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STORAGE OPERATORS AND DIRECTED LAMBDA-CALCULUS

Abstract

Storage operators have been introduced by J.L. Krivine in [START_REF] Krivine | Lambda calcul, évaluation paresseuse et mise en mémoire[END_REF] ; they are closed l-terms which, for a data type, allow to simulate a "call by value" while using the "call by name" strategy. In this paper, we introduce the directed l-calculus and show that it has the usual properties of the ordinary l-calculus. With this calculus we get an equivalentand simple -definition of the storage operators that allows to show some of their properties :

-the stability of the set of storage operators under the b-equivalence (theorem 5.1.1) ; -the undecidability ( and its semi-decidability ) of the problem "is a closed l-term t a storage operator for a finite set of closed normal l-terms ? " (theorems 5.2.2 and 5.2.3) ; -the existence of storage operators for every finite set of closed normal l-terms (theorem 5.4.3) ; -the computation time of the "storage operation" (theorem 5.5.2).

Résumé

Les opérateurs de mise en mémoire ont été introduits par J.L. Krivine dans [START_REF] Krivine | Lambda calcul, évaluation paresseuse et mise en mémoire[END_REF] ; il s'agit de l-termes clos qui, pour un type de données, permettent de simuler "l'appel par nom" dans le cadre de "l'appel par valeur". Dans cet article, nous introduisons le l-calcul dirigé et nous démontrons qu'il garde les propriétés usuelles du l-calcul ordinaire. Avec ce calcul nous obtenons une définition équivalente -et simple -pour les opérateurs de mise en mémoire qui permet de prouver plusieurs de leurs propriétés :

-la stabilité de l'ensemble des opérateurs de mise en mémoire par la b-équivalence (théorème 5.1.1) ; -l'indécidabilité (et sa semi-décidabilité ) du problème "un terme clos t est il un opérateur de mise en mémoire pour un ensemble fini de termes normaux clos ? " (théorèmes 5.2.2 et 5. Lambda-calculus as such is not a computational model. A reduction strategy is needed. In this paper, we consider l-calculus with the left reduction (iteration of the head reduction denoted by ∑). This strategy has some advantages : it always terminates when applied to a normalizable l-term, and it seems more economic since we compute a l-term only when we need it. But the major drawback of this strategy is that a function must compute its argument every time it uses it. This is the reason why this strategy is not really used. We would like a solution to this problem.

Let F be a l-term, D a set of closed normal l-terms, and tAD. During the computation, by left reduction, of (F)h t (where h t : b t), h t may be computed several times (as many times as F uses it). We would like to transform (F)h t to (F)t. We also want that this transformation depends only on h t (and not F). In other words we look for some closed l-term T which satisfies the following propreties :

-For every F, and for every tAD, (T)h t F∑(F)t ;

-The computation time of (T)h t F depends only on h t .

Definition (temporary) :

A closed l-term T is called a storage operator for D if and only if for every tAD, and for every h t : b t, (T)h t f∑(f)t (where f is a new variable).

It is clear that a storage operator satisfies the required properties. Indeed, -Since we have (T)h t f∑(f)t, then the variable f never comes in head position during the reduction, we cmay then replace f by any l-term.

-The computation time (T)h t F depends only on h t .

K. Nour has shown (see [START_REF] Nour | Strong storage operators and data types[END_REF]) that it is not always possible to get a normal form (it is the case for the set of Church integers). We then change the definition.

Definition (temporary) :

A closed l-term T is called storage operator for D if and only if for every tAD, there is a closed l-term t t : b t, such that for every h t : b t, (T)h t f∑(f)t t (where f is a new variable).

J.L. Krivine has shown that, by using Gödel translation from classical to intuitionitic logic, we can find, for every data type, a very simple type for the storage operators. But the l-term t t obtained may contain variables substituted by l-terms depending on h t .

Since the l-term t t is by-equivalent to a closed l-term, the left reduction of t t [u 1 /x 1 , …,u n /x n ] is equivalent to the left reduction of t t , the l-terms u 1 ,…,u n will therefore never be evaluated during the reduction. We then modify again the definition.

Definition (final) :

A closed l-term T is called a storage operator for D if and only if for every tAD, there is a l-term t t : by t, such that for every h t : b t, there is a substitution s, such that (T)h t f∑(f)s(t t ) (where f is a new variable).

In the case where t t =t, we say that T is a strong storage operator, and in the case where t t is closed, we say that T is a proper storage operator. These special operators are studied in [START_REF] Nour | Strong storage operators and data types[END_REF] and [START_REF] Nour | Opérateurs propres de mise en mémoire[END_REF].

The previous definition is not well adapted to study these operators. Indeed, it is, a priori, a Pstatement (Vt Et t Vh t Es A(T,t,t t ,h t ,s)). We will show that it is in fact equivalent to Pstatement (t t can be computed from t, and s from h t ).

We now describe the intuitive meaning of the directed lambda calculus.

0.2

Consider the particular case of the set N of Church integers.

A closed l-term T is a storage operator for N if and only if for every n 0, there is a ≥ lterm t n : by n, such that for every h n : b n, there is a substitution s, such that (T)h n f∑(f)s(t n ).

Let's analyse the head reduction (T)h n f∑(f)s(t n ), by replacing each l-term which comes from h n by a new variable.

If

h n : b n, then h n ∑lglx(g)t n-1 , t n-k ∑(g)t n-k-1 1 k n-1, t ≤ ≤ 0 ∑x, and t k : b (g) k x 0 k n-1. ≤ ≤
Let u n be a new variable (u n represents h n ). (T)u n f is solvable, and its head normal form does not begin by l, therefore it is a variable applied to some arguments. The free variables of (T)u n f are u n and f, we then have two possibilities for its head normal form : (f)d (in this case we stop) or (u n )a 1 …a m .

Assume we obtain (u n )a 1 …a m . The variable u n represents h n , and h n ∑lglx(g)t n-1 , therefore (h n )a 1 …a m and ((a 1 )t n-1 [a 1 /g,a 2 /x])a 3 …a m have the same head normal form.

The l-term t n-1 [a 1 /g,a 2 /x] comes from h n . Let u n-1 , a1 , a2 be a new variable (u n-1 , a1 , a2 represents t n-1 [a 1 /g,a 2 /x]). The l-term ((a 1 )u n-1 , a1 , a2 )a 3 …a m is solvable, and its head normal form does not begin by l, therefore it is a variable applied to some arguments.

The free variables of ((a 1 )u n-1 , a1 , a2 )a 3 …a m are among u n-1 , a1 , a2 , u n , and f, we then have three possibilities for its head normal form : (f)d (in this case we stop) or (u n )b 1 …b r or (u n-1 , a1 , a2 )b 1 …b r .

Assume we obtain (u n-1 , a1 , a2 )b 1 …b r . The variable u n-1 , a1 , a2 represents t n-1 [a 1 /g,a 2 /x],

and t n-1 ∑(g)t n-2 , therefore (t n-1 [a 1 /g,a 2 /x])b 1 …b r and ((a 1 )t n-2 [a 1 /g,a 2 /x])b 1 …b r have the same head normal form. The l-term t n-1 [a 1 /g,a 2 /x] comes from h n . Let u n-2 , a1 , a2 be a new variable (u n-2 , a1 , a2 represents t n-2 [a 1 /g,a 2 /x]). The l-term ((a 1 )u n-2 , a1 , a2 )b 1 …b r is solvable, and its head normal form does not begin by l, therefore it is a variable applied to arguments. The free variables of ((a 1 )u n-2 , a1 , a2 )b 1 …b r are among u n-2 , a1 , a2 , u n- 1 , a1 , a2 , u n , and f, therefore we have four possibilities for its head normal form :

(f)d (in this case we stop) or (u n )c 1 …c s or (u n-1 , a1 , a2 )c 1 …c s or (u n-2 , a1 , a2 )c 1 …c s …and so on… Assume we obtain (u 0 , d1 , d2 )e 1 …e k during the construction. The variable u 0 , d1 , d2 The l-term (T)h n f is solvable, and has (f)s(t) as head normal form, so this construction always stops on (f)d. We will prove later by a simple argument that d: by n.

According to the previous construction, the reduction (T)h n f∑(f)s(t n ) can be divided into two parts :

-A reduction that does not depend on n : (T)u n f∑(u n )a 1 …a m , ((a 1 )u n-1 , a1 , a2 )a 3 …a m ∑(u n-1 , a1 , a2 )b 1 …b r , ((a 1 )u n-2 , a1 , a2 )b 1 …b r ∑(u n-2 , a1 , a2 )b 1 …b r , … -A reduction that depends on n (and not on h n ) :

the reduction from (u n )a 1 …a m to ((a 1 )u n-1 , a1 , a2 )a 3 …a m , the reduction from (u n-1 , a1 , a2 )b 1 …b r to ((a 1 )u n-2 , a1 , a2 )c 1 …c s , …, the reduction from (u 0 , d1 , d2 )e 1 …e k to (d 2 )e 1 …e k ,

…

If we allow some new reduction rules to get the later reductions, (something as :

(u n )a 1 a 2 ∑(a 1 )u n-1 , a1 , a2 ; u i+1 , a1 , a2 ∑(a 1 )u i , a1 , a2 (for i>0) ; u 0 , a1 , a2 ∑a 2 )

we obtain an equivalent -and easily expressed -definition for the storage operators for N : A closed l-term T is a storage operator for N if and only if for every n 0, ((T) ≥

u n f∑(f)d n , and d n : by n.

0.3

The directed l-calculus is an extension of the ordinary l-calculus built for tracing a normal l-term t during some head reduction. Assume u is some, non normal, lterm having t as a subterm. We wish to trace the places where we really have to know what t is, during the reduction of u. Assume we have for every normal l-term t with free variables x 1 ,…,x n , and any l-terms a 1 ,…,a n a "new" variable u t,a1,…,an .

We want the following rules :

if t=lxv, then (u t,a1,…,an )a∑u v,a1,…,an,a or u t,a1,…,an ∑lxu v,a1,…,an,x ; if t=(v)w, then u t,a1,…,an ∑(u v,a1,…,an )u w,a1,…,an ;

if t=x i 1 i n, then ≤ ≤ u t,a1,…,an ∑a i .

We will prove later the following result (theorem 4-1) :

A closed l-term T is a storage operator for a set of closed normal l-terms D if and only if for every tAD, (T)u t f∑(f)d t , and d t : by t.

0.4

By interpreting the variable u t,a1,…,an (that will be denoted by [t]<a 1 /x 1 ,…,a n /

x n > and called a box) by t[ [a 1 /x 1 ,…,a n /x n ] ] (the l-term t with an explicit substitution ), the new reduction rules are those that allow to really do the substitution. This kind of lcalculus (l-calculus with explicit substitution) has been studied by P.L.Curien (see [START_REF] Abadi | Explicit Substitutions[END_REF] and [START_REF] Curien | The lr-calculi : an abstract framework for closures[END_REF]) ; his ls-calculus contains terms and substitutions and is intended to better control the substitution process created by b-reduction, and then the implementation of the l-calculus. The main difference between the ls-calculus and the directed l-calculus is :

-The first one produces an explicit substitution after each b-reduction ;

-The second only " executes " the substitutions given in advance.

We can therefore consider the directed l-calculus as a restriction (the interdiction of producing explicit substitutions) of ls-calculus ; a well adapted way to the study of the head reduction.

0.5

This paper studies some properties of storage operators. It is organized as follows :

. The section 1 is devoted to preliminaries.

. In section 2, we define the storage operators, and we give the general form of their head normal forms.

. In section 3, we introduce the directed l-calculus, and we prove that it has the main properties of the ordinary l-calculus : the Church-Rosser theorem, the normalisation theorem, the resolution theorem. We focus on the head reduction, and we will prove that the reduction with the boxes represents correctly the reduction of terms where boxes are replaced by b-equivalent l-terms.

. In section 4, we present an equivalent definition for the storage operators.

. In section 5, we give some properties of storage operators :

-If T is a storage operator for a set of closed normal l-terms, and if T: b T', then T' also is a storage operator for this set.

-The problem " Let t be a closed l-term. Is it a storage operator for a set of closed normal l-terms ?" is undecidable. It is semi-decidable in case of a finite set.

-Each finite set of closed normal l-terms has a storage operators.

-the number of b-reductions to go from (T)h t f to (f)s(t t ) is linear in the number of reductions to normalize h t .

Note : The presentation made below hides some technical uninteresting difficulties.

Since we work with name for the variables, and modulo a-equivalence, there is a problem to define precisely the notion of subterms.

-We suppose, for example, that the l-terms (x)x, (y)y, (z)z,… are subterms of the lterm lx(x)x.

-A l-term may have equal subterms ; we assume that we can distinguish these subterms.

These problems could be solved by indexing subterms with the paths from the root of the l-term and using de Bruijn notation. We will do not do that here.

Acknowledgements. We thank J.L. Krivine, S. Ronchi, and H. Barendregt for helpful discussions. § 1. Basic notions of pure l-calculus

Notations

They are standard (see [START_REF] Barendregt | The lambda calculus : Its Syntax and Semantics[END_REF] and [START_REF] Krivine | Lambda calcul, types et modèle[END_REF]).

-We shall denote by L the set of terms of pure l-calculus, also called l-terms.

-Let t,u,u 1 ,…, u n AL, the application of t to u is denoted by (t)u or simply tu. In the same way we write (t)u 1 …u n or tu 1 …u n instead of (…((t)u 1 )…)u n .

-The b (resp. y, resp. by) -reduction is denoted by t5 b u (resp. t5 y u, resp. t5 by u).

-One step of b (resp. y) -reduction is denoted by t5 b0 u (resp. t5 y0 u).

-The b (resp. y, resp. by) -equivalence is denoted by t: b u (resp. t: y u, resp. t: by u).

-The set of free variables of a l-term t is denoted by Fv(t).

-The notation t[a 1 /x 1 ,…,a n /x n ] represents the result of the simultaneous substitution of l-terms a 1 ,…,a n to the free variables x 1 ,…,x n of t (after a suitable renaming of the bounded variables of t).

The notation s(t) represents the result of the simultaneous substitution s to the free variables of t.

-The lenght of a l-term t (number of symbols used to write t) is denoted by lg(t).

-We denote by ST(t), the set of subterms of t.

-If t is b-normalizable, we denote by t b its b-normal form.

- Proof. See [START_REF] Krivine | Opérateurs de mise en mémoire et traduction de Gödel[END_REF]. s

Remarks.

-1) shows that to make the head reduction of (t)u 1 …u n , it is equivalent (same result, and same number of steps) to make some steps in the head reduction of t, and then make the head reduction of (t')u 1 …u n .

-2) shows that to make the head reduction of t[u 1 /x 1 ,…,u n /x n ], it is equivalent (same result, and same number of steps) to make some steps in the head reduction of t, and then make the head reduction of t'[u 1 /x 1 ,…,u n /x n ].

This will be used everywhere without mention in the following. independent of the l-terms u 1 ,…,u n which will never be evaluated.

Proof. See [START_REF] Krivine | Opérateurs de mise en mémoire et traduction de Gödel[END_REF]. s § 2. Storage operators

Definition of storage operators

Definitions.

-A l-term t is said essential if and only if it is b-equivalent to a b-normal closed l-term.

-Let T be a closed l-term, and t an essential l-term. We say that T is a storage operator -If T'=lfw, then w is the head normal form of (T)h t f, therefore w=(f

(
)t t [h 1 /x 1 ,…,h n /x n ], therefore (T)h t ∑lf(f)t t [h 1 /x 1 ,…,h n /x n ]. -If T'=(v)T 1 …T r ; we can choose h t , such that fFv(h t ), v f, therefore the head normal ≠ form of (T)h t f is (v)T 1 …T r f=(f)t t [h 1 /x 1 ,…,h n /x n ]. A contradiction. s
Remark. Let F be any l-term, and h t a l-term b-equivalent to tAD. During the computation of (F)h t , h t may be computed many times (for example, each time it comes in head position). Insead of computing (F)h t , let us look at the head reduction of (T)h t F.

Since it is (T)h t f[F/f], by theorem 1.2.1, we shall first reduce (T)h t f to its head normal form, which is (f)t t [h 1 /x 1 ,…,h n /x n ], and then compute (F)t t [c 1 /x 1 ,…,c n /x n , F/f] where c i =h i [F/f]. By corollary 1.2.4, the computation has been decomposed into two parts, the first being independent of F. This first part is essentially a computation of h t , the result being t t , which is a kind of normal form of h t , because it only depends on the bequivalent class of h t : the substitutions made in t t have no computational importance, since t is essential. So, in the computation of (T)h t F, h t is computed first, and the result is given to F as an argument, T has stored the result, before giving it, as many times as needed, to any function. 

General forms of head normal form of a storage operator Proposition 2.2.1. If T is an o.m.m. for t, then T is solvable, and its head normal form T' has one of the following form

: T'=ln(n)T 1 …T r r 1, T'= ≥ lnlf(n)T 1 …T r r 1, or ≥ T'=lnlf(f)
(x i )T 1 …T r r 1. ≥ By theorem 1.2.1, (T')h t ∑lf(f)t t [u 1 /y 1 ,…,u n /y n ], therefore m =1 or 2. -If m=1, then T'=ln(n)T 1 …T r r 1. ≥ -If m=2 : -If i=1, then T'=lnlf(n)T 1 …T r r 1. ≥ -If i=2, then T'=lnlf(f)T 1 …T r r 1. Therefore ≥ lf(f)T 1 [h t /n]…T r [h t /n]= lf(f)t'[u 1 /y 1 , …,u n /y n ], therefore r=1, and T 1 [h t /n]=t t [u 1 /y 1 ,…,u n /y n ].
It remains to show that T 1 : by t.

Lemma 2.2.4. Let x,y be two variables of the l-calculus. 1) If t[(x)y/z]5 b0 u, then u=v[(x)y/z], and

t5 b0 v.
2) If t is a closed l-term, and t[(x)y/z]5 b t, then t5 b t.

Proof.

1) By induction on t. -If d=a 1 , then a 1 =t[u 1 /y 1 ,…,u m /y m ], therefore t=y 1 , and u 1 =a 1 or t=b 1 =a 1 .

-If t is a variable, it is impossible. -If t=lrw,
-

If d=x 1 , then s 1 (h 1 )=t[u 1 /y 1 ,…,u m /y m ].
-If t=b 1 , then s 1 (h 1 ) is a variable, that is impossible if we take h 1 =(lxt 1 )x.

-If t=y 1 , then d=t[x 1 /y 1 ].

-If t=lxt', then s 1 (h 1 ) begins by l, that is impossible if we take h 1 =(lxt 1 )x.

-

If t=(u)v : -If t=(…(((lxa)b)v 1 )…)v r , then s 1 (h 1 ) begins with r+1 (, that is impossible if we take h 1 =(…(((lx 1 lx 2 …lx n+2 t 1 )x 1 )x 2 )…)v n+2.
-If t=(…((b 1 )v 1 )…)v r , then that is impossible if we take h 1 =(lxt 1 )x.

-If t=(…((y 1 )v 1 )…)v r and r 2, then ≥ s 1 (h 1 ) begins by at least r (, that is impossible if we take h 1 =(lxt 1 )x. Therefore r=1 and t=(y 1 )v 1 .

The l-term v 1 can not begin by l. (it suffices to take h 1 =(lxt 1 )(lxx)x)

The l-term v 1 can not begin by (. ( it suffies to take h 1 =(lxt 1 )lxx)

Therefore v 1 is a variable.

If v 1 =b 1 , then that is impossible if we take h 1 =(lxt 1 )(lxx)x.

If v 1 =y 2 , then that is impossible because in this case we have t=(y 1 )y 2 .

-If d=lxu, then : 

-If t=b 1 , then lg(d)=1, that is impossible. -If t=y 1 , then d=t[lxu/y 1 ]. -If t=lxt', then u[s 1 (h 1 )/x 1 ,…,s n (h n )/x n ]=t'[u 1 /

Behaviour of T:

Thf:(h) lf(f)Plf(f)P… lf(f)Pf:(P) lf(f)Plf(f)P… lf(f)Pf:(lf(f)P)f: (f)P.
It is easy to check that tps(Thf)=Tps(h)+n+2. s

Behaviour of T:

Thf:(h) (f)PP… (f)Pf:(P) (f)PP… (f)Pf:(f)P.
It is easy to check that tps(Thf)=Tps(h)+n+2. s

The Church integers

For n 0, we define the Church integer ≥ n=lflx(f) n x. Let N be the set of Church integers.

Let s=lnlflx(f)((n)f)x. It is easy to check that s is a l-term for the successor. Define T=ln(n)Gd where G=lxly(x)lz(y)(s)z, and d=lf(f)0 ; T=lnlf(n)F f 0 where F=lxly(x)(s)y.

Tand Tare o.m.m. for N.

Let

h n :n, then h n ∑lglx(g)t n-1 , t n-k ∑(g)t n-k-1 1 k n-1, t ≤ ≤ 0 ∑x.

Behaviour of T:

(T)h n f:(h n )Gdf:(G)t n-1 [G/g,d/x]f:(t n-1 [G/g,d/x])lz(f)(s)z.
We define a sequence of l-terms (t i ) 1 i n ≤ ≤ :

t 1 =lz(f)(s)z, and for all 1 k n-1 let ≤ ≤ t k+1 =lz(t k )(s)z.
We prove (by induction on k) that for all 1 k n we have (T)

≤ ≤ h n f:(t n-k [G/g,d/x])t k .
For k=1 it is true.

Assume that is true for k, and prove it for k+1. (T)h n f:

(t n-k [G/g,d/x])t k :(G)t n-k-1 [G/g,d/x]t k :t n-k-1 [G/g,d/x])lz(t k )(s)z= (t n-k-1 [G/g,d/x])t k+1 .
Therefore, in particular, for k=n we have (T)h n f:

(t 0 [G/g,d/x])t n =(d)t n :(t n )0.
We prove (by induction on k) that for all 1 k n we have

≤ ≤ t k :lz(f)(s) k z.
For k=1 it is true.

Assume that is true for k, and prove it for k+1.

t k+1 =lz(t k )(s)z:lz(lz(f)(s) k z)(s)z:lz(f)(s) k+1 z.
Therefore, in particular, for k=n we have t n :lz(f)(s) n z and (T)

h n f:(lz(f)(s) n z)0: (f)(s) n 0.
It is easy to check that tps((T)h n f)=Tps(h n )+3n+4. s

Behaviour of T:

(T)h n f:(h n )Ff0:(F)t n-1 [F/g,f/x]0:(t n-1 [F/g,f/x])(s)0.
We prove (by induction on k) that for all 1 k n we have ≤ ≤

(T)h n f:(t n-k [F/g,f/x])(s) k 0.
For k=1 it is true.

Assume that is true for k, and prove it for k+1. (T)h n f:

(t n-k [F/g,f/x])(s) k 0:(F)t n-k-1 [F/g,f/x](s) k 0:t n-k-1 [F/g,f/x])(s) k+1 0.
Therefore, in particular, for k=n we have (T)h n f:

(t 0 [F/g,f/x])(s) n 0=(f)(s) n 0.
It is easy to check that tps((T)h n f)=Tps(h n )+2n+4. s

The recursive integers

For n 0, we define the recursive integer by := ≥ lflxx and =lflx(f). Let be the set of recursive integers. Let =lnlflx(f)n. It is easy to check that is a l-term for the successor. 

Behaviour of T:

We prove (by induction on n) that ((Y)H)

h n :lf(f)() n . If n=0, then ((Y)H)h 0 :((H)(Y)H)h 0 :((h 0 )lz(G)((Y)H)z)d:d=lf(f) . If n 0, then ((Y)H) ≠ h n :((H)(Y)H)h n :((h n )lz(G)((Y)H)z)d: (lz(G)((Y)H)z)h n-1 [lz(G)((Y)H)z/g,d/x]:(G)((Y)H)h n-1 [lz(G)((Y)H)z/g,d/x]: lf(((Y)H)h n-1 [lz(G)((Y)H)z/g,d/x])lz(f)( )z. Since h n-1 : b , then h n-1 [lz(G)((Y)H)z/g,d/
x]: b , and, by induction hypothesis, ((Y)H)h n-

1 :lf(f)() n-1 . Therefore ((Y)H)h n :lf(lf(f)() n-1 )lz(f)( )z:lf(f)() n .
It is easy to check that tps((T))h n f)=Tps(h n )+10n+7. s

Behaviour of T:

We prove (by induction on n) that (h n )rtr:lf(f)() n .

If n=0, then (h 0 )rtr:(t)r:lf(f).

If n 0, then (

≠ h n )rtr:(r)h n-1 [r/g,t/x]r:(G)(h n-1 [r/g,t/x])rtr: lf((h n-1 [r/g,t/x])rtr)lz(f)( )z.
Since h n-1 : b , then h n-1 [r/g,t/x]: b , and, by induction hypothesis,

h n-1 [r/g,t/x]rtr:lf(f)() n-1 . Therefore (h n )rtr:lf(lf(f)() n-1 )lz(f)()z:lf(f)() n .
It is easy to check that tps((T))h n f)=Tps(h n )+7n+5. s

The finite lists

Let U be a set of essential l-terms. We define the set of the finite lists of objects of U, L U ={lflx((f)u 1 )((f)u 2 )…((f)u n )x where nAN, u i AU}.

Let nil=lxlyy, cons=lxlylfla((f)x)((y)f)a and cons'=lxlylfla((y)f)((f)x)a. It is easy to check that cons and cons' are two l-terms for the concatenation. Let T U be an o.m.m. for U.

Define T=ln(n)Hd where H=lxlylz((T U )x)lu(y)lv(z)((cons)u)v , and d=lf(f)nil ;

T=lnlf(n)K f nil where K=lxlylu((T U )x)lv(y)(cons')v)u.
Tand Tare o.m.m. for L U .

Let

h n : b lflx((f)u 1 )((f)u 2 )…((f)u n )x, then : h n ∑lglx(g)v 1 t 1 , v 1 : b u 1 , t i ∑(g)v i+1 t i+1 , v i+1 : b u i+1 1 i n-1, t ≤ ≤ n ∑x. T U is an o.m.m. for U, therefore for all 1 i n, there is ≤ ≤ t i : b u i , such that (T U )v i [H/g,d/x]∑lf(f)s i (t i ).
Behaviour of T:

(T)h n f:(h n )Hdf:(H)v 1 [H/g,d/x]t 1 [H/g,d/x]f: ((T U )v 1 [H/g,d/x])lu(t 1 [H/g,d/x])lv(f)((cons))u)v:(lf(f)s 1 (t 1 ))lu(t 1 [H/g,d/x])lv(f) ((cons))u)v:(t 1 [H/g,d/x])lv(f)((cons))s 1 (t 1 ))v.
We define a sequence of l-terms

(d i ) 1 i n ≤ ≤ : d 1 =lv(f)((cons))s 1 (t 1 ))v, and for 1 k n-1 ≤ ≤ Let d k+1 =lv(d k )((cons))s k+1 (t k+1 ))v.
We prove (by induction on k) that for all 1 k n we have (T)

≤ ≤ h n f:(t k [H/g,d/x])d k .
For k=1 it is true.

Assume that is true for k, and prove it for k+1. (T)h n f:

(t k [H/g,d/x])d k :(H)v k+1 [H/g,d/x]t k+1 [H/g,d/x]d k ((T U )v k+1 [H/g,d/x])lu(t k+1 [H/g,d/x])lv(d k )((cons))u)v: (lf(f)s k+1 (t k+1 ))lu(t k+1 [H/g,d/x])lv(d k )((cons))u)v: (t k+1 [H/g,d/x])lv(d k )((cons))s k+1 (t k+1 ))v=(t k+1 [H/g,d/x])d k+1 .
Therefore, in particular, for k=n we have (T)h n f:

(t n [H/g,d/x])d n =(d)d n :(d n )nil.
We prove (by induction on k) that for all 1 k n we have

≤ ≤ d k :lv(f)((cons)s 1 (t 1 ))((cons)s 2 (t 2 ))…((cons)s k (t k ))v.
For k=1 it is true.

Assume that is true for k, and prove it for k+1.

d k+1 =lv(d k )((cons))s k+1 (t k+1 ))v: lz(lv(f)((cons)s 1 (t 1 ))((cons)s 2 (t 2 ))…((cons)s k (t k ))v)(((cons))s k+1 (t k+1 ))v: lv(f)((cons)s 1 (t 1 ))((cons)s 2 (t 2 ))…((cons)s k (t k ))v)(((cons))s k+1 (t k+1 ))v.
Therefore, in particular, for k=n we have

d n :lv(f)((cons)s 1 (t 1 ))((cons)s 2 (t 2 ))…((cons)s n (t n ))v and (T)h n f:(lv(f)((cons)s 1 (t 1 ))((cons)s 2 (t 2 ))…((cons)s n (t n ))nil: (f)((cons)s 1 (t 1 ))((cons)s 2 (t 2 ))…((cons)s n (t n ))nil=(f)s({((cons)t 1 )((cons)t 2 )… ((cons)t n )nil}).
It is easy to check that if tps(T U v i )=Tps(v i )+D i , then tps((T)h n f)=Tps(h n )+6n+4 +

Behaviour of T: (

T)h n f:(h n )K f nil:(K)v 1 [K/g,f/x]t 1 [K/g,f/x]nil:((T U )v 1 [K/g,f/x])lv(t 1 [K/g,f/x]) ((cons')v)nil:(lf(f)s 1 (t 1 ))lv(t 1 [K/g,f/x])((cons'))v)nil: (t 1 [K/g,f/x])((cons'))s 1 (t 1 ))nil.
We prove (by induction on k) that for all 1 k n we have ≤ ≤

(T)h n f:(t k [F/g,f/x])((cons')s k (t k ))((cons')s k-1 (t k-1 ))…((cons')s 1 (t 1 ))nil.
For k=1 it is true.

Assume that is true for k, and prove it for k+1. (T)h n f:

(t k [K/g,f/x])((cons')s k (t k ))…((cons')s 1 (t 1 ))nil: (K)v k+1 [K/g,f/x]t k+1 [K/g,f/x]((cons')s k (t k ))…((cons')s 1 (t 1 ))nil: ((T U )v k+1 [K/g,f/x])lv(t k+1 [K/g,f/x])((cons'))v)((cons')s k (t k ))…((cons')s 1 (t 1 ))nil: (lf(f)s k+1 (t k+1 ))lv(t k+1 [K/g,f/x])((cons'))v)((cons'))v)((cons')s k (t k ))…
((cons')s 1 (t 1 ))nil:(t k+1 [F/g,f/x])((cons')s k+1 (t k+1 ))…((cons')s 1 (t 1 ))nil.

Therefore, in particular, for k=n we have

(T)h n f:(t n [K/g,f/x])((cons')s n (t n ))…((cons')s 1 (t 1 ))nil= (f)((cons')s n (t n ))…((cons')s 1 (t 1 ))nil=(f)s({((cons')t n )…((cons')t 1 )nil}).
It is easy to check that if tps(T U v i )=Tps(v i )+D i , then tps((T)h n f)=Tps(h n )+5n+4 + § 3. The directed l-calculus

The l[]-terms

Definitions.

. A l[]-term of the form [t]<a 1 /x 1 ,…,a n /x n > is said a box directed by t (we also say that t is the director of the box). This notation represents, intuitively, the l-term t where the free variables x 1 ,…,x n will be replaced by a 1 ,…,a n .

If
We extend the definition of the a-equivalence by : 

The b[]-reduction

Definitions.

. 

A l[]-term of the form (lxu)v is called b-redex ; u[v/x] is called its contractum. A l[]-

1) b(t)=0 if and only if tAL. 2) If b(a i )=b(a'

i ) 1 i n, then ≤ ≤ b([u]<a/x>)=b([u]<a 1 /x 1 ,…,a i-1 /x i-1 ,a' i /x i ,a i+1 /x i+1 ,…,a n /x n >).
3

) If b(a i )>b(a' i ), and x i

AFv(u) 1 i n, then ≤ ≤ b([u]<a/x>)>b([u]<a 1 /x 1 ,…,a i-1 /x i-1 ,a' i /x i ,a i+1 /x i+1 ,…,a n /x n >).
Proof. By induction on t. (resp. u ) for 1) (resp 2), 3)). s 

The b[]-left reduction

Definitions.

-A sequence of symbols of the form (l or [ corresponds to a redex. We may then define 

1) If R is the leftmost b-redex of u, then l(R) is the leftmost redex of l(u). 2) If u∑∑ b0 v, then l(u)∑∑ 0 l(v).

Proof.

1) Clear.

2) By induction on u. 

[]-terms u 1 ,…,u k ,v 1 ,…,v l k,l 0, such that (t[u ≥ 1 /x 1 ,…,u k /x k ])v 1 …v l : b[] u.

Theorem 3.4.2. If t∑ b[] t', then for every u 1 ,…,u r AL[] :

1) There is vAL, such that (t)

u 1 …u r ∑ b[] v, (t')u 1 …u r ∑ b[] v, and n((t)u 1 …u r ,v)= n((t')u 1 … u r ,v)+n(t,t'). 2) t[u 1 /x 1 ,…,u r /x r ]∑ b[] t'[u 1 /x 1 ,…,u r /x r ], and n(t[u 1 /x 1 ,…,u r /x r ],t'[u 1 /x 1 ,…,u r /x r ])= n(t,t').
Remarks.

-1) shows that to make the b[]-head reduction of (t)u 1 …u n , it is equivalent (same result, and same number of steps) to make some steps in the b[]-head reduction of t, and then make the b[]-head reduction of (t')u 1 …u n .

-2) shows that to make the 

Proof. If R is a b-redex, then R=(lxu)v, and R'=u[v/x]. R[u 1 /y 1 ,…,u m /y m ]=(lxu[u 1 /y 1 ,…,u m /y m ])v[u 1 /y 1 ,…,u m /y m ] is a b-redex, and its contractum is u[u 1 /y 1 ,…,u m /y m ][v[u 1 /y 1 ,…,u m /y m ]/x]=R'[u 1 /y 1 ,…,u m /y m ]. If R is a []-redex, then R=[t]<a/x> : -If t=x i 1 i n, ≤ ≤ then R'=a i . R[u 1 /y 1 ,…,u m /y m ]=[t]<a[u 1 /y 1 ,…,u m /y m ]/x> is a []-redex,

2)

2)1 13) 3) Clear.

3)

3)1 11) 1) Assume t: b[] lx 1 …lx n (y )t 1 …t m , and let u be a l[]-term :

-If y=x i 1 i n, then (((t)x ≤ ≤ 1 …x i-1 )ly 1 …ly m u)x i+1 …x n : b[] u where y j Fv(u) 1 j m. ≤ ≤ -If y x ≠ i 1 i n, then (t[ ≤ ≤ ly 1 …ly m u/y])x 1 …x n : b[] u where y j Fv(u) 1 j m. ≤ ≤ Therefore t is b[]-solvable. s Lemma 3.4.6. If u∑ b0 v, then l(u)∑ 0 l(v).
Proof. Same proof as lemma 3.4.5. s

Theoreme 3.4.7. u is b[]-solvable if and only if l(u) is solvable.

Proof. 1 1 Use lemmas 3.2.7 and 3.4.6. 0 0 Otherwise there is an infinite sequence of l[]-terms u 0 =u,u 1 ,…,u n ,…, such that u i ∑ b0 u i+1 or u i ∑ []0 u i+1 for i 0. Therefore, by lemmas 3.2.7, 3.4.6, and 3.2.2, there is an 

≥ infinite sequence of l[]-terms v 0 =l(u),v 1 ,…,v n ,…, such that v i ∑ 0 v i+1 for i 0, therefore ≥ l(u)
T[t]f∑ b[] (f)t t [[t 1 ]<a 1 /x 1 >/y 1 ,…,[t m ]<a m /x m >/y m ].
To prove this theorem we need some definitions -

h((u)v)∑(h(u))h(v).

Lemma 4.3. If h is a t-special application, then, for every uAST(t), h(u): b u.

Proof. by induction on u. s Lemma 4.4. Let t be a b-normal l-term, and uAST(t). For every h u : b u, there is a tspecial application h, such that h(u)=h u .

Proof. Let vAST(t) ; we define h(v) as follows :

-If vAST(u), h(v) is defined by induction on li(v)=lg(u)-lg(v), and we check that h(v): b v.

-If li(v)=0, then v=u. Take h(v)=h u , we have h(v): b v.

-If li(v) 1, then v is a proper subterm of u : ≥ -If there is an x, such that lxvAST(u) then by induction hypothesis, we have h(lxv): b lxv, therefore h(lxv)∑lxh v where h v : b v. Take h(v)=h v , we have h(v): b v.

-If there is wAST(t), such that (v)wAST(t) then by induction hypothesis, we have h((v)w): b (v)w. Since t is b-normal, then h((v)w)∑(h v )h w where h v : b v and h w : b w.

Take h(v)=h v , we have h(v): b v.

-If there is wAST(t), such that (w)vAST(t) then by induction hypothesis, we have h((w)v): b (w)v. Since t is b-normal, then h((w)v)∑(h w )h v where h v : b v, and h w : b w.

Take h(v)=h v , we have h(v): b v.

-If uAST(v)\{v}, take h(v) the l-term v where u is replaced by h(u), we have h(v): b v.

-Otherwise, we put h(v)=v.

By construction, h is a t-special application. s

Definition. Let t be a b-normal l-term, and h a t-special application. The t-special substitution S h is the function from the set of l[]-terms directed by t into L defined by induction :

-If u=x, then S h (u)=x ;

-If u=lxv, then S h (u)=lyS h (v[y/x]) where yFv(h(t)) ; -If u=(v)w, then S h (u)=(S h (v))S h (w) ; -If u=[v]<a/x>, then S h (u)=h(v)[S h (a 1 )/x 1 ,…,S h (a n )/x n ].
A t-special substitution is the function S h associated to a b-normal l-term t, and some tspecial application h.

It is easy to see that if u does not contain boxes, then S h (u)=u.

Lemma 4.5. If y 1 ,…,y m Fv(h(t)), then

S h (u[v 1 /y 1 ,…,v m /y m ]) =S h (u)[S h (v 1 )/y 1 ,…,S h (v m )/y m ].
Proof. By induction on u. s Lemma 4.6. S h (u): b l(u).

Proof. By induction on u. s

Lemma 4.7. If u∑b [] v, then S h (u):S h (v).

Proof. It is enough to do the proof for one step of reduction.

Let u=lx 1 …lx n (R)u 1 …u m , and v=lx 1 …lx n (R')u 1 …u m where R' is the contractum of redex R :

If R=(lxa)b, then R'=a[b/x]. S h ((lxa)b)=(lyS h (a[y/x]))S h (b)∑S h (a[y/x])[S h (b)/y]=S h (a)[y/x][S h (b)/y] =S h (a)[S h (b)/x], therefore, by lemma 4.5, S h ((lxa)b)∑S h (a[b/x]). If R=[u]<a/x> : -If u=x i 1 i n, ≤ ≤ then R'=a i , and S h (R)=S h (R').
-If u=lxv, then R'=ly[v]<a/x,y/x> where yFv(a). 

S h (R)=h(u[S h (a 1 )/x 1 ,…,S h (a n )/x n ]∑lxh(v)[S h (a 1 )/x 1 ,…,S h (a n )/x n ]= lzh(v)[S h (a 1 )/x 1 ,…,S h (a n )/x n ,z/x] where zFv(h(t))"Fv(a), therefore S h (R)∑S h (R'). -If u=(c)d, then R'=([c]<a/x>)[d]<a/x> S h (R)=h(u)[S h (a 1 )/x 1 ,…,S h (a n )/x n ]∑(h(c))h(d)[S h (a 1 )/x 1 ,…,S h (a n )/x n ]= (h(c)[S h (a 1 )/x 1 ,…,S h (a n )/x n ])h(d)[S h (a 1 )/x 1 ,…,S h (a n )/x n ], therefore S h (R)∑S h (R
(v 0 )w 0 ,(v 1 )w 1 ,…,(v m )w m =(f)u 1 ,…u r , such that (v i )w i ∑ b0 (v i+1 )w i+1 or (v i )w i ∑ []0 (v i+1 )w i+1 0 i m-1. If (v ≤ ≤ i )w i ∑ []0 (v i+1 )w i+1 0 i m-1, ≤ ≤
then (v i )w i =([ly 1 …ly p (y)d 1 …d q ]<a/x>)b 1 …b p c 1 …c s . Therefore there is j>i, such that (v i )w i ∑ []'0 (v j )w j , therefore there is a sequence t=(v' 0 )w' 0 ,(v' 1 )w' 1 , …,

(v' k )w' k =(f)u 1 ,…u r , such that (v' i )w' i ∑ b (v' i+1 )w' i+1 or (v' i )w' i ∑ []' (v' i+1 )w' i+1 0 i k-1. ≤ ≤
Gathering consecutive b-reductions, it is clear that we can suppose that the b-reductions (v' i )w' i ∑ b (v' i+1 )w' i+1 are complete. It is clear that we may suppose that y i Fv(a j ) 1 i,j m. ≤ ≤

If t∑ []'0 (a)b, then u=(y i )v 1 …v q w 1 …w s 1 i m, t ≤ ≤ i =lf 1 …lf q (y)u 1 …u r , and

(a)b={(c)z 1 …z r w 1 …w s }[[t 1 ]<a 

S h (T[t]f)=Th t f ∑(f)t t [h 1 /y 1 ,…,hm/y m ]
. Therefore T is an o.m.m. for t. s

Examples.

-Tis an o.m.m. for P n . Indeed, T[P)]f∑ b0 ([P])lf(f)P.…lf(f)Pf∑ []'0 (lf(f)P)f∑ b0 (f)P1 i n.

≤ ≤

-Tis an o.m.m. for N. Indeed, Proof. By induction on the number n of y 0 -reductions to go from u to v. n=0 : clear. If n≥1, then u5 y w5 y0 v, therefore w=lx 1 …lx n-r (y)u' 1 …u' m-r where u j 5 y u' j 1 j m-r, u ≤ ≤ ms 5 y x n-s 0 s r-1, and x ≤ ≤ n-s y does not appear in the u ≠ 1 ,…u m-r . Since w5 y0 v, then v=lx 1 … lx n-r (y)u' 1 …u" k …u' m-r where u' k 5 y u" k , or u' m-r =x n-r , x n-r y ≠ does not appear in the u 1 , …,u m-r-1 , and v=lx 1 …lx n-r-1 (y)u' 1 …u' m-r-1 as required. s Lemma 5. -If lz 1 …lz k (y)u 1 …u r 5 y lz 1 …lz k-l (y)u' 1 …u' r-l where u j 5 y u' j 1 j r-l, ≤ ≤ u r-s 5 y z k-s 0 s l-1, and z ≤ ≤ k-s y ≠ does not appear in the u 1 ,…u r-l , then T=ly 1 …ly m ([lz 1 …lz k- l (y)u' 1 … u' r-l ]<a'/x>v' 1 …v' k w' 1 …w' s where v i cv' i 1 i k, and w 

T[n]f∑ b0 ([n])Ff0∑ []'0 ((F)[(x 1 ) n-1 x 2 ]<F/x 1 ,f/x 2 >)0∑ b ([(x 1 ) n-1 x 2 ]<F/x 1 ,f/x 2 >)(s)0 ∑[]' 0 ((F)[(x 1 ) n-2 x 2 ]<F/x 1 ,f/x 2 >)(s)0∑ b ([(x 1 ) n-2 x 2 ]<F/x 1 ,f/x 2 >)(s) 2 0∑ []'0 …∑ b ([x 2 ]<F/ x 1 ,f/x 2 >)(s) n 0∑ []'0 (f)(s) n 0. §
≤ ≤ i cw' i 1 i s. Let ≤ ≤ T'=ly 1 …ly m (b i )[u 1 ]<a'/x,v' 1 /z 1 ,…,v' k-l /z k-l > …[u r ]<a'/x,v' 1 /z 1 ,…,v' k-l /z k-l > v' m-l+1 … v' k w

Proof.

Let D={t 1 ,…,t n } be such a set. By theorem 5.4.1, there is a closed l-term T', such that T't i : b P1 i n, therefore for every ≤ ≤ h i : b t i , T'h i : b P, therefore T'h i ∑P. Let

T=ln((T')n)lf(f)t 1 …lf(f)t n . It is easy to check that T is an o.m.m. for D. s Remarks.

-The theorem 5.4.3 is no more true if we remove the hypothesis "the l-terms of D are b-normal". If we take t 1 =lxx, and t 2 =(lx(x)x)lx(x)x, then D={t Proof. By induction on t and t'. If t: y t', then there is a b-normal l-term v, such that t5 y v, and t'5 y v. If v=lx 1 …lx n (y)v 1 …v m , then, by lemma 5.3.3, t=lx 1 …lx n ly 1 …ly k (y)v' 1 …v' m u 1 …u k , and t'=lx 1 …lx n ly 1 …ly r (y)v" 1 …v" m w 1 …w r where v' i 5yv i , v" i 5yv i 1 i m, u ≤ ≤ j 5 y y j 1 j k, y ≤ ≤ j y ≠ does not appear in v 1 ,…v m , w j 5 y y j 1 j r, and y ≤ ≤ j y ≠ does not appear in v 1 ,…v m . Assume that k r. By induction hypothesis, ≤ let a i be a b-normal l-term, such that a i 5 y v' i , and a i 5 y v" i 1 i m, and b ≤ ≤ j be a b-normal lterm, such that b j 5 y u j , and b j 5 y w i 1 j k. Let u= ≤ ≤ lx 1 …lx n ly 1 …ly r (y)a 1 …a m b 1 … b k w k+1 …w r . It is clear that u is a b-normal l-term, and that u5 y t, and u5 y t'. s 

Computation time of a storage operator

Lemma 5.5.1. Let (t i ) 1 i n ≤ ≤ and (t' i ) 1 i n ≤ ≤ be sequences of l-terms, such that : 1) For all 1 i n, t ≤ ≤ i ∑t' i .

2) For all 1 i n-1, t ≤ ≤ i =(u i )v i,1 …v i , ri , t' i =(u' i )v i,1 …v i , ri , and u' i ∑u i+1 . 3) t' n =(f)v 1 …v r where f is a variable.

Then t 1 ∑t' n , and tps(t 1 )=n(t 1 ,t' n )=+.

Proof. By induction on n. n=1: trivial for n>2 : Let n i =n(t i ,t' i ) and m i =n(u' i ,u i+1 ). By induction hypothesis, we have t 2 ∑t' n , and n(t 2 ,t' n )=+. u' 1 ∑u 2 , therefore, by theorem 1.2.1, for some w, (u' 1 )v 1,1 …v 1 , r1 ∑w, (u 2 )v 1,1 … v 1 , r1 ∑w, and n((u' 1 )v 1,1 …v 1 , r1 ,w)=n((u 2 )v 1,1 …v 1 , r1 ,w)+n(u' 1 ,u 2 )= n((u 2 )v 1,1 … v 1 , r1 ,w)+m 1 .

Therefore t' 1 ∑t' n , and n(t' 1 ,t' n )=n(t' 1 ,w)+n(w,t' n ). Therefore t 1 ∑t' n , and tps(t 1 )=n(t 1 ,t' n )=n(t 1 ,t' 1 )+n(t' 1 ,w)+n(w,t' n )=n 1 +m 1 ++=+. s Theorem 5.5.2. Let t be a closed b-normal l-term, and T a closed l-term. If T is an o.m.m. for t, there are constants A T,t and B T,t , such that for every h t : b t, tps(Th t f) A ≤ T,t Tps(h t )+B T,t .

Proof.

If t∑ b[] t', denote by b(t,t'), the number of b 0 -reductions used in this reduction.

For every vAL[], we define D(v) by induction on v :

-If [u]<a/x> is the head redex of v, then D(v)=u ;

-If not, D(v)=o where o is a constant. Let h be a t-special application. For every uAST(t)"{o}, we define the integer n h (u) by : -n h (x)=n h (o)=0 ;

-n h (lxu)=n(h(lxu),lxh(u)) ; -n h ((u)v)=n(h((u)v),(h(u))h(v)). 

If

2 . 12 2 3 . 5 . 4 .

 212354 2.3) ; -l'existence d'opérateurs de mise en mémoire pour chaque ensemble fini de termes normaux clos (théorème 5.4.3) ; -une inégalité controlant le temps calcul d'un opérateur de mise en mémoire (théorème 5General forms of the head normal form of a storage operator Storage operators and y-equivalence 35 Storage operators for a set of b-normal l

  then u=lra, and w[(x)y/z]5 b0 a. By induction hypothesis, we have a=b[(x)y/z], and w5 b0 b. Therefore if we take v=lrb, we get u=v[(x)y/z], and t5 b0 v. -If t=(a)b, and u=(c)b where a[(x)y/z]5 b0 c. By induction hypothesis, we have c=d[(x)y/ z], and a5 b0 d. Therefore if we take v=(d)b, we get u=v[(x)y/z], and t5 b0 v. -If t=(a)b, and u=(a)c where b[(x)y/z]5 b0 c. By induction hypothesis, we have c=d[(x)y/ z], and b5 b0 d. Therefore if we take v=(a)d, we get u=v[(x)y/z], and t5 b0 v. -If t=(lra)b, and u=a[(x)y/z][b[(x)y/z]/r]=a[b/r][(x)y/z], then, if we take v=a[b/r], we get u=v[(x)y/z], and t5 b0 v. 2) By induction on the number of b 0 -reductions. We use 1) to prove t=u[(x)y/z], and t5 b u.

  Define T=(Y)H where Y=(lxlf(f)(x)xf)lxlf(f)(x)xf, H=lxly((y)lz(G)(x)z)d, G=lxly(x)lz(y)()z, and d=lf(f) ; T=ln(n)rtr where t=ldlf(f) , and r=lylz(G)(y)ztz. Tand Tare o.m.m. for . Let h n : b , then : if n=0, h n ∑lglxx, and if n 0, ≠ h n ∑lglx(g)h n-1 where h n-1 : b .

  L is the set of simple l-terms (L without a-equivalence), having V as set of variables, then the set of terms of simple directed l-calculus, denoted by L[], is defined in the following way : -If xAV, then xAL[] ; -If xAV, and uAL[], then lxuAL[] ; -If uAL[], and vAL[], then (u)vAL[] ; -If tAL is a b-normal l-term, such that Fv(t)[{x 1 ,…,x n }, and a 1 ,…,a n AL[], then [t]<a 1 / x 1 ,…,a n /x n >AL[].

...

  [u]<a 1 /x 1 ,…,a n /x n >: a [v]<b 1 /y 1 ,…,b m /y m > if and only if there are permutations P n and P m , 0 r inf(n,m), and new variables z ≤ ≤ 1 ,…,z r , such that : -Fv(u)={x,…,x} and Fv(v)={y,…,y}, -u[z 1 /x,…,z r /x]: a v[z 1 /y,…,z r /y]. -a: a b1 i r. ≤ ≤ The set of terms of the directed l-calculus, denoted by L[], and also called l[]-terms, is defined by L[]=L[]/:a. We will note <a/x> the substitution <a 1 /x 1 ,…,a n /x n >. The substitution <a 1 /x 1 ,…,a n / x n ,b 1 /y 1 ,…,b m /y m > is denoted by <a/x,b/y>, and the substitution <a 1 [u 1 /y 1 ,…,u m /y m ]/ x 1 ,…,a n [u 1 /y 1 ,…,u m /y m ]/x n > is denoted by <a[u 1 /y 1 ,…,u m /y m ]/x>. For every u,u 1 ,…,u m AL[], we extend the definitions of Fv(u) and u[u 1 /y 1 ,…,u m /y m ] by : -Fv([t]<a/x>)=Fv(a)=. -[t]<a/x>[u 1 /y 1 ,…,u m /y m ]=[t]<a[u 1 /y 1 ,…,u m /y m ]/x>, after a suitable renaming of the bounded variables of a 1 ,…,a n that are free in u 1 ,…,u m .

-

  If t=x, then b(t)=0 ; -If t=lxu, then b(t)=b(u) ; -If t=(u)v, then b(t)=b(u)+b(v) ; -If t=[u]<a/x>, then : -If u=x i 1 i n, then b(t)=b(a ≤ ≤ i )+1 ; -If u=lxv, then b(t)=b([v]<a/x,y/x>)+1 yFv(a) ; -If u=(v)w, then b(t)=b([v]<a/x>)+b([w]<a/x>)+1. Lemma 3.2.3.

2 )

 2 and its contractum is a i [u 1 /y 1 ,…,u m /y m ]=R'[u 1 /y 1 ,…,u m /y m ]. -If t=lxu, then R'=ly[u]<a/x,y/x> where yFv(a). R[u 1 /y 1 ,…,u m /y m ]=[lxu]<a[u 1 /y 1 ,…,u m /y m ]/x> is a []-redex, and its contractum is ly[u]<a/x,y/x>[u 1 /y 1 ,…,u m /y m ]=R'[u 1 /y 1 ,…,u m /y m ] where yFv(a)" -If t=(u)v, then R'=([u]<a/x>)[v]<a/x>. R[u 1 /y 1 ,…,u m /y m ]=([u]<a/x>)[v]<a[u 1 /y 1 ,…,u m /y m ]/x> is a []-redex, and its contractum is ([u]<a/x>)[v]<a/x>[u 1 /y 1 ,…,u m /y m ]=R'[u 1 /y 1 ,…,u m /y m ]. s By lemma 3.4.5, (t)u∑ b[] v, and (t')u∑ b[] v where v=lx 2 …lx n (R')t 1 …t m . 2) Same proof as 1). s If t is b[]-solvable, then there are variables x 1 ,…,x k , and terms u 1 ,…,u k ,v 1 ,…,v l (k,l 0), such that (t[u ≥ 1 /x 1 ,…,u k /x k ])v 1 …v l : b[] lxx, therefore, by the Church-Rosser theorem, (t[u 1 /x 1 ,…,u k /x k ])v 1 …v l ∑ b[] lxx, therefore, by corollary 3.4.3, the b[]-head reduction of t terminates.

5. 4 .Theorem 5 . 4 . 1 .Theorem 5 . 4 . 2 .

 4541542 Storage operators for a set of b-normal l-terms Let u 1 ,…,u n ,v 1 ,…,v m be closed l-terms. Assume u iby u j for i<j, there is a closed l-term T, such that (T)u i : b v i 1 i n. ≤ ≤ Proof. See [3]. s Every finite set of b-normal l-terms having all distinct by-normal forms has an o.m.m..

Theorem 5 . 4 . 3 .

 543 Every finite set of b-normal l-terms has an o.m.m..

Corollary 5 . 4 . 5 .

 545 An y-bound for a set B={u 1 ,…,u m } is a b-normal l-term u, such that u5 y u i 1 i m.≤ ≤ Every finite set B of b-normal lterms having all the same y-normalform has an y-bound.Proof. By induction on the number of l-terms of B using lemma 5.4.4. s By corollary 5.4.4, let u i be a y-bound for D i 1 i m. By theorem 5.4.2, the set {u ≤ ≤ 1 , …,u m } has an o.m.m., therefore, by theorem 5.3.1, D has an o.m.m.. s (of theorem 5.4.3)

  represents t 0 [d 1 /g,d 2 /x], and t 0 ∑x, therefore (t 0 [d 1 /g,d 2 /x])e 1 …e k and (d 2 )e 1 …e k have the same head normal form ; we then follow the construction with the l-term (d 2 )e 1 … e k .

Theorem 1.1.3. If t is a normalizable l-term, then Tps(t)=tps(u). Proof. Trivial. s 1.2. Properties of head reduction Definitions.

  

	+n(t,t').	
	Proof. See [2] and [6]. s 2) t[u 1 /x 1 ,…,u r /x r ]∑t'[u 1 /x 1 ,…,u r /x r ], and n(t[u 1 /x 1 ,…,u r /x r ],t'[u 1 /x 1 ,…,u r /x r ])= n(t,t').
	-If t is a normalizable l-term, then t∑∑t b . We denote by Tps(t), the number of steps
	used to go from t to t b .	
	-The notation t∑ 0 t' (resp. t∑t') means that t' is obtained from t by one step of head
	reduction (resp. by some head reductions).	
	-A l-term t is said solvable if and only if for every l-term u, there are variables x 1 ,
	…,x k , and a l-terms u 1 ,…,u k ,v 1 ,…,v l k,l 0, such that (t[u ≥	1 /x 1 ,…,u k /x k ])v 1 …v l : b u.
	Theorem 1.1.2 (resolution theorem). The following conditions are equivalent :
	1) t is solvable ;	
	2) the head reduction of t terminates ;	
	3) t is b-equivalent to a head normal form.	
	Proof. See [6]. s	
	-If t is a solvable l-term, then there is a term t' in head normal form, such that t∑t ' .
	We denote by tps(t), the number of step used to go from t to t'.
	-For each l-term, we associate a set of l-terms denoted by STE(t), and called the set of
	essential subterms of t, by induction :	
	-If t is unsolvable, then STE(t)={U}where U is a new symbol ;
	-If t is solvable, and ly 1 …ly m (y)t 1 …t r is its head normal form, then STE(t)={t}".
	-We define an equivalence relation : on L by : u:v if and only if there is a t, such that
	u∑t, and v∑t. In particular, if t is solvable, then u:t if and only if u is solvable, and has
	If t is by-normalizable, we denote by t by its by-normal form. the same head normal form of t. If u is in head normal form, then t:u means u is the
	-The notation t∑∑ 0 t' (resp. t∑∑t') means that t' is obtained from t by one step of left head normal form of t.
	reduction (resp. by some left reductions). -If t∑t', we denote by n(t,t'), the number of steps to go from t to t'.
	Theorem 1.1.1 (normalization theorem). u is normalizable if and only if u is left Theorem 1.2.1. If t∑t', then for every u 1 ,…,u r AL :
	normalizable. 1) There is vAL, such that (t)u 1 …u r ∑v, (t')u 1 …u r ∑v, and n((t)u 1 …u r ,v)= n((t')u 1 …u r ,v)

Corollary 1.2.4. Let

  

	Corollary 1.2.2. Let t,u 1 ,…,u n ,v 1 ,…,v m AL. If (t[u 1 /x 1 ,…,u n /x n ])v 1 …v m is solvable, then
	t is solvable.
	Proof. Easy. s
	Corollary 1.2.3. If t:t', then for every u 1 ,…,u r AL :
	1) (t)u 1 …u r :(t')u 1 …u r .
	2) t[u 1 /x 1 ,…,u r /x r ]:t'[u 1 /x 1 ,…,u r /x r ].
	Proof. See [7]. s
	t: b u, and u does not contain the variables x 1 ,…,x n , then the left
	reduction of t[u 1 /x 1 ,…,u n /x n ] is equivalent to the left reduction of t. This reduction is

  shortened to o.m.m. for opérateur de mise en mémoire) for t if and only if there is t t : by t, such that for every h t : b t, (T)h t ∑lf(f)t t [h 1 /x 1 ,…,h n /x n ], where Fv(t t )={x 1 ,…,x n ,f}, and h 1 ,…,h n are l-terms which depend on h t . [h 1 /x 1 ,…,h n /x n ], where Fv(t t )={x 1 ,…,x n ,f}, and h 1 ,…,h n are lterms which depend on h t .

	Proof.
	1 1 Clear.

-Let T be a closed l-term, D a set of essential l-terms. We say that T is an o.m.m for D if and only if it is an o.m.m. for every t in D.

Lemma 2.1.1. T is an o.m.m. for t if and only if there is a l-term t t : by t, such that for every h t : b t, (T)h t f:(f)t t 0 0 By corollary 1.2.2, (T)h t is solvable. Let T' be its head normal form.

  If T is an o.m.m. for t, then there is a l-term t t : by t, such that for every h t : b t, (T)h t ∑lf(f)t t [u 1 /y 1 ,…,u n /y n ], with Fv(t t )={y 1 ,…,y n ,f}, and u 1 ,…,u n are lterms wich depend on h t . Therefore, by corollary 1.2.2, T is solvable. Let T' its head normal form. Since T is closed, T' also is closed, and T'=lx 1 …lx m

T 1 where T 1 : by t. Corollary 2.2.3. If t is unsolvable, and T is an o.m.m. for t, then T∑lnlf(f)T 1 , and T 1 : by t. Proof. If T∑ln(n)T 1 …T r r 1 or T ≥ ∑lnlf(n)T 1 …T r r 1, then (T)t is unsolvable. ≥ Therefore, by proposition 2.2.1, T∑lnlf(f)T 1 , and T 1 : by t. s Proof of proposition 2.2.1.

  By lemma 2.2.4, we may assume that t t does not contain a (y i )y j 1 i,j n as subterm. It is clear that we may assume that any variable x 1 ,…,x n (resp. y 1 ,…,y m ) appears at most once in d (resp. t).

		≤ ≤	i )y j is
	not a subterm of t. If for all 1 i n and for every ≤ ≤	h

Since t is closed, then t=u and t5 b t. s ≤ ≤ Lemma 2.2.5. Let d,t,t 1 ,…,t n be l-terms , and s 1 ,…,s n substitutions, such that : Fv(d)={x 1 ,…,x n }"{a 1 ,…,a r }, Fv(t)={y 1 ,…,y m }"{b 1 ,…,b k }, and for all 1 i,j m (y i : b t i , there are h 1 ,…, h i-1 ,h i+1 , …h n ,u 1 ,…,u m , such that d[s 1 (h 1 )/x 1 ,…,s n (h n )/x n ]=t[u 1 /y 1 ,…,u m /y m ], then there are w 1 , …,w m , such that d=t[w 1 /y 1 ,…,w m /y m ]. Proof. By induction on d and t.

  If t=(a)b, then u[s 1 (h 1 )/x 1 ,…,s n (h n )/x n ]=a[u 1 /y 1 ,…,u m /y m ], and v[s 1 (h 1 )/x 1 ,…,s n (h n )/x n ]=b[u 1 /y 1 ,…,u m /y m ], and we use the induction hypothesis. s By lemma 2.2.5, there are w 1 ,…,w m , such that T 1 =t t [w 1 /x 1 ,…,w n /x n ], we have T 1 : by t. s (of proposition 2.2.1)

	2.3 Examples of storage operators
	2.3.1 The projections
	For all 0 i n, let P= ≤ ≤	lx 1 …lx n x i (the i th projection among n). Let P n be the set of
	projections.	
		y 1 ,…,u m /y m ], and we use the
	induction hypothesis	
	-If t=(u)v, then d begins by (, that is impossible.

-If d=(u)v, then :

-If t=b 1 , then lg(d)=1, that is impossible.

-If t=y 1 , then d=t[(u)v/y 1 ]. -If t=lxt', then d begins by l, that is impossible. -Define T=ln(n) lf(f)Plf(f)P… lf(f)P, and T=lnlf(n) (f)PP… (f)P. Tand Tare two o.m.m. for P n . Let h: b P1 i n, then ≤ ≤ h∑P.

  term of the form [t]<a/x> is called []-redex ; its contractum R is defined by If t=[u]<a/x>, then t5 b0 t' if and only if a i 5 b0 a' i , x i AFv(u) 1 i n, and t'=[u]<a ≤ ≤ 1 /x 1 ,…,a i-1 /x i-1 ,a' i /x i ,a i+1 /x i+1 ,…,a n /x n >. if and only if there is a sequence t 0 =t,t 1 ,…,t n-1 ,t n =t', such that t i 5 b0 t i+1 (resp. t i 5 []0 t i+1 , resp. t i 5 b[]0 t i+1 ) for 1 i n-1.

	≤ ≤
	It is clear that if t5 b[] t', then Fv(t')[Fv(t).
	A l[]-term t is said b[]-normalizable, if there is a b[]-normal l[]-term t', such that t5 b[] t'.
	A l[]-term t is said b[]-strongly normalizable, if there is a no infinite sequence t 0 =t,t 1 ,
	…,t n ,…, such that t i 5 b[]0 t i+1 for i≥0.
	induction on t : -If t=x i 1 i n, then R= ≤ ≤ Lemma 3.2.1. t is b[]-normal if and only if tAL, and t is b-normal. a i ;
	-If t=lxu, then R=ly[u]<a,/x,y/x> where yFv(a) ; -If t=(u)v, then R=([u]<a/x>)[v]<a/x>. Proof. Clear. s
	More precisely :
	-If t is a variable, t5 []0 t' is false for all t' ;
	-If t=lxu, then t5 []0 t' if and only if t'=lxu', and u5 []0 u' ;
	-If t=(v)u, then t5 []0 t' if and only if
	t'=(v)u' with u5 []0 u' or
	t'=(v')u with v5 []0 v' ;
	-If t =[u]<a/x>, then t5 []0 t' if and only if
	t' is the contractum of t or
	a i 5 []0 a' i , x i AFv(u) 1 i n, and t'=[u]<a ≤ ≤ 1 /x 1 ,…,a i-1 /x i-1 ,a' i /x i ,a i+1 /x i+1 ,…,a n /x n >
	. We define a binary relation 5 b[]0 on L[] by t5 b0 t' or t5 []0 t'.

. We define a binary relation 5 b0 by : t5 b0 t' if and only if t' is obtained by contracting a b-redex of t. More precisely : -If t is a variable, t5 b0 t' is false for all t' ; -If t=lxu, then t5 b0 t' if and only if t'=lxu', and u5 b0 u' ; -If t=(v)u, then t5 b0 t' if and only if t'=(v)u' with u5 b0 u' or t'=(v')u with v5 b0 v' or v=lxw, and t'=w[u/x] ; -. We define a binary relation 5 []0 by : t5 []0 t' if and only if t' is obtained by contracting a []-redex of t. Therefore t5 b[]0 t' if anf only if t' is obtained by contracting a b[]-redex of t.

. We define the b-conversion (resp. the []-conversion, resp. the b[]-conversion) as the reflexive and transitive closure of 5 b0 (resp.5 []0 , resp. 5 b[]0 ). We have therefore t5 b t' (resp. t5 [] t', resp. t5 b[] t') . A l[]-term t is said b[]-normal, if it does not contain any redex.

Lemme 3.2.2. A []-reduction always terminates.

Proof. Otherwise, there is an infinite sequence t 0 ,t 1 ,…,t n ,…, such that t i 5 []0 t i+1 for i 0. ≥

For each l[]-term t, we associate an integer b(t) by induction on t :

Proof of theorem 3.2.6. If

  If u=(v)w, then t'=([v]<a/x>)[w]<a/x>, and b(t)=b([v]<a/x>)+b([w]<a/x>)+1>b(t'). -If a i 5 []0 a' i , x i AFv(u) 1 i n, and t'=[u]<a ≤ ≤ 1 /x 1 ,…,a i-1 /x i-1 ,a' i /x i ,a i+1 /x i+1 ,…,a n /x n >). By induction hypothesis, we have b(a i )>b(a' i ), therefore, by lemma 3.2.3, b(t)>b(t'). s By lemma 3.2.9, t5 [] l(t), therefore t is not b[]-strongly normalizable. A contradiction. t 0 5 b[] t 1 , and t 0 5 b[] t 2 , then, by corollary 3.2.12, l(t 0 )5 b l(t 1 ), and l(t 0 )5 b l(t 2 ). Therefore, by the Church-Rosser theorem of l-calculus, there is a t 3 , such that l(t 1 )5 b t 3 , and l(t 2 )5 b t 3 , therefore, by lemma 3.2.9, t 1 5 b[] t 3 , and t 2 5 b[] t 3 . s

	b(t)=b([u]<a/x,y/x>)+1>b(t'). By lemma 3.2.8, [u]<a/x>5 [] u[a 1 /x 1 ,…,a n /x n ]. By induction hypothesis, we have
	a i 5 [] l(a i ) 1 i n, therefore, by lemma 3.2.8, t ≤ ≤ 5 [] u[l(a 1 )/x 1 ,…,l(a n )/x n ]=l(t). s
	s (of 1 1 theorem 3.2.5).
	Therefore, by lemma 3.2.4, there is an infinite sequence b(t 0 ),b(t 1 ),…,b(t n ),…, such that
	b(t i )>b(t i+1 ) for i 0. A contradiction. ≥ 0 0 (theorem 3.2.5) If t is not b[]-strongly normalizable then there is an infinite sequence s (of lemma 3.2.2)
	t 0 =t,t 1 ,…,t n ,…, such that t i 5 b0 t i+1 or t i 5 []0 t i+1 for i 0. ≥
	Definition. For each l[]-term t, we associate a l-term l(t) by induction on t :
	-If t=x, then l(t)=x ; Lemma 3.2.10. l(u[v/x])=l(u)[l(v)/x].
	-If t=lxu, then l(t)=lxl(u) ;
	-If t=(u)v, then l(t)=(l(u))l(v) ; Proof. By induction on u. s
	-If t=[u]<a/x>, then l(t)=u[l(a 1 )/x 1 ,…,l(a n )/x n ].
	Proof. Use lemmas 3.2.7 and 3.2.11. s
	By lemma 3.2.2, and lemma 3.2.11, tthere is an infinite sequence t' 0 =l(t),t' 1 ,…,t' n ,…,
	such that t' i 5 b0 t' i+1 for all i 0, therefore l(t) is not strongly normalizable. ≥
	A contradiction. s (of 0 0 theorem 3.2.5)
	Proof. By induction on t. s
	Lemma 3.2.8.
	1) [u]<a/x>5 [] u[a 1 /x 1 ,…,a n /x n ]. Remarks.
	2) If u i 5 [] v i 1 i n, then ≤ ≤ -By the Church-Rosser theorem, the b[]-normal form is unique. u[u 1 /x 1 ,…,u n /x n ]5 [] u[v 1 /x 1 ,…,v n /x n ].
	-We define the b[]-equivalence (denoted by : b []), as the symetric closure of 5 b[] ; In
	Lemma 3.2.4. If t 5 []0 t', then b(t)>b(t'). Proof. By induction on u. s other words : t: b[] t' if there are t 0 =t,t 1 ,…,t n =t' with t i 5 b[]0 t i+1 or t i+1 5 b[]0 t i 0 i n-1. By ≤ ≤
	the Church-Rosser theorem : t: b[] t' if and only if there is a l[]-term u, such that t5 b[] u and
	-If u=lxv, then t'=[u]<a/x,y/x> yFv(a), therefore, by lemma 3.2.3,

Proof. By induction on t. The only interesting case is t=

[u]

<a/x>. Then : -If u=x i 1 i n, then t'=a ≤ ≤ i , and b(t)=b(a i )+1>b(t'). -It is clear that for tAL[], Fv(t)=Fv(l(t)). Theorem 3.2.5. t is b[]-strongly normalizable if and only if l(t) is strongly normalizable. Theorem 3.2.6 (Church-Rosser theorem). Assume t 0 5 b[] t 1 , and t 0 5 b[] t 2 , then there is a t 3 , such that t 1 5 b[] t 3 and t 2 5 b[] t 3 . Proof of theorem 3.2.5. 1 1 If l(t) is not strongly normalizable, then there is an infinite sequence t 0 =l(t),t 1 ,…,t n , …, such that t i 5 b0 t i+1 for all i 0. ≥ Lemma 3.2.7. If t5 [] t', then l(t)=l(t'). Lemma 3.2.9. If t is a l[]-term, then t5 [] l(t). Proof. By induction on t. The only interesting case is t=[u]<a/x>. Lemma 3.2.11. If u5 b0 v, then l(u)5 b0 l(v). Proof. By induction on u. The only non-trivial case is u=(lxt)w : we then have v=t[w/x], therefore, by lemma 3.2.10, l(u)=(lxl(t))l(w)5 b0 l(t)[l(w)/x]=l(v). s Corollary 3.2.12. If u5 b[] v, then l(u)5 b l(v). t'5 b[] u, and a l[]-term t is b[]-normalizable if and only if there is a b[]-normal l[]-term u such that t: b[] u.

  b[]-head reduction of t[u 1 /x 1 ,…,u n /x n ], it is equivalent (same result, and same number of steps) to make some steps in the b[]-head reduction of t, and then make the b[]-head reduction of t'[u 1 /x 1 ,…,u n /x n ].

	Corollary 3.4.3. Let t,u 1 ,…,u n ,v 1 ,…,v m AL[]. If the b[]-head reduction of (t[u 1 /x 1 ,…,u n /
	x n ])v 1 …v m terminates, then the b[]-head reduction of t terminates.
	Proof. Use theorem 3.4.2. s

Theorem 3.4.4 (resolution theorem). The following conditions are equivalent :

1) t is b[]-solvable ; 2) the b[]-head reduction of t terminates ; 3) t is b[]-equivalent to a b[]-head normal form.

Proof of theorem 3.4.2. It is enough to do the proof for one step of reduction. 1) By induction on r ; it is enough to do the proof for r=1. Then t=lx 1 …lx n (R)t 1 …t m , and t'=lx 1 …lx n (R')t 1 …t m where R' is the contractum of R. If n=0, then (t)u=(R)t 1 …t m u, and (t')u=(R')t 1 …t m u, therefore (t)u∑ b[] v, where v=(t')u. If n 1, then one step of ≥ b[]-head reduction of (t)u gives lx 2 …lx n (R)t 1 …t m (where w=w[u/x 1 ] for every wAL[]). One step of b[]-head reduction of (t')u gives lx 2 … lx n (R')t 1 …t m . Lemma 3.4.5. If R a redex, R' its contractum, and u 1 ,…,u m AL[], then R[u 1 /y 1 ,…,u m / y m ] is a redex, and R'[u 1 /y 1 ,…,u m /y m ] is its contractum.

An equivalent definition for storage operators

  is unsolvable. A contradiction. s § 4.

	Theorem 4.1. Let t be a closed b-normal l-term, and T a closed l-term. T is an o.m.m.
	for t if and only if there is a l-term t

t : by t, such that

  Definition. Let t be a b-normal l-term, and u a l[]-term. We say that u is directed by t if and only if the directors of boxes of u are subterms of t.

	More precisely u is directed by t if and only if :
	-If u=x, then u is directed by t ;
	-If u=lxv, then u is directed by t if and only if v is directed by t ;
	-If u=(v)w, then u is directed by t if and only if v and w are directed by t ;
	-If u=[v]<a/x>, then u is directed by t if and only if v is a subterm de t, and for all
	1 i n a ≤ ≤ i is directed by t.
	Lemma 4.2.
	1) If u and v are directed by t, then u[v/x] is directed by t.
	2) If u is directed by t, and u5 b[] v, then v is directed by t.

Proof. By induction on u. s Definition. Let t be a b-normal l-term. A t-special application h is a function from ST(t) to L which satisfies the following properties :

  '). s If t,v 1 ,…,v r are good, then t[v 1 /y 1 ,…,v r /y r ] is good. It is easy to see that if R is a []'-redex, and R' its contractum, then R∑ b[] R'.Let t=lx 1 …lx n (R)t 1 …t m where R is a []'-redex. If t' is the l[]-term obtained from t by contracting the []'-redex R, we say that t gives t' by a []' 0 -head reduction, and we write t∑ []'0 t'. If t∑ b[] (f)u 1 ,…u r , then there is a sequence t=

	We say that t reduces to t' by []'-head reduction, and we write t∑ []' t' if and only if t' is
	obtained from t by a sequence of []' 0 -head reductions.
	-If t' is the l[]-term obtained from t by contracting its head redex (b-redex or []'-redex),
	we say that t gives t' by b[]' 0 -head reduction, and we write t∑ b []' 0 t'.
	We say that t reduces to t' by b[]'-head reduction, and we write t∑b[]'t' if and only if t'
	is obtained from t by a sequence of b[]' 0 -head reductions.
	Corollary 4.8. u is b[]-solvable if and only if S h (u) is solvable. -A head reduction t∑ b t' is said complete if and only if for every l[]-term u, if t'∑ b u,
	then t'=u.	
	Proof.	
	1 1 Use lemma 4.7. Lemma 4.10.
	0 1) If f is a variable, and t∑ b[] (f)u 1 ,…u r , then there is a sequence t 0 =t,t 1 ,…,t n = (f)u 1 ,… u r , such that t i ∑ b t i+1 is complete or t i ∑ []' t i+1 0 i n-1. ≤ ≤ 2) If moreover t is directed by u, then every director of t i 0 i n is an element of STE(u). ≤ ≤ Proof. 0 S Proof. By induction on t. s 1)
	Definitions.	
	-A []'-redex is a l[]-term of the form ([ly 1 …ly m (y)u 1 …u r ]<a/x>)v 1 …v m .	Its
	contractum R is defined by : R=(b)[u 1 ]<a/x,v/y>…[u r ]<a/x,v/y> where b=v i if y=y i
	1 i m, and b=a ≤ ≤	i if y=x i 1 i n. ≤ ≤

h (u) is solvable, therefore, by lemma 4.6, l(u) is solvable, therefore, by theorem

3.4.7, u is b[]-solvable. s

Definition. We say that a l[]-term t is good if and only if there is a l-term u, such that t=u

[[t 1 ]<a 1 /x 1 >/y 1 ,…,[t m ]<a m /x m >/y m ], and for all 1 i m if ≤ ≤ a i =a 1,i ,…,a ni,i , then a j,i is good 1 j n ≤ ≤ i .

It is clear that we have :

-x is good ; -If lxt is good, then t is good ; -(u)v is good if and only if u and v are good ; -[w]<a/x> is good if and only if a i is good 1 i n. ≤ ≤ Example. The l[]-term [x 1 ]<x/x 1 > is good, but the l[]-term lx[x 1 ]<x/x 1 > is not. Indeed, the variable x becomes bounded, and so we can not find a l-term u, such that lx[x 1 ]<x/ x 1 >= u[[t]<a/x>/y]. Lemma 4.9.

  It is enough to do the proof for one step of reduction. If t∑ b0 t', then t'=u'[[t 1 ]<a 1 /x 1 >/ y 1 ,…,[t m ]<a m /x m >/y m ] where u∑ 0 u', therefore t' is good.2) It is enough do the proof for one step of reduction. For every l[]-term u, denote by u" the l[]-term u[[t 1 ]<a 1 /x 1 >/y 1 ,…,[t m ]<a m /x m >/y m ].

	2) Easy. s	
	Lemma 4.11. Let t be a good l[]-term.	
	1) If t∑ b t' then, t' is good.	
	2) If t∑ []' (a)b, then (a)b is good.	
	3) If t∑ b[] (f)u 1 …u r , then u 1 ,…,u r are good.	
	Proof. If t is good, then there is a l-term u, such that	
	t=u[[t 1 ]<a 1 /x 1 >/y 1 ,…,[t m ]<a m /x m >/y m ], and for all 1 i m if ≤ ≤	a i =a 1,i ,…,a ni,i , then a j,i is
	good 1 j n ≤ ≤ i .	
	1)	

  1 /x 1 >/y 1 ,…,[t m ]<a m /x m >/y m ,[u 1 ]<a i /x i ,v"/f>/y 1 ,…, If T is an o.m.m. for t, then there is d t : by t, such that for every h t : b t, there is a substitution s, such that Th t f∑(f)s(d t ). l(T[t]f)=Ttf is solvable, therefore, by theorem 3.4.7, T[t]f is b[]-solvable, and T[t]f∑ b[] (f)t'. By lemma 4.4, let h be a t-special application, such that h(t)=h t . Then S h (t')=s(d t ). T[t]f is a good l[]-term, therefore, by lemma 4.11, t' is good, therefore t'=t t [[t 1 ]<a 1 /x 1 >/y 1 ,…,[t m ]<a m /x m >/y m ] where t t is a l-term. Therefore S h (t')=t t [h 1 /y 1 ,…,hm/y m ] where hi =h(t i )[S h (a i,1 )/x i,1 ,…,S h (a i,mi )/x i,mi ] Assume that T[t]f∑ b[] (f)t t [[t 1 ]<a 1 /x 1 >/y 1 ,…,[t m ]<a m /x m >/y m ],and t t : by t. Let h t : b t. By lemma 4.4, let h be a t-special application, such that h(t)=h t . By lemma 4.7, we have

	[u r ]<a i /x i ,v"/f>/z r ] where c=v i if y=f i 1 i q, and c=a ≤ ≤ j,i if y=x j,i 1 i m, 1 j n ≤ ≤ ≤ ≤ i , and
	z 1 ,…,z r are a new variables, therefore, by lemma 4.9, (a)b is good.
	3) Use lemma 4.10, and 1) and 2). s	
	Proof of theorem 4.1.	
	1 1 1 i m, therefore, by lemmas 2.2.4, 2-6, and 4.3, ≤ ≤	t t =s'(d t ), therefore t t : by t.
	0 0	

5. Properties of storage operators 5.1 Storage operators and b-equivalence Theorem 5.1.1.

  Let t be a closed b-normal l-term, T and T' be closed l-terms.IfT is an o.m.m. for t, and T': b T, then T' also is an o.m.m. for t.Proof. On the set of good l[]-terms, we define an equivalence relation g by : If t=u[[t 1 ]<a 1 /x 1 >/y 1 ,…,[t m ]<a m /x m >/y m ] where u is a l-term, then tgt' if and only if t'=u'[[t 1 ]<a' 1 /x 1 >/y 1 ,…,[t m ]<a' m /x m >/y m ] where u: b u', and for all 1i m if If t∑ b[] (f)u 1 …u r ,and tgT, then tor someT' : (f)u 1 …u r gT', and T∑ b[] T'.For every l[]-term u, we denote by u''' the l[]-term[[t 1 ]<a' 1 /x 1 >/y 1 ,…, [t m ]<a' m /x m >/ y m ]. Let T'={(b)z 1 …z r d 1 …d s }[[t 1 ]<a' 1 /x 1 >/y 1 ,…,[t m ]<a' m /x m >/y m ,[u 1 ]<a' i /x i ,c'''/f> /z 1 ,…, [u r ]<a' i /x i ,c'''/f>/zr ] where b'=c i if y=f i 1 i q, and b'=a' It is clear that T and T' have the same b[]-head normal form, and, by lemma 5.1.2, t'gT'. ∑ b [] (f)t' t [[t 1 ]<a' 1 /x 1 >/y 1 ,…,[t m ]<a' m /x m >/y m ], and t' t : b t t : by t. Therefore, by theorem 4.1, T' is an o.m.m. for t. s (of theorem 5.1.1)if we take t=lxx, t'=lxlylz((x)y)z, and T=ln(n)lf(f)lxx, then : -t'5 y t, therefore t: y t'.-For every l-term u such that u: b t, (T)u∑lf(f)lxx, therefore T is an o.m.m. for t.-(T)t'f∑lz((f)lxx)z, therefore T is not an o.m.m. for t'.It is clear that :-If lx 1 …lx n (u 0 )u 1 …u m ct, then t=lx 1 …lx n (u' 0 )u' 1 …u' m where u i cu' i 0 i m. ≤ ≤ -Let t be a good l[]-term, therefore there is a l-term u, such that t=u[[t 1 ]<a 1 /x 1 >/y 1 ,…,[t m ]<a m /x m >/y m ], and for all 1 i m if

	≤ ≤ It is clear that if lx 1 …lx n (f)u 1 …u m gt (f is a variable), then t=lx 1 …lx n (f)u' 1 …u' m where a i =a 1,i , …,a ni,i , then a' i =a' 1,i ,…,a' ni,i , and a j,i ga' j,i 1 j n ≤ ≤ i . u i gu' i 0 i m. ≤ ≤ Lemma 5.1.2. If tgt', and v i gv' i 1 i r, then t[v ≤ ≤ 1 /y 1 ,…,v r /y r ]gt'[v' 1 /y 1 ,…,v' r /y r ]. Proof. By induction on t. s Lemma 5.1.3. Let t be a good l[]-term. 1) If t∑ b t' is complete, and tgT, then for someT' : t'gT', and T∑ b T' is complete. 2) If t∑ []'0 (c)d, and tgT, then tor someT' with the same b[]-head normal form as T : (c)dgT'. 3) Proof. If t is good, then there is a l-term u, such that t=u[[t 1 ]<a 1 /x 1 >/y 1 ,…,[t m ]<a m /x m >/y m ] where a i =a 1,i ,…,a ni,i 1 i n. ≤ ≤ 1) If t∑ b t' is complete, then t'=u'[[t 1 ]<a 1 /x 1 >/y 1 ,…,[t m ]<a m /x m >/y m ] where u' is the head normal form of u. If tgT, then T=U[[t 1 ]<a' It is clear that mat suppose that y i Fv(a j ) 1 i,j m. ≤ ≤ If t∑ []'0 (c)d, then u=(y i )v 1 …v q w 1 …w s 1 i m, t ≤ ≤ i =lf 1 …lf q (y)u 1 …u r , and (c)d={(b)z 1 …z r w 1 …w s }[[t 1 ]<a 1 /x 1 >/y 1 ,…,[t m ]<a m /x m >/y m ,[u 1 ]<a i /x i ,v"/f>/z 1 ,…, [u r ]<a i /x i ,v"/f>/z r ] where b=v i if y=f i 1 i q, and b=a ≤ ≤ j,i if y=x j,i 1 i m, and 1 j n ≤ ≤ ≤ ≤ i , and z 1 ,…,z r are a new variables. If tgT, then T=U[[t 1 ]<a' 1 /x 1 >/y 1 ,…,[t m ]<a' m /x m >/y m ] where u: b U, a' i =a' 1,i ,…,a' ni,i and j,i if y=x j,i 1 i m, and 1 j n ≤ ≤ ≤ ≤ i . 3) Use 1), 2), and lemma 4.10. s If T is an o.m.m. for t, then, by theorem 4.1, T[t]f ∑ b [] (f)t t [[t 1 ]<a 1 /x 1 >/y 1 ,…,[t m ]<a m /x m >/y m ], and t t : by t. If T': b T, then T'[t]fgT[t]f, therefore, by 3) of lemma 5.1.3, T'[t]f 5.2 Decidability Proof. Use theorem 4.1. s 5.3 Storage operators and y-equivalence Proof of theorem 5.3.1. On the set L[], we define the binary relation c as the least relation satisfying : -tct ; -If tct', then lxtclxt'; -If ucu', and vcv', then (u)vc(u')v'; -If t5yx i , and a i ca' i 1 i n, then [t]< ≤ ≤ a/x>ca' i ; -If t5yt', and a i ca' i 1 i n, then [t]< ≤ ≤ a/x>c[t']<a'/x>. ≤ ≤ a i =a 1,i ,…,a ni,i , then a j,i is good 1 j n ≤ ≤ ≤ ≤ 1 j n ≤ ≤ i . Lemma 5.3.2. If ucu', and v i cv' i 1 i n, then : ≤ ≤ u[v 1 /x 1 ,…,v n /x n ]c u'[v' 1 /x 1 ,…,v' n /x n ]. Proof. By induction on u. s Lemma 5.3.3. If u=lx 1 …lx n (y)u 1 …u m 5 y v, then v=lx 1 …lx n-r (y)u' 1 …u' m-r where u j 5 y u' j a ≤ ≤ 1 j m-r, ≤ ≤ u m-s 5 y x n-s 0 s r-1, and x ≤ ≤ n-s y ≠ does not appear in u 1 ,…u m-r .

1 /x 1 >/y 1 ,…,[t m ]<a' m /x m >/y m ] where u: b U, a' i =a' 1,i ,…,a' ni,i , and a j,i ga' j,i 1 j n ≤ ≤ i . Let U' be the head normal form of U.

Let T'=U'[[t 1 ]<a' 1 /x 1 >/y 1 ,…,[t m ]<a' m /x m >/y m ].

It is clear that we have t'gT', and

T∑ b T' is complete. 2) For every l[]-term u, we denote by u" the l[]-term u[[t 1 ]<a 1 /x 1 >/y 1 ,…, [t m ]<a m /x m >/ y m ]. j,i ga' j,i 1 j n ≤ ≤ i .

Since u: b U, then U∑(y i )c 1 …c q d 1 …d s where v i : b c i 1 i q, and w ≤ ≤ j : b d j 1 j s. ≤ ≤ Theorem 5.2.1. If X is a non trivial set of closed l-terms stable by b-equivalence, then X is not recursive. Proof. See [2], [5], and [14]. s Theorem 5.2.2. The set of o.m.m. for a set of closed b-normal l-terms is not recursive. Proof. Use theorems 5.1.1 and 5.2.1. s Theorem 5.2.3. The set of o.m.m. for a finite set of closed b-normal l-terms is recursively enumerable. Theorem 5.3.1. Let t be a closed b-normal l-term, and T be closed l-term.

If T is an o.m.m. for t, and t5yt', then T also is an o.m.m. for t'.

Remark. The theorem 5.3.1 is no more true if we replace t5 y t' by t: y t'. Indeed, i . If tct', then it is easy to check that t'=u[c 1 /y 1 ,…,c n /y m ] where c i =[t' i ]<a' i / x i > with t i 5 y t' i , a j,i ca' j,i 1 i m, 1 j n ≤ ≤ ≤ ≤ i , or c i =a' j,i 1 j n with t ≤ ≤ i 5 y x j,i and a j,i ca' j,i 1 i m,

  If t∑ b[]' t', and tcT, then for some t' : t'cT', and T∑ b[]' T'. If t∑ b0 t', then t=lx 1 …lx n (lxu)vt 1 …t m , and t'=lx 1 …lx n (u[v/x])t 1 …t m . If tcT, then

	Proof.		
	1) T=lx 1 …lx n (lxu')v't' 1 …t' m where ucu', vcv', and t i ct' i 1 i m. ≤ ≤		
	Let T'=lx 1 …lx n (u'[v'/x])t' 1 …t' m . It is clear that T∑ b0 T ', and, by lemma 5.3.2, t'cT'.
	2) If t∑ []'0 t', then t=ly 1 …ly m ([lz 1 …lz k (y)u 1 …u r ]<a/x>v 1 …v k w 1 …w s , and
	t'=ly 1 …ly m (b)[u 1 ]<a/x,v/z>…[u r ]<a/x,v/z>w 1 …w s where b=v i if y=y i 1 i m, and b=a ≤ ≤ i
	if y=x j 1 j n. Assume t ≤ ≤ cT.		
	-If lz 1 …lz k (y)u 1 …u r 5 y y, then k=r, u i 5 y z i 1 i m, and z ≤ ≤	i y=x ≠ j 1 j n, then ≤ ≤
	T=ly 1 …ly m (a' j )v' 1 …v' k w' 1 …w' s where a j ca' j , v i cv' i 1 i k, and w ≤ ≤	i cw' i 1 i s. ≤ ≤	Let
	T'=T. It is clear that t'cT', and T∑ []'0 T'.		

3.4.

1) If t∑ b0 t', and tcT, then for some t' : t'cT', and T∑ b0 T'. 2) If t∑ []'0 t', and tcT, then for some t' : t'cT', and T∑ []'0 T'.

3)

  ' 1 …w' s where b=v' i if y=y i 1 i m, and b=a ≤ ≤ If T is an o.m.m. for t, then, by theorem 4.1, there is a l-term t t : by t, such that T[t]f∑ b[] (f)t t [[t 1 ]<a 1 /x 1 >/y 1 ,…,[t m ]<a m /x m >/y m ]. If t5 y t', then T[t]fcT[t']f, therefore, by lemma 5.3.4, T[t']f∑ b[] (f)t', and t t [[t 1 ]<a 1 /x 1 >/y 1 , …,[t m ]<a m /x m >/y m ]ct'. Therefore there is a l-term t" t , such that t" t : b t t : by t, and t'=t" t [[u 1 ]<b 1 /z 1 >/y 1 ,…,[u m ]<b r /z r >/y r ]. Therefore, by theorem 4.1, T is an o.m.m. for t'. s (of theorem 5.3.1)

i if y=x j 1 j n. It is clear that t' ≤ ≤

cT', and

T∑ []'0 T'.

3) Use 1) and 2). s

  1 ,t 2 } have no o.m.m.. Indeed, if T is an o.m.m. for t 2 , then, by corollary 2.2.3, T =lnlf(f)u 2 where u 2 : by t 2 , therefore T is not an o.m.m. for t 1 . -The theorem 5.4.3 is no more true if we remove the hypothesis "D is finite". If we take D the set of all Pi 1, then D have no o.m.m.. Indeed, if T is an o.m.m. for D, let T' its ≥ head normal form. By proposition 2.2.1, T'=lx 1 …lx e (x i )t 1 …t n where e=1 or 2, and, by theorem 5.1.1, T' also is an o.m.m. for D. It is easy to prove that T' is not an o.m.m. for the l-term P. Let D={t 1 ,…,t n } be a finite set of b-normal l-terms. Gathering the l-terms having the same by-normal form, we can write D=where D i ={t,…,t}1 i m, ≤ ≤ for all 1 i m, and 1 j,j' m ≤ ≤ ≤ ≤ i , t by =t by , and for all 1 i,i' m, t ≤ ≤ by t ≠ by .

	Proof of theorem 5.4.3.

Lemma 5.4.4. Let t,t' be b-normal l-terms. If t: y t', then there is a b-normal l-term u, such that u5 y t, and u5 y t'.

  T is an o.m.m. for t, then T[t]f∑ b[] (f)t t [[t 1 ]<a 1 /x 1 >/y 1 ,…,[t m ]<a m /x m >/y m ], and t t : by t. There is a sequence of l[]-terms t 0 =T[t]f,t 1 ,…,t n =(f)t t [[t 1 ]<a 1 /x 1 >/y 1 ,…,[t m ]<a m /x m >/y m ], such that t i-1 ∑ b0 t i or t i- 1 ∑ []0 t i 1 i n. ≤ ≤ Let A T,t =Max{number of boxes directed by u and appearing in head position of t i 0 i n, u ≤ ≤ AST(t)}, and B T,t =b(t 0 ,t n ). Let h t : b t. By lemma 4.4, let h be a t-special application, such that h(t)=h t . By the proof of lemma 4.7, and by lemma 5.5.1, we have tps(Th t f)=b(t 0 ,t n )+ . By theorem 1-3, Tps(h t )=n h (u), and then tps(Th t f) A ≤ T,t Tps(h t )+B T,t . s Remark. By the proof of theorem 5.5.2, we have tps(Th t f)=A T,t Tps(h t )+B T,t if and only if, for all uAST(t), A T,t =the number of boxes directed by u and appearing in head position of t i 0 i n. ≤ ≤

[13] K. Nour.

Preuve syntaxique d'un théorème de J.L. Krivine sur les opérateurs de mise en mémoire.

CRAS Paris, t. 318, Série I, p. 201-204, 1994.

[14] D.S. Scott.

A systeme of functional abstraction.

Unpublished, 1963.