here a lambda term of type Nat, Nat -> Nat that computes the Inf function in time O(inf.log(inf)) . I guess that it could be shown (I have not checked it) that this term can be typed in Krivine's system AF2 (the second order functional arithmetic which is -essentially -a first order extension of the system F) of type : ∀x∀y(Nat(x), Nat(y)->Nat(inf(x,y))) where the function (*) This work has been partially supported by URA 753 (Logic group in Paris 7) and the LIP at the ENS-Lyon symbol inf is defined by the usual equations : inf(x,0)=0 ; inf(0,sy)=0 ; inf(sx,sy)=s inf(x,y). This is not at all a trivial exercice since the following facts (to mention only a few of them) are used in the proof but their proof have no algorithmic content in the term itself so the typing has -in some way-to take care of this : -the transitivity of < . It is used in : if n>2 k and m≤2 k then we know that n>m.

-(k+2)(k+3)/2 < 2 k +8 . It is used to prove that inf(n,m) iterations are enough to find the minimum.

-the algorithm given to compute the predecessor of an integer in binary notation really computes the predecessor.

-and so on... I conjecture that there is no typed term computing the Inf function in time O(inf).

In [12](also see [10]) M.Parigot introduces the type system TTR (recursive type theory), the main reason for that was to give a typed representation of the integers with a typed predecessor working in constant time. TTR is an extension of AF2 where inductive definitions for types are allowed . For exemple Nat_TTR is there defined by : Nat_TTR(x)=µN ∀X (∀y(N(y) -> X(s(y))), X(0) -> X(x)) that is we mean : Nat_TTR(x)<=>∀X (∀y(Nat_TTR(y) -> X(s(y))), X(0) -> X(x)) and we do not give any algorithmic content to <=> . The representation of the integers in this system is then : zero = λfλx x, the successor succ=λnλfλx (f n), the predeccesor pred=λn (n Id zero) where Id=λx x. There is a (typed and linear time) transformation between the AF2 representation and the TTR representation. One way is trivial.

λn (n succ zero) : ∀x (Nat_AF2 (x)-> Nat_TTR(x)) where Nat_AF2(x) = ∀X (∀z (X(z) -> X(Sz)), X(0) -> X(x))
The other way is more tricky and uses the technic of storage operators (see [9,10]). It is -essentially-proved in [10] (p 28) that λν (ν ρ τ ρ) where : τ= λdλf (f zero) ρ= λyλz (G (y z τ z)) G= λxλy (x λz (y (s z))) can be typed of type ∀x (Nat_TTR(x) -> Nat_AF2(x)) and transforms, in linear time, the TTR representation of n to its AF2 representation. Since the term given by Maurey can be typed -in TTR -with type ∀x∀y(Nat_AF2(x) -> Nat_AF2(y) -> Bool(inf(x,y))) it is easy to find a term of type ∀x ∀y (Nat_TTR (x) -> Nat_TTR(y) -> Bool(inf(x,y))) that computes the inf in time O(inf) .

II Basic notations

The notations are standard (see [1], [8]). I adopt the following usual abbreviations:

(a b 1 b 2 ...b n) for (...((a b 1) b 2)...b n) A 1 ,A 2 ,...,A n ->B for (A 1 ->(A 2 ->...(A n ->B)...) ≈ is the β equivalence nf(t)
is the normal form of t . hdnf(t) is the head normal form of t . t -> h t' : t reduces to t' by some steps of head reduction . time(t) = the number of β reductions to go (by left reduction) from t to its normal form. hdtime(t) = the number of β reductions to go (by head reduction) from t to its head normal form.

Main types

Nat = ∀x ((x->x)->(x->x)) Bool = ∀x (x->(x->x)) List = ∀x ((Bool, x->x)->(x->x)) Nat × Νat =

Storage operators

The role of the storage operators is to force -during a head reduction -a call by value . For details on the computation, type and time see [9,10]

Nstore = λn (n H δ) : ∀o(Nat* -> ¬¬Nat)
where Nat* = ∀x ((¬x -> ¬x) -> (¬x -> ¬x)) and ¬x = x->o δ= λf (f zero) and H= λxλy (x λz (y (s z)))

Nstore is a storage operator for Nat, that is (Nstore t n g) reduces -by head reduction-to (g {n}) in time O(time(t n)) if g is a variable and t

n ≈[n] So time ((Nstore t n G)) = O(time (t n)) + time ((G {n})) Bstore = λb (b λf (f true) λf (f false)) : ∀o(Bool* -> ¬¬Bool) where Bool* = ∀x (¬x -> (¬x -> ¬x))
Bstore is a storage operator for Bool , that is (Bstore b g) reduces -by head reduction-to (g true) (resp (g false)) in time O(time(b)) if b ≈ true (resp false) and g is a variable Lstore = λl (l H δ) : ∀o(List*-> ¬¬List) where List* = ∀x ((Bool*, ¬x -> ¬x) -> (¬x -> ¬x))

H= λa (Bstore a λbλrλf (r λz (f (cons b z)))) and δ = λf (f nil) Lstore is a storage operator for List, that is (Lstore l g) reduces -by head reduction-to (g {a 0 ...a k }) in time O(time(l)) if g is a variable and l ≈ [a 0 ,...a k]

III The inf term

Before giving good_inf I remind here easy_inf the " usual " term for the function : n, m->if n<m then n else m ; easy_inf is such that : The two basic tricks of the algorithm are the following :

time ((easy_inf [n] [m])) = O(((inf(n,m)) 2) (see [2]) easy_inf = λnλm (n A
1) compare n and m in the following way : (this is the same idea as in [4]) Iterate the following function (with initial arguments (n, m, 0, 0) and local arguments (n', m', k', p')) if m'=0 then answer false else if n'=0 then answer true else : if n'>2 k' and m'>2 k' then iterate with arguments (n', m', (k'+1), k') that is : compare n' and m' with 2 k'+1 , and remember that n'>2 k' and m'>2 k' else if n>2 k' and m≤2 k' then answer false else if n≤2 k' and m>2 k' then answer true else if n≤2 k' and m≤2 k' then iterate with arguments (n'-2 p' , m'-2 p' , 0, 0) that is : compare n'-2 p' and m'-2 p' where p' is the largest integer such that n' , m' > 2 p'

2) compute n-2 k or compare n to 2 k in the following way : iterate n times the decrementation of 1 starting from 2 k ; n is used as the iterator whereas 2 k -and its predecessors -are written in binary notation (the higher order bit being -on the opposite to the usual notation -on the right, that is at the end of the list of length k) . It is convenient to assume that the useless "0" bits of high order at the right of the representation l of an integer are kept, i.e the length of l and (pred l) are the same . The main point is : since we are making head reductions, we donot have to compute entirely n -2 k (see the proof of lemma 4) and so, even if n is much larger than 2 k , the time to compare n with 2 k is O(k 2 k) .

The next lemma is crucial and used without mention in almost all the other lemmas .

Lemma 0

Let u, v, v 1 ,...,v n be λ terms and u' = hdnf(u). Then : hdtime((u v 1 ... v n))= hdtime(u) + hdtime((u' v 1 ...v n)) hdtime(u[v/x]) = hdtime(u) + hdtime (u'[v/x]) . proof : Easy , by induction on hdtime(u) . see [9,10] .

Theorem

For every natural numbers n and m : 1 O(inf(n,m) . log(inf(n,m)))

) (inf [n] [m]) ≈ [inf(n,m)] 2) time((inf [n] [m])) =
Proof : We show that at most inf(n,m) +8 iterations are enough to find the minimum . It is then clear that the roles of n and m are -in factsymetric; assume then that n ≤ m and let k be such that 2 k < n ≤2 (k+1) . Note that Init -the initialisation of the iteration -will then never be used and so any thing -of the good type -would in fact do .

-If m > 2 (k+1) : the algorithm find the minimum in k+2 iterations and the

computation time is O (∑ i=1 k+2 i 2 i) = O(k 2 k) = O(inf Log(inf)) .
-If m ≤2 (k+1) : after k+2 iterations the head normal form is (iteration r Init {n-2 k } {m-2 k } zero zero) for some r . By repeating the argument (since n-2 k ≤ 2 k) it is then clear that the maximum number of iterations to find the minimum is : (k+2) +(k+1)+...+1 = (k+2)(k+3)/2 which is easily seen to be less than 2 k +8 , and that the computation time is at most :

∑ i=1 k+1 ∑ j=1 i+1 O(j.2 j) = O(k.2 k) = O(inf log(inf)) .

The complete term

The following term has been tested on computers . The experiences made show that the computation time (number of β left reductions) is less than 300 inf log(inf) .

 ∀y ((Nat->Nat->y)->y) Some constructors on these types s = the successor = λnλfλx (f (n f x)) : Nat->Nat zero (also called false, nil) = λfλx x : Nat (also of type Bool, List) true = λxλy x : Bool not = λaλxλy (a y x) : Bool->Bool cons = the concatenation on List = λbλlλfλx (f b (l f x)) : Bool, List->List {a 0 ,...a k } = (cons a 0 (cons ... (cons a k nil)...))

 λp zero m) : Nat,Nat->Nat where A = λuλm (m H <zero,zero> false) : (Nat->Nat)->(Nat->Nat) H = λc <(s (c true)),(s (u (c true)))> : Nat × Νat->Nat × Νat and <a,b> is λf (f a b) It is more convenient to define first inf (= the function : n, m-> if n<m then true else false) and then good_inf (= the function : n, m->if n<m then n else m) Nat,Nat->Nat λnλm (inf n m n m)

 =λbλlλfλx (f b (l f x)) d1= λf (f zero) H1= λxλy (x λz (y (s z))) Nstore = λn (n H1 d1) Bstore =λb (b λf (f true) λf (f false)) d2 = λf (f nil) H2= λa (Bstore a λbλrλf (r λz (f (cons b z)))) Lstore =λl (l H2 d2) B=λbλr (b false r) test_list =λlλnλm (l B true n m) cons_0 = λlλfλx (f false (l f x)) list =λk (k cons_0 (cons true nil)) not = λaλxλy (a y x) G = λaλyλb (b (cons a (y true)) (cons (not a) (y a))) D = λb nil pred= λl (l G D false) next =λgλl (test_list l (s (g l)) (Lstore (pred l) g)) Dif =λnλk (n next λx zero (list k)) Test=λnλkλaλb (n next λx zero (list k) λx a b) Init =λnλmλpλq true Iteration =λgλnλmλkλp (m λx (n λx (Test n k (Test m k (g n m (s k) k) false) (Test m k true ((Nstore (Dif m p) (Nstore (Dif n p) g)) zero zero))) true) false)

Abbreviations

[n] =λfλx (f (f ...(f x)...)) [a 0 ,...a k] = λfλx (f a 0 (f ...(f a k x)...)) {n} = (s (s ...(s zero)...) I now introduce -in the following lemmas -some sub-terms of the λ term inf and give their properties .

Lemma 4

Let next = λgλl (test_list l (s (g l)) (Lstore (pred l) g)) :

2) It follows from the properties of Lstore and the previous lemmas that if g is a variable, the a i are true or false and l = {a 0 , ..., a k } represents -in binary -a non zero integer p then hdnf (next g l) = (g {b 0 , ..., b k }) where [b 0 , ..., b k] represents p-1 and hdtime ((next g l))= O(k) . Thus let u=({n} next λx zero (list {k})) and v= ({n} next λx zero (list {k}) λx a b) ; -If n ≤ 2 k then u-> h (λx zero l') for some l' and so u ≈ zero , v ≈ b and time

3) Finally it is easy to see that ((next p λx zero) {false, ..., false}) reduces to [p] in time O(p k) . This proves 3) .

Lemma 5

Let n, m, p be integers such that 2 p < n, m ≤ 2 p+1 , g is a variable and u = (Nstore (Dif {m} {p}) (Nstore (Dif {n} {p}) g)) , then hdnf(u) = (g {m-2 p } {n-2 p }) and hdtime(u) = O(p 2 p) proof : This follows easily from the lemma 4 and the properties of Nstore .

Lemma 6

Let Let n, m, k, p be integers, g a variable and u be the head normal form of (Iteration g {n} {m} {k} {p}) then : 1) -if m=0 then u= false else -if n=0 then u= true else -if n>2 k and m>2 k then u= (g {n} {m}, {k+1}, {k}) else -if n>2 k and m≤2 k then u= false else -if n≤2 k and m>2 k then u= true else -if n≤2 k and m≤2 k then u= (g {n-2 p} {m-2 p} zero zero) 2) hdtime((Iteration g {n} {m} {k} {p})) = O(k 2 k) proof : This follows from the lemma 5 .

Definition

Let inf = λnλm ((s 8 n) Iteration Init n m zero zero) : Nat,Nat->Bool where Init = λnλmλpλq true : (Nat,Nat,Nat,Nat->Bool) inf =λnλm (s (s (s (s (s (s (s (s n))))))) Iteration Init n m zero zero) good_inf =λnλm (inf n m n m)

IV a term in TTR Proposition 1

There is a term of type ∀x ∀y (Nat_TTR(x), Nat_TTR(y) -> Bool(inf(x,y)) that computes the inf function in time O(inf) where Bool(b) is the TTR (or AF2 -it's the same !) type for the booleans i.e Bool(b) := ∀X(X(true), X(false) -> X(b)) and inf is specified by : inf(0,y)=true inf(Sx,0)=false inf(Sx,Sy)=inf(x,y) .

proof : this follows easily from the linear time transformation from TTR to AF2 mentionned in the introduction and the next lemma .

Lemma

The term λnλm ((n F1 λx true) (m F2 λx false)) where F1=F2=λfλg (g f) has in TTR the type : ∀x ∀y (Nat_AF2(x), Nat_AF2(y) -> Bool(inf(x,y))

proof : This typing is -essentially -due to JL Krivine (see [6]). Let U be such that : U(x) <=> ∀y(∀z(U(z)->Bool(inf(Sz,y)))->Bool(inf(x,y)))

Fact 1 :  F1 : ∀x(U(x)->U(Sx)) proof : f:U(x), g: ∀z(U(z)->Bool(inf(Sz,y)))  (g f) :Bool(inf(Sx,y) . So f:U(x)  λg (g f) : U(Sx) .

Fact 2 :  λx true : U(0) proof :  true : Bool(true) = Bool(inf(o,y))

Fact 4 :  F2 : ∀y(∀x(U(x)->Bool(inf(Sx,y))) -> ∀x(U(x)-> Bool(inf(Sx,Sy))) proof : f: ∀x(U(x)->Bool(inf(Sx,y))), g:U(x) {<=> ∀y(∀z(U(z)->Bool(inf(sz,y)))->Bool(inf(x,y)))}  (g f) : Bool(inf(x,y)) and Bool(inf(Sx,Sy))=Bool(inf(x,y))

Fact 5 :  λx false : ∀x(U(x)-> Bool(inf(Sx,0)))

Fact 6 : m:Nat(y)  (m F2 λx false) : ∀x(U(x)->Bool(inf(Sx,y)))=∀z(U(z) ->Bool(inf(Sz,y)))

Fact 7 : n: Nat(x), m:Nat(y)  ((n F1 λx true) (m F2 λx false)) : Bool(inf(x,y)) proof : by fact 3 {and U(x) <=>∀y(∀z(U(z)-> Bool(inf(sz,y)))-> Bool(inf(x,y))) } and fact 6.

Bibliographie