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Introduction

Mass transportation theory received much attention in the mathematical community in the last years. Starting from the initial setting by Monge where, given two mass densities ρ 0 and ρ 1 , a transport map T : R d → R d was searched among the admissible maps transporting ρ 0 onto ρ 1 in order to minimize the total transportation cost

R d |x -T (x)| dρ 0 (x) ,
several other equivalent formulations have been provided (see for instance [START_REF] Kantorovich | On the transfer of masses[END_REF], [START_REF] Evans | Differential equation methods for the Monge-Kantorovich mass transfer problem[END_REF], [START_REF] Bouchitté | Characterization of optimal shapes and masses through Monge-Kantorovich equation[END_REF]). In particular, the formulation given in [START_REF] Brenier | Extended Monge-Kantorovich theory[END_REF] is the one which motivated our study: the goal in [START_REF] Brenier | Extended Monge-Kantorovich theory[END_REF] was to introduce a "dynamic" formulation of the mass transportation problem providing a map ρ : [0, 1] → P(Ω) which describes the motion of ρ 0 onto ρ 1 as a function of a parameter t ∈ [0, 1],

where Ω is the space constraint that all the densities ρ(t, •) have to fulfill.

The set of applications of mass transportation theory is also very rich: many urban planning models have been studied, searching e.g. for the best design of public transportation networks (see [START_REF] Brancolini | Optimal networks for mass transportation problems[END_REF], [START_REF] Buttazzo | Optimal urban networks via mass transportation[END_REF]), for the optimal pricing policies of their use (see [START_REF] Buttazzo | Optimal pricing policies for public transportation networks[END_REF]), for the best distribution of residential and working areas in a city (see [START_REF] Buttazzo | A model for the optimal planning of an urban area[END_REF]). We also mention the strict link between mass transportation theory and shape optimization in elasticity, as was shown in [START_REF] Bouchitté | Seppecher: Shape optimization solutions via Monge-Kantorovich equation[END_REF], [START_REF] Bouchitté | Characterization of optimal shapes and masses through Monge-Kantorovich equation[END_REF].

The general framework we consider is the one of functionals defined on the space of measures acting on a time-space domain Q ⊂ R 1+d ; the minimization problem we are interested in is then written in the form min Ψ(σ) :

-divσ = f in Q, σ • ν = 0 on ∂Q (1.1)
where Ψ is an integral functional on the R 1+d -valued measures defined on Q. Writing σ = (ρ, E) the classical Monge case is then related to the cost function

Ψ(σ) = Q d|E| ,
while the case considered by Brenier in [START_REF] Brenier | Extended Monge-Kantorovich theory[END_REF] is represented by the cost function

Ψ(σ) = Q dE dρ 2 dρ .
As shown in [START_REF] Brenier | Extended Monge-Kantorovich theory[END_REF], [START_REF] Benamou | A computational fluid mechanics solution to the Monge-Kantorovich mass transfer problem[END_REF], [START_REF] Jimenez | Dynamic formulation of optimal transport problems. Dynamic formulation of optimal transport problems[END_REF] all these cases are related to the Wasserstein distances W p (ρ 0 , ρ 1 ), where each particle x in the source ρ 0 moves to its final point T (x) in the target ρ 1 following a line segment, or a geodesic line in case the space constraint Ω is not convex. However, in many problems where a high number of particles (or a probability density) is involved, other effects are present which may deviate the trajectories from straight lines: in particular we are interested in the congestion effects that occur when the density ρ(t, x) is high, slowing the ideal mass transportation and increasing the cost.

Modelling the congestion effects has been considered by several authors (see for instance [START_REF] Carlier | Optimal transportation with traffic congestion and Wardrop equilibria[END_REF], [START_REF] Maury | Un modèle de mouvements de foule[END_REF]); here we simply consider the Brenier formulation (1.1) assuming that the functional Ψ has a term which has a superlinear growth with respect to ρ.

In Sections 2 and 3 we discuss the general formulation (1.1) and its dual problem, with the primal-dual optimality conditions. In Section 4 we provide a numerical scheme to treat this kind of problems: the scheme is based on the one by Benamou and Brenier [START_REF] Benamou | A computational fluid mechanics solution to the Monge-Kantorovich mass transfer problem[END_REF], adapted to include the congestion terms. In the cases we present the domain Ω is always nonconvex, having some obstacles at its interior, and the mass moves from ρ 0 onto ρ 1 according to:

• the Wasserstein distance W 2 , so minimizing the cost Q dE dρ 2 dρ;
• the Wasserstein distance W 2 with the addition of the congestion term Q ρ 2 dt dx;

• the Wasserstein distance W 2 with the addition of the constraint {ρ ≤ M} which for instance occurs when a crowd of individuals moves and two different individuals cannot stay too close.

The general setting

In this section we consider an open bounded subset Q of R d+1 (d ≥ 1). We assume Q has a Lipschitz boundary and denote by ν(x) the outward pointing normal vector to x in the boundary ∂Q of Q, defined almost everywhere. Let M b (Q, R d+1 ) be the space of vectorial Borel measures supported on Q.

We also consider a functional Ψ on M b (Q, R d+1 ) and we assume Ψ is lower semicontinuous for the weak* convergence of measures.

Let f ∈ M(Q) be a Borel measure of zero total mass that is Q df = 0. We deal with the following optimization problem:

inf σ∈M b (Q,R d+1 ) Ψ(σ) (2.1)
with the constraint:

-div σ = f in Q σ • ν = 0 on ∂Q. (2.2)
The condition (2.2) is intended in the weak sense i.e. for every ϕ ∈ C 1 (Q):

Q Dϕ • dσ(x) = Q ϕ(y) df (y). (2.
3)

The following general existence result holds:

Theorem 2.1. Let Ψ : M b (Q, R d+1
) → [0, +∞] be lower semicontinuous for the weak* convergence and such that:

Ψ(σ) ≥ C|σ|(Q) - 1 C ∀σ ∈ M b (Q, R d+1 ) (2.4)
for a suitable constant C > 0, where |σ| denotes the total variation of σ. We assume that Ψ(σ 0 ) < +∞ for at least one measure σ 0 satisfying (2.2). Then the problem min Ψ(σ) : 

-div σ = f in Q, σ • ν = 0 on ∂Q (2.
Ψ(σ n k ) ≥ Ψ(σ)
which shows that σ is a solution of (2.5).

In case Ψ is convex, problem (2.5) also admits a dual formulation. Indeed, if A : C(Q) → C(Q, R d+1 ) denotes the operator given by: A(ϕ) = Dϕ for all ϕ in its domain C 1 (Q), we have the convex analysis formula for the dual formulation of (2.5) (see [START_REF] Bouchitté | Seppecher: Energies with respect to a measure and applications to low dimensional structures[END_REF]):

(Ψ * • A) * (f ) = min σ Ψ(σ) : -div σ = f in Q, σ • ν = 0 on ∂Q = sup Q ϕ(x) df (x) -Ψ * (Dϕ) : ϕ ∈ C 1 (Q) . (2.6)
This formula holds if Ψ * is continuous at least at a point of the image of A. For any set C, we denote by χ C the function which is 0 inside C and +∞ outside. The primal-dual optimality condition then reads as min Ψ(σ) + χ n

-divσ = f in Q σ • ν = 0 on ∂Q o = max ϕ df (x) -Ψ * (Dϕ)
which, if a solution ϕ opt of (2.6) exists, yields

Dϕ opt • dσ opt = Ψ(σ opt ) + Ψ * (Dϕ opt ) (2.7)
where σ opt is any solution of (2.5). The point is that, in general, the maximizers ϕ opt in (2.6) are not in C 1 (Q). As we will see in the next section, for a large class of cost functions Ψ, (2.6) can be relaxed so that the primal-dual optimality condition will be explicitly identified.

The Transportation model

In order to introduce a model for the description of the dynamics of a crowd in a given domain, it is convenient to particularize the framework above as follows:

Q = ]0, 1[×Ω where Ω is a bounded Lipschitz open subset of R d with outward normal vector denoted by ν Ω . The set Ω represents the domain the crowd is constrained to stay inside, including possible obstacles that cannot be crossed. The current variable in Q will be denoted by (t, x)

(t ∈]0, 1[, x ∈ Ω).
σ = (ρ, E) where ρ(t, x) represents the mass density at position x and time t and E is the flux at (t, x). In the usual mass transportation cases we have E ≪ ρ so that E = ρv being v(t, x) the velocity field at (t, x). We assume the constraint ρ ≥ 0 so that the set of admissible variables is:

D := {(ρ, E) : ρ ∈ M b (Q, R + ), E ∈ M b (Q, R d )}. f = δ 1 (t) ⊗ ρ 1 (x) -δ 0 (t) ⊗ ρ 0 (x)
where ρ 0 (x), ρ 1 (x) represent the crowd densities at t = 0 and t = 1 respectively, both prescribed as probabilities on Ω. Then equation (2.2) reads as:

   -∂ t ρ -div x E = 0 in Q ρ(0, x) = ρ 0 (x), ρ(1, x) = ρ 1 (x), E • ν Ω = 0 on ]0, 1[×∂Ω (3.1)
as it is easy to see using the weak formulation (2.3). Note that (3.1) is the continuity equation of our mass transportation model.

Our problem is then min{Ψ(ρ, E) : (ρ, E) verifies (3.1)} and we denote by W Ψ (ρ 0 , ρ 1 ) its minimal value. We may deduce from (3.1) that for a.e. t ∈]0, 1[, ρ(t, •) is a probability on Ω. Indeed, disintegrating the measure ρ on Q we obtain

ρ(t, x) = m(t) ⊗ ρ t (x)
where m is the marginal of ρ with respect to t and

ρ t (•) is a probability for m-a.e. t ∈ [0, 1]. Taking in (3.1) a test function α(t) ∈ C 1 c (Q) depending only on t we have 0 = Q α ′ (t) dρ(t, x) = 1 0 α ′ (t) dm(t)
which gives m = cdt for a suitable constant c. Using the conservation of the mass gives that c = 1.

We now discuss the choice of Ψ. We may take for Ψ any local lower semicontinuous function on M b (Q, R d+1 ). By the results that can be found in [START_REF] Bouchitté | New lower semicontinuity results for nonconvex functionals defined on measures[END_REF] and [START_REF] Bouchitté | Integral representation of nonconvex functionals defined on measures[END_REF], these functions can be represented in the following form:

Ψ(σ) = Q ψ dσ dm dm + Q\Aσ ψ ∞ dσ s d|σ s | d|σ s | + Aσ g(σ(x)) d♯(x)
where

• m is a positive non-atomic Borel measure on Q;

• dσ/dm is the Radon-Nikodym derivative of σ with respect to m;

• ψ : R d+1 → [0, +∞] is convex, lower semicontinuous and proper;

• ψ ∞ is the recession function ψ ∞ (z) := lim t→+∞ ψ(z 0 +tz) t
(the limit is independent of the choice of z 0 in the domain of ψ);

• A σ is the set of atoms of σ i.e. A σ := {x : σ(x) := σ({x}) = 0}; • g : R d+1 → [0, +∞] is a lower semicontinuous subadditive function such that g(0) = 0 and g 0 (z) := sup t>0 g(tz) t = ψ ∞ (z);
• ♯ is the counting measure.

In the sequel we assume the convexity of Ψ i.e. g is asked to be positively 1-homogeneous.

An interesting choice is the one of Benamou and Brenier (see [START_REF] Benamou | A computational fluid mechanics solution to the Monge-Kantorovich mass transfer problem[END_REF], [START_REF] Brenier | Extended Monge-Kantorovich theory[END_REF]):

ψ(r, e) =    |e| 2 r if (r, e) ∈]0, +∞[×R d , 0 if (r, e) = (0, 0), +∞ otherwise.
This is a positively 1-homogeneous function so ψ ∞ = ψ = g and Ψ does not depend on the choice of the measure m so that

Ψ(ρ, E) =    [0,1]×Ω ψ(dρ/dm, dE/dm) dm(t, x) if ρ ≥ 0 +∞ otherwise.
Note that since ψ(0, e) is infinite for any e = 0, it holds:

Ψ(ρ, E) < +∞ ⇒ E ≪ ρ (3.2)
so for any (ρ, E) in the domain of Ψ, we may write:

E(t, x) = v(t, x)ρ(t, x), with ρ(t, x) ∈ M b (Q, R + ) and v(t, x) ∈ L 1 ρ (Q, R d ).
The measure ρ(t, x) can be viewed as the quantity of mass in time and space whereas v(t, x) is the velocity of the mass transiting at x at time t. Moreover Ψ can be written in the simpler form:

Ψ(ρ, E) =    [0,1]×Ω |E| 2 ρ := [0,1]×Ω |v| 2 dρ(t, x) if ρ ≥ 0 and E = vρ, +∞ otherwise.
As shown in [START_REF] Brenier | Extended Monge-Kantorovich theory[END_REF], in this case we have:

W Ψ (ρ 0 , ρ 1 ) = (W 2 (ρ 0 , ρ 1 )) 2
where W 2 is the classical 2-Wasserstein distance (see for instance [START_REF] Villani | Topics in Optimal Transportation[END_REF]). Indeed, in the formula above, the Wasserstein distance is intended as:

(W 2 (ρ 0 , ρ 1 )) 2 = min Ω×Ω |x 1 -x 2 | 2 dγ(x 1 , x 2 ) : γ has marginals ρ 0 , ρ 1
when Ω is convex, while the Euclidean distance has to be replaced by the geodesic distance when Ω is not convex.

It has been proved in [START_REF] Jimenez | Dynamic formulation of optimal transport problems. Dynamic formulation of optimal transport problems[END_REF] that the same result can be reached with any p-Wasserstein distance (p > 1) by choosing the function:

ψ p (r, e) =    |e| p r p-1 if (r, e) ∈]0, +∞[×R d , 0 if (r, e) = (0, 0), +∞ otherwise. (3.3)
In the case p = 1 we simply take ψ(r, e) = |e|. As in the previous case (3.2) is satisfied, whenever p ≥ 1, together with

W Ψ (ρ 0 , ρ 1 ) = (W p (ρ 0 , ρ 1 )) p
where W p is the p-th Wasserstein distance:

(W p (ρ 0 , ρ 1 )) p = min Ω×Ω |x 1 -x 2 | p dγ(x 1 , x 2 ) : γ has marginals ρ 0 , ρ 1 .
An important remark is that, in this setting, a solution of problem (1.1) can be built using the idea that masses should move along straight lines when Ω is convex and along geodesic curves when Ω is not convex. More precisely, if we denote by γ ∈ M b (Ω 2 , R + ) an optimal transport plan for W p and by ξ x 1 ,x 2 a geodesic curve parametrized by t ∈ [0, 1] joining x 1 to x 2 for γ-almost every (x 1 , x 2 ), then, an optimal σ = (ρ, E) is given by:

ϕ dρ = Ω 2 1 0 ϕ(t, ξ x 1 ,x 2 (t)) dt dγ(x 1 , x 2 ) ∀ϕ ∈ C(Q) φ • dσ = Ω 2 1 0 φ(t, ξ x 1 ,x 2 (t)) • (1, ξx 1 ,x 2 (t)) dt dγ(x 1 , x 2 ) ∀φ ∈ C(Q) d+1 .
(3.4) Indeed, for this choice of σ, the decomposition E = vρ holds and we have:

Q |E| p ρ p-1 = Q |v| p dρ = Ω 2 1 0 | ξx,y (t)| p dt dγ(x, y) = (W p (ρ 0 , ρ 1 )) p .
Even if this is not the purpose of the paper, we notice that in general the condition f 0 ≪ dx does not imply in the case of p-Wasserstein distance (3.3) that the optimal σ is unique as the following example shows.

Example 3.1. Take Ω be the complement of a disc K, f 0 = dx S and f 1 = 1 2 δ A + 1 2 δ B as in figure 1; where S is a disc of area 1 and A, B are two points at the same geodesic distance form P . It is clear that all geodesics joining a point of S to either A or B must pass through P. We denote by Γ a line whose points are at the same distance from P , which separates S in two parts S + and S -with the same area. There are infinitely many transport plans γ between f 0 and f 1 ; in particular γ 1 which sends S -to A and S + to B, and γ 2 which does the opposite. Formula (3.4) provides σ 1 and σ 2 associated to γ 1 and γ 2 . Since every particle of S travels with constant speed and since they are at different distances form P , it is easy to see that the corresponding ρ 1 and ρ 2 cannot coincide. For instance there exists a time t such that the corresponding ρ 1 loads the geodesic from P to B but not the geodesic from P to A, while at the same time t, the density ρ 2 does the opposite. When Ω is convex, p > 1 and f 0 ≪ dx, there is only one optimal transport plan γ and the unique σ associated to γ by use of (3.4) is the only solution of problem (1.1). Let us give a quick scheme of a proof of this uniqueness. Take σ = (ρ, vρ) another solution. Using a result by Ambrosio, Gigli and Savaré (see [START_REF] Ambrosio | Gradient flows in metric spaces and in the space of probability measures[END_REF], Theorem 8.2.1.), we can write σ as a superposition of generalized curves. More precisely, it exists some probability measure Γ on the set of absolutely continuous curves G := W 1,1 ([0, 1], R N ) such that:

S + S -

ϕ dρ = G 1 0 ϕ(t, α(t)) dt dΓ(α) ∀ϕ ∈ C(Q) φ • dσ = G 1 0 φ(t, α(t)) • (1, α(t)) dt dΓ(α) ∀φ ∈ C(Q) N +1 v(t, α(t)) = α(t) a.e. t ∈ [0, 1].
The measure Γ is associated to a transport plan π by the following formula:

Ω 2 ϕ(x, y)dπ(x, y) := G ϕ(α(0), α(1))dΓ(α).
Now, it can easily be seen that the optimality of σ implies the optimality of π and that, Γ-almost everywhere, α([0, 1]) is the straight line [α(0), α(1)]. By uniqueness of the optimal transport plan we have π = γ which yields that σ and σ coincides. This does not remain true for p = 1. In this case the uniqueness of the optimal transport plan is not insured. Moreover, not all the solutions of problem (1.1) are of the type (3.4). Actually the following measure (teletransport) happens to be optimal too:

ρ(t, x) = (1 -t)ρ 0 + tρ 1 , Φ•dE = 1 0 Ω 2 [x 0 ,x 1 ] Φ(t, x)• x 1 -x 0 |x 1 -x 0 | dL 1 (x)dγ(x 0 , x 1 )dt, ∀Φ ∈ C(Ω) d+1 .
However, the choice of Benamou and Brenier does not take into account congestion effects which are crucial in problems of crowd dynamics. Indeed there is a wide choice (see also [START_REF] Dolbeault | A new class of transport distances between measures[END_REF]) for the cost function Ψ, the congestion effect being due to the superlinear terms. For instance the following are prototypical examples:

• ψ(r, e) = |e| p pr p-1 + kr 2 (k > 0) which gives the cost Ψ(ρ, E) = 1 0 Ω |E| p pρ p-1 + kρ 2 dt dx
intending that Ψ(ρ, E) = +∞ if ρ is not absolutely continuous with respect to dt ⊗ dx or ρ is not positive. In this case the high concentrations of ρ are penalized providing a lower congestion during the mass transportation from ρ 0 to ρ 1 . Note that, in this case, as ψ is strictly convex in r, the optimal ρ is unique without any other assumption. If, in addition, we have p > 1, then E is of the form E = vρ and, the functional being also strictly convex in v, we have the uniqueness of the optimal measure (E, ρ).

• ψ(r, e) = |e| p pr p-1 + χ {0≤r≤M } (r) which gives the cost:

Ψ(ρ, E) =    1 0 Ω |E| p pρ p-1 dt dx if 0 ≤ ρ ≤ M, +∞ otherwise,
In this case the density ρ is constrained to remain below M, which is for instance the case when the model takes into account that two different individuals of the crowd cannot get too close.

We now study the dual problem (2.6) for general functionals Ψ(σ) of the form above.

For the computation of Ψ * we use a result by Bouchitté and Valadier (Theorem 1 of [START_REF] Bouchitté | Integral representation of convex functionals on a space of measures[END_REF]) on the interchange between sup and integral; we get:

Ψ * (φ) =    Q ψ * (φ) dm if (ψ ∞ ) * (φ(t, x)) + g * (φ(t, x)) = 0 ∀(t, x) ∈ Q, +∞ otherwise,
for all φ ∈ C(Q, R d+1 ), so that (2.6) writes as:

sup ϕ∈C 1 (Q) ϕ df - Q ψ * (Dϕ) dm : (ψ ∞ ) * (Dϕ) + g * (Dϕ) = 0 . (3.5)
Note that, as g and Ψ ∞ are positively 1-homogeneous, the constraint of (3.5) can be reformulated saying that Dϕ(t, x) belongs to a convex set K:

K := {u ∈ R d+1 : u • z ≤ min(g(z), ψ ∞ (z)) ∀z ∈ R d+1 such that |z| = 1}.
As we have already said, Problem (3.5) has to be relaxed in order to make the primal-dual optimality condition meaningful.

To that aim, we need to choose an appropriate space for the dual variable ϕ and give a sense to the gradient Dϕ appearing in (3.5) and in (2.7) which will write as:

Dϕ opt • dσ opt = Q ψ dσ opt dm dm + Q\Aσ ψ ∞ σ s opt |σ s opt | d|σ s opt | + Aσ g(σ opt (x)) d♯(x) + Q ψ * (Dϕ opt )dm
with the constraint (ψ ∞ ) * (Dϕ opt ) + g * (Dϕ opt ) = 0.

(3.6) The space X of the dual variables ϕ and its topology must be chosen according to the properties of ψ. Then the idea will be to approach ϕ by a sequence of regular functions (ϕ n ) n tending to ϕ. The problem is that the vectorial function η obtained as the limit -in a weak sense -of the sequence (Dϕ n ) n is not unique in the sense that it depends on the choice of the sequence (ϕ n ) n . Uniqueness can be recovered by making locally the projection of Dψ n (t, x) on an appropriate tangent space to a measure µ at (t, x) (see [START_REF] Bouchitté | Seppecher: Energies with respect to a measure and applications to low dimensional structures[END_REF] and [START_REF] Bouchitté | Seppecher: Shape optimization solutions via Monge-Kantorovich equation[END_REF]) which has to be chosen in a proper way. In the following, we give some references for some particular cases.

• In [START_REF] Bouchitté | Seppecher: Energies with respect to a measure and applications to low dimensional structures[END_REF] a relaxation result is given in case ψ satisfies the following assumption for some p ∈]1, +∞[:

c 1 |(r, e)| p - 1 c 1 ≤ ψ(r, e) ≤ c 2 (|(r, e)| p + 1) ∀(r, e) ∈ R d+1
for suitable c 1 , c 2 > 0. Therefore for a fixed measure m ∈ M b (Q, R + ) the functionals Ψ and Ψ * are:

Ψ(σ) =    Q ψ dσ dm dm if σ ≪ m +∞ otherwise, Ψ * (φ) = Q ψ * (φ) dm,
where in the definition of Ψ, we have taken g ≡ +∞. The dual variable ϕ then belongs to the Sobolev space W 1,p ′ m (Q) with 1/p + 1/p ′ = 1 made with respect to the measure m (see [START_REF] Bouchitté | Seppecher: Energies with respect to a measure and applications to low dimensional structures[END_REF]). Following [START_REF] Bouchitté | Seppecher: Energies with respect to a measure and applications to low dimensional structures[END_REF] and [START_REF] Bouchitté | Seppecher: Shape optimization solutions via Monge-Kantorovich equation[END_REF], the gradient D m ϕ(t, x) has to be intended as an element of the tangent space T p ′ m (t, x) for m-almost every (t, x). Then, as shown in [START_REF] Bouchitté | Seppecher: Energies with respect to a measure and applications to low dimensional structures[END_REF], the relaxed dual problem can be expressed as:

sup ϕ∈W 1,p ′ m (Q) ϕdf - Q ψ * m (D m ϕ) dm
where ψ * m (r, e) = inf{ψ * (r, e + η) : η ∈ (T p ′ m (r, e)) ⊥ }. Finally the primal-dual optimality condition reads as:

   D m ϕ opt • dσ opt = Q ψ dσ opt dm dm + Q ψ * m (D m ϕ opt )dm σ opt ≪ m.
• In case ψ(r, e) = |e| p pr p-1 with p ≥ 1 (see [START_REF] Jimenez | Dynamic formulation of optimal transport problems. Dynamic formulation of optimal transport problems[END_REF]), the functional Ψ * becomes:

Ψ * (φ) = 0 if φ 1 + |(φ 2 ,...φ d+1 )| p ′ p ′ ≤ 0 a.e. +∞ otherwise
where p ′ is such that 1/p + 1/p ′ = 1. For p = 1,

|(φ 2 ,...φ d+1 )| p ′ p ′
has to be intended as χ {|(φ 2 ,...φ d+1 )|≤1} . The dual variable then is Lipschitz continuous and the relaxed dual problem becomes:

sup ϕ Lipschitz ϕ df : ∂ t ϕ(t, x) + |∇ x ϕ(t, x)| p ′ p ′ ≤ 0 a.e. (t, x) .
In case p > 1, the primal-dual optimality condition can be written as:

     D ρopt ϕ opt • (1, v opt (t, x))dρ opt = Q |v opt (t, x)| p p dρ opt (t, x), ∂ t ϕ opt (t, x) + |∇xϕopt(t,x)| p ′ p ′ ≤ 0 a.e. (t, x), (3.7) 
where the gradient

D ρopt ϕ(t, x) = (∂ (ρopt,t) ϕ(t, x), ∇ (ρopt,x) ϕ(t, x)
) is an element of the tangent space T ∞ ρopt (t, x) for ρ opt -almost every (t, x). As it can be seen in [START_REF] Jimenez | Dynamic formulation of optimal transport problems. Dynamic formulation of optimal transport problems[END_REF], we have

D ρopt ϕ opt (t, x) -Dϕ opt (t, x) ∈ T ⊥ ρopt (t, x) ρ opt -a.e.
and thanks to (3.1):

(1, v opt (t, x)) ∈ T ρopt (t, x) ρ opt -a.e.
so that the inequality (3.7) gives:

D ρopt ϕ opt • (1, v opt ) = Dϕ opt • (1, v opt ) ≤ - |∇ (ρopt,x) ϕ opt | p ′ p ′ + v opt (t, x) • ∇ (ρopt,x) ϕ opt ≤ sup ω∈R d v opt (t, x) • ω - |ω| p ′ p ′ = |v opt | p p .
Then, the equality in (3.7) gives that all the previous inequalities happen to be equalities that is to say

∂ (ρopt,t) ϕ opt = - |∇ (ρopt,x) ϕ opt | p ′ p ′ , ∇ (ρopt,x) ϕ opt (x, t) ∈ argmax ω → v opt (t, x) • ω - |ω| p ′ p ′ . (3.8) 
By making an easy computation, we get:

∇ (ρopt,x) ϕ opt = |v opt | p-2 v opt , ∂ (ρopt,t) ϕ opt = -|v opt | p p ′ .
(3.9)

If p = 1, we make the computation in the similar way by writing (ρ opt , E opt ) as

(ρ opt (t, x), E opt (t, x)) = (h opt (t, x), v opt (t, x))dµ opt where µ opt ∈ M b (Q, R + ) and (h opt , v opt ) ∈ L 1 µopt (Q) × L 1 µopt (Q, R d ).
Then the primal-dual optimality condition writes as: 

   D µopt ϕ opt • (h opt (t, x), v opt (t, x))dµ opt = Q |v opt (t,

Numerical computation

We describe in the present section an algorithm to approximate problem (1.1). This method is directly adapted from the augmented Lagrangian method presented in [START_REF] Benamou | A computational fluid mechanics solution to the Monge-Kantorovich mass transfer problem[END_REF]. For the reader convenience, we recall below in our formalism the main steps of this algorithm. First, solving problem (1.1) is equivalent to solve the saddle point problem: min

σ max ϕ∈C(Q) L(σ, ϕ) (4.1) 
where L(σ, ϕ) is the Lagrangian defined by:

L(σ, ϕ) = Ψ(σ) -Dϕ • dσ + ϕ df.
Following [START_REF] Benamou | A computational fluid mechanics solution to the Monge-Kantorovich mass transfer problem[END_REF], for all r > 0, we introduce the augmented Lagrangian

L r (σ, σ * , ϕ) := Ψ * (σ * ) + (Dϕ -σ * ) • dσ -ϕ df + r 2 |Dϕ -σ * | 2 dy.
Using the identity Ψ * (σ * ) + Ψ(σ) = σ * • dσ it can easily be established that the saddle point problem (4.1) is equivalent to the new problem:

max σ min σ * ,ϕ L r (σ, σ * , ϕ). (4.2)
As reported in [START_REF] Benamou | A computational fluid mechanics solution to the Monge-Kantorovich mass transfer problem[END_REF], the simple algorithm ALG2 (see [START_REF] Fortin | Augmented Lagrangian Methods[END_REF]), which is a classical relaxation of Uzawa's method, can be used to approximate problem (4.2). Let us recall with our notation this iterative process:

• let (σ n , σ * n-1 , ϕ n-1 ) be given;

• Step A: find ϕ n such that:

L r (σ n , σ * n-1 , ϕ n ) ≤ L r (σ n , σ * n-1 , ϕ), ∀ϕ ∈ C 1 (Q);
• Step B: find σ * n such that:

L r (σ n , σ * n , ϕ n ) ≤ L r (σ n , σ * , ϕ n ), ∀σ * ∈ C(Q, R d+1 ); • Step C: set σ n+1 = σ n + r(Dϕ n -σ * n );
• go back to Step A.

Note that the variables (ν, q) in [START_REF] Benamou | A computational fluid mechanics solution to the Monge-Kantorovich mass transfer problem[END_REF] are renamed (σ, σ * ) in the previous description of the algorithm. Let us now underline the two main differences of our approach. First, Step A consists in solving the Euler-Lagrange equation:

Dϕ • dσ n -ϕ df + r Dϕ(-σ * n-1 + Dϕ n ) dy = 0, ∀ϕ ∈ C 1 (Q).
This variational formulation is nothing else than the weak form of the partial differential equation:

   -r∆ϕ n = div(σ n -rσ * n-1 ) + f in Q r ∂ϕn ∂n = (σ n -rσ * ) • ν on ∂Q.
The resolution of the previous PDE has been achieved with the very efficient software freeFEM3D (see [START_REF]freeFEM3D[END_REF] and [START_REF] Del Pino | Pironneau: A Fictitious domain based general PDE solver[END_REF]) provided by S. Del Pino and O. Pironneau. As in [START_REF] Benamou | A computational fluid mechanics solution to the Monge-Kantorovich mass transfer problem[END_REF], for computational stability, we perturbed the previous Laplace equation in:

-r∆ϕ n + rεϕ n = div(σ n -rσ * n-1 ) + f with ε = 10 -4 .
Second, since in our general framework, Ψ * is not always a characteristic function, step B consists in minimizing the following quantity with respect to σ * : Ψ

* (σ * ) + (Dϕ n -σ * ) • dσ n + r 2 |Dϕ n -σ * | 2 dy.
In all the test cases presented below, it has been possible to solve this problem analytically. Indeed, this pointwise optimization problem reduces to the numerical computation of the roots of a polynomial with real coefficients.

Example 4.1. We consider here a transportation domain Ω = [-1, 1] 2 in which there are spatial obstacles that the mass cannot cross. This is for instance the case of a subway gate that a mass of individuals has to cross to reach a final destination. In this first example, the transportation is described simply by the Wasserstein distance W 2 whichturns out, setting σ = (ρ, E), to consider the convex function

Ψ(σ) = Q |E| 2 2ρ
in the sense precised in Section 3. The Fenchel transform Ψ * can be easily computed and we have:

Ψ * (Φ) = 0 if Φ 1 + |(Φ 2 ,Φ 3 )| 2 2
≤ 0 a.e. +∞ otherwise.

Notice that, since Ψ is homogeneous of degree 1, the function Ψ * is the indicator of a convex set. Here below, we plot the mass density ρ t at various instants of time. The initial configuration ρ 0 is taken as a Gaussian distribution centered at the point (-0.65, 0) and the final measure ρ 1 is taken as ρ 1 (x 1 , x 2 ) = ρ 0 (x 1 -1.3, x 2 ). Notice that without the obstacle gate, the mass density ρ(t, •) would simply be the translation ρ(t, x 1 , x 2 ) = ρ 0 (x 1 -1.3t, x 2 ). In general, in presence of obstacles, the mass density ρ will follow the geodesic paths and by consequence the supports of all ρ(t, •) have to be contained in the geodesic envelope of ρ 0 and ρ 1 ; this is why most of the mass passes through the central gate. Our computation done on a regular grid of 70×70×70 (from which cells corresponding to the obstacles have been removed) and presented in Figure 2 is in agreement with that observation. Convergence with respect to the criterium proposed in [START_REF] Benamou | A computational fluid mechanics solution to the Monge-Kantorovich mass transfer problem[END_REF] has been achieved in 150 iterations.

Example 4.2. We consider the same geometrical configuration as in the previous example. In this case, we add a diffusion term in order to penalize mass congestion which is described in our case by high values of ρ. The function Ψ we consider is:

1 0 Ω |E| 2 2ρ
+ cρ 2 dt dx with c = 0.1. The Fenchel transform is given by:

Ψ * (Φ) = 1 2c Q Φ 1 + |(Φ 2 , Φ 3 )| 2 2 + 2
(y) dy.

Notice that, due to the addition of the diffusion term, the dual function Ψ * is now finite everywhere. This fact could explain the improvement in the convergence of the iteration scheme: in that example, convergence is reached in only 50 iterations.

As expected (see Figure 3), the mass crosses the obstacle by using several gates.

Example 4.3. In our last example we consider again the same geometrical configuration and a new term which takes congestion into account. More precisely, we consider the cost functional

1 0 Ω |E| 2 2ρ + χ ρ≤1 .
The Fenchel transform is given by:

Ψ * (Φ) = Q Φ 1 + |(Φ 2 , Φ 3 )| 2 2 + (y) dy.
At a first glance (see Figure 4 where level lines are plotted), the result seems to be very similar to our first situation where the congestion effect was not considered. Again, most of the mass passes through the central gate, but contrary to the first case the density in the front gate is spread all over the channel and not only near the boundaries of the obstacles. 

Figure 1 :

 1 Figure 1: An example of non-uniqueness.

Figure 2 :

 2 Figure 2: Plot of ρ(t, •) for 9 values of t.

  x)| dµ opt (t, x), ∂ t ϕ opt (t, x) ≤ 0 and |∇ x ϕ opt (t, x)| ≤ 1 a.e. (t, x),

					(3.10)
	which leads to:	∇ (ρopt,x) ϕ opt =	v opt |v opt |	,	(3.11)
		∂ (ρopt,t) ϕ opt = 0.		
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