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Abstract

We consider the minimization problem

min
Ω∈X

(Λ2 − Λ∞) (Ω),

where Λ2(Ω) and Λ∞(Ω) are the (square root of the) first eigenvalue of the Laplacian
and the first eigenvalue of the ∞−Laplacian respectively. X is the class of convex
domains with prescribed diameter. We prove existence of a solution, and we provide
several geometrical properties of minimizers.

1 Introduction

Let G be a shape functional which is monotone decreasing with respect to the set inclusion.
Consider the minimization problem

inf{G(Ω) : Ω convex, d(Ω) = c}(1.1)

where d(Ω) stands for the diameter of the set Ω. Suppose that this problem is well posed.
In this case, a direct consequence of the geometrical characterization of constant width
sets provided in [LRO] in Theorem 3.4 and the monotonicity of G is the fact that any
optimal shape of (1.1) is of constant width.

When the set functional is not monotone, the picture may be completely different.
One very illuminating example is the famous shape optimization problem

inf{(µ2 − λ2)(Ω) : Ω convex, d(Ω) = c}(1.2)

where λ2 and µ2 are respectively the first and the second eigenvalue of the Laplacian oper-
ator ∆ with zero Dirichlet data on the boundary. Even in this basic situation the existence
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of a minimizer for problem (1.2) is not known. Actually, problem (1.2) is suspected to be
ill-posed and the sequence of rectangles

Ωε = (0,
√

c2 − ε2) × (0, ε)

may be one of the minimizing sequences of this problem (see [He] for more details on
extremum problems related to the eigenvalues of the Laplacian).

Recently a lot of attention has been devoted to the infinity-Laplacian operator ∆∞
which may be defined as the limit when p → ∞ of the p−Laplacian operator ∆p (see [A],
[ACJ] and references therein). In opposition to the classical Laplacian, very few is known
on the eigenvalues of the p−Laplacian and the ∞−Laplacian operators [L3, JLM1, BW,
Yu].

In this paper we study the spectral gap in between ∆ and ∆∞. More precisely we
study the extremal problem

inf{(Λ2 − Λ∞)(Ω) : Ω convex, d(Ω) = c}(1.3)

where Λ2 =
√

λ2, and Λ∞ is the first eigenvalue of ∆∞ with zero Dirichlet boundary
conditions (see section 2 for the definition of the eigenvalue for the nonlinear operator
∆∞). The choice of the admissible class is dictated by several necessary conditions to
have existence: see section 3.

Let us mention that the link between the first eigenvalue of the Laplacian and the inra-
dius R∞ (recall the geometrical characterization of Λ∞ : Λ∞(Ω) = 1/R∞(Ω), see section
2) has been previously studied by several authors. As an example, let us reformulate an
interesting problem originally settled by Polya (see [Her, Pr]) :

min

{
Λ2(Ω)

Λ∞(Ω)
| Ω ∈ X

}

where X is a suitable class of convex bounded domains. Hersch [Her] showed that the
infimum ot the functional Λ2/Λ∞ is greater or equal than π/2, when Ω varies among plane
convex domains. Protter [Pr] extended the Hersch’s result to bounded convex domains in
IRn.

The plan of the paper is as follows: in section 2 we recall some definitions and known
result about Λ2 and Λ∞; in section 3 we prove the existence of a minimum for the functional
F in the admissible class of convex set with prescribed diameter; in section 4 we obtain
several geometrical properties of minimizers; in section 5 we deduce some analytical first
order necessary conditions.

2 Some facts about the infinity-Laplacian operator

Let Ω be an open bounded domain in IRN . The first eigenvalue λp(Ω) of the nonlinear
operator ∆pu = div

(|∇u|p−2∇u
)
, the p−Laplacian, is defined in the following way [L3]

λp(Ω) := min
{
‖∇u‖p

p : u ∈ W 1,p
0 (Ω), ‖u‖p = 1

}
(2.1)

for every 1 < p < ∞. When p = 2, (2.1) reduces to the first eigenvalue λ2(Ω) of the
Laplacian operator. We set, for every 1 < p < ∞,

Λp := (λp)
1/p .(2.2)
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Let us observe that Λp(µΩ) = Λp(Ω)/µ holds for every µ > 0. It has been shown in
[JLM1, BW] that

Λp → Λ∞, p → ∞
where

Λ∞(Ω) := min
{
‖∇u‖∞ : u ∈ W 1,∞

0 (Ω), ‖u‖∞ = 1
}

.(2.3)

The number Λ∞ introduced in (2.3) is called (see [L3]) the first eigenvalue of the operator

∆∞u =< D2u · ∇u, ∇u >

where D2u is the Hessian of u.The operator ∆∞ is the so-called ∞−Laplacian: see [ACJ]
and the references therein. The differential equation satisfied by a first eigenfunction of
∆∞ is {

max{Λ∞u(x) − |Du(x)|, ∆∞u(x)} = 0 x ∈ Ω
u = 0 x ∈ ∂Ω.

(2.4)

Equation (2.4), which have to be intended in the sense of viscosity solutions (see [CIL]),
is obtained in [JLM1] as the limit for p → ∞ of the p−eigenvalue equations

−∆pu = λp|u|p−2u, x ∈ Ω.(2.5)

Remark that equation (2.4) can also be obtained as the Euler-Lagrange equation of (2.3):
see [BW]. Uniqueness for the solution of (2.4) is known only for some particular do-
mains: see [BW, Yu]. A quite remarkable property of the first egenvalue Λ∞ of ∆∞ is its
geometrical caracterization (see [JLM1, L3]):

1

Λ∞(Ω)
= max {R : B(x0, R) ⊆ Ω} .(2.6)

3 An existence result

In this section we will consider the minimization problem

min
X

F(Ω)(3.1)

where F(Ω) := Λ2(Ω)−Λ∞(Ω) and X stands for some class of admissible domains Ω ⊆ IR2.
In the following, we use the fact that our functional is homogeneous of order −1,

namely

F(λΩ) =
1

λ
F(Ω), ∀λ > 0.(3.2)

As a preliminary question let us look at the sign of the functional (3.1). It holds the
following result

Theorem 3.1 (see [Pr]) Let Ω be a plane convex domain. Then

λ2(Ω) ≥ π2

4R2
∞(Ω)

,(3.3)

where λ2 is the first eigenvalue of the Laplacian and R∞ is the radius of the maximal
inscribed ball in Ω.
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Theorem 3.1 implies that, for every convex domain Ω,

Λ2(Ω) − Λ∞(Ω) > Λ2(Ω) − π

2
Λ∞(Ω) ≥ 0,(3.4)

which implies that our functional F , restricted to this class of domains, is positive.

Corollary 3.2 Let C =
{
Ω ⊆ IR2 : Ω convex and bounded

}
. Then,

inf
Ω∈C

(Λ2 − Λ∞)(Ω) = 0.

Proof: Theorem 3.1 tells us that (Λ2 − Λ∞)(Ω) > 0 for every convex set Ω. By the
homogeneity of degree −1 we have

(Λ2 − Λ∞)(tΩ) =
1

t
(Λ2 − Λ∞)(Ω) → 0, t → ∞.

⊓⊔
Now, let us go back to the well-posedness of the problem (3.1). Taking into account

Corollary 3.2, some additional constraints must be imposed to the admissible class X
in order to have existence of a minimizer of problem (3.1). First we must exclude the
rescaling which provides the ill-posedness of Corollary 3.2. Additionally, the number of
holes of the admissible sets must be bounded from above. This kind of hypothesis is also
necessary: removing a point doesn’t change Λ2 (points have capacity 0 in IRN for N > 1),
but this operation would reduce dramatically the radius 1/Λ∞ of the largest inscribed
ball.
In the following we consider the class of convex domain with fixed diameter, namely

Xd =
{
Ω ⊆ IR2 : Ω convex, d(Ω) = 1

}
,(3.5)

where d(Ω) stands for the diameter of Ω, i.e. d(Ω) = sup
x,y∈Ω

d(x, y). This class obviously

satisfies the above requirements.
Notice that the constraint on the diameter may be relaxed to d(Ω) ≤ 1. By the

homogeneity of F , if d(Ω) < 1 we have

F
(

1

d(Ω)
Ω

)
= d(Ω)F(Ω) < F(Ω).

For this class of admissible sets, we have the following existence result.

Theorem 3.3 The minimum problem

min
Ω∈Xd

F(Ω)(3.6)

admits a solution.

Proof: Let (Ωn) be a minimizing sequence, i.e. F(Ωn) → infXd
F(Ω). We can assume

that the sequence (Ωn) converges with respect to the Hausdorff complementary topology
[HePi, BuBu]. Indeed, since the diameter is bounded, we can suppose that the sets (Ωn) are
all contained in a fixed compact set (the functional is translation invariant) which provides
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the existence of a convergent sub-sequence. Let Ω∗ be the limit set. It is straightforward
to establish that Ω∗ is convex with diameter less or equal to 1.

We claim that |Ω∗| 6= 0 (where | · | stands for the Lebesgue measure in IR2). Suppose
by contradiction that there exists a sub-sequence (still indexed by n) (Ωn) such that the
radius (ǫn) of the maximal inscribed balls Bǫn converges to 0.

From [ScAw], for all convex set Ω ⊂ IR2, we have the following inequality:
√

3(w − 2r)d ≤ 2wr

where d is the diameter of Ω, r its inradius, and w stands for its minimal width. In our
situation, we get

wn ≤ 2
√

3√
3 − 2εn

εn.

Then, we can enclose the whole set Ωn in a rectangle Rn of length’s sides respectively

equal to 1 and γn := 2
√

3√
3−2εn

εn, so d(Rn) =
√

1 + γ2
n. By the previous inequality, we have

F(Ωn) = Λ2(Ωn) − Λ∞(Bǫn)

≥ Λ2(Rn) − 1

ǫn

≥
[
πǫn

√
1 +

1

γ2
n

− 1

]
1

ǫn

= an

(3.7)

where an → +∞. The previous computations shows that |Ω∗| 6= 0. The continuity of F
with respect to the Hausdorff complementary convergence ends the proof. ⊓⊔

4 Geometrical properties of optimal domains

In this section we prove some geometrical properties of the minimizers of problem (3.6).
We will make use of the following definition:

Definition 4.1 Let Ω be a subset of IR2. A point x ∈ Ω is called diametrical if there
exists y ∈ Ω such that d(Ω) = d(x, y).

Let us give whitout proof the following proposition.

Proposition 4.2 Let Ω be a convex set with d(Ω) = 1 and let x be a diametrical point.
Then there exists y ∈ ∂Ω such that ‖x − y‖ = 1 and

ν(x) = −ν(y) =
y − x

‖y − x‖ ,(4.1)

with ν(x) in the normal cone of x and ν(y) in the normal cone of y.

In the next theorem we establish that non diametrical points on the boundary of an
optimal set are always inside flat parts.

Theorem 4.3 Let P ∈ ∂Ω∗ be a non diametrical point. Then there exists a non empty
segment S ⊂ ∂Ω∗ containing P .

Proof: In the following B∞ denotes a ball contained in Ω∗ having maximal radius (notice
that such a ball is not necessarily unique). We consider the two following cases:
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1) P ∈ ∂Ω∗ and P is not on the boundary of a ball of maximal radius,

2) It exists a ball B∞ of maximal radius such that P ∈ ∂Ω∗ ∩ ∂B∞.

In case 1), suppose by contradiction that the non diametrical point P does not belong to
a segment of ∂Ω∗. Let ε > 0 and consider a point Q ∈ B(P, ε) \Ω∗. We define the convex
envelope Ω̂∗ := co (Ω∗ ∪ Q). If ε is small enough, we have that Ω̂∗ satisfies the following
properties:

• Ω̂∗ is convex,

• by continuity of the distance function, Ω̂∗ has diameter less or equal to 1,

• Λ∞(Ω∗) = Λ∞(Ω̂∗) since the radius of maximal inscribed balls does not change,

• Λ2(Ω
∗) > Λ2(Ω̂∗), since Ω∗ ⊂ Ω̂∗.

It follows the contradiction F(Ω∗) > F(Ω̂∗) and then the thesis.
In case 2), the strategy is similar. Still by contradiction, suppose P belongs in the

interior of a non-flat portion of ∂Ω∗. Consider the tangent line to ∂Ω∗ in P (which exists
because in this point ∂Ω∗ is internally tangent to B∞). Then fix two neighboring points
Q0, Q1 6= P on this tangent line such that P ∈ (Q0, Q1). As done in case 1), we construct
Ω̃∗ = co(Ω∗ ∪ Q0 ∪ Q1). With a proper choice of Q0, Q1 we have that the new set Ω̃∗ is
convex, has diameter less or equal than 1 and Ω∗ ⊂ Ω̃∗. Let us show that the inradius r
is not changed. Again, we have two situations: first if Ω∗ is contained in the strip defined
by the line through (Q0, Q1) and its parallel at distance 2r, then Ω̃∗ is still contained in
the same strip and by construction has the same inradius. Second, if it exists a triangle
T containing Ω∗ whose sides are tangent to B∞, then Ω̃∗ ⊂ T and the inradius is again
unchanged. ⊓⊔

If the boundary of Ω∗ does not contain flat part, the previous theorem would implies
that all the points on ∂Ω∗ are diametrical. As a consequence, Ω∗ would be of constant
width (see [LRO]). Theorem 4.6 will show that the boundary of every minimizer must
contain at least 2 flat parts.

The statement of the previous theorem can be reversed in the following way:

Theorem 4.4 Let P ∈ ∂Ω∗. Suppose P is contained in the interior of a flat neighborhood
of ∂Ω∗ , then P is non diametrical.

Proof: It is a direct consequence of Pythagora’s theorem: suppose by contradiction that
the diametrical point P belongs to the interior of a segment I = co(A∪B) ⊂ ∂Ω∗. Let P ∈
∂Ω∗ be such that ‖P−P‖ = 1. It is straightforward to prove that max(|A−P |, |B−P |) > 1
which contradicts Ω∗ ∈ Xd. ⊓⊔

We are now able to give some additional informations related to the boundary of an
optimal convex set.

Theorem 4.5 Let P ∈ ∂Ω∗. Then one and only one of the following eventualities holds:

a) P is not a diametrical point and belongs to the interior of a segment of ∂Ω∗,

b) P is diametrical and is not in interior of a segment of ∂Ω∗,

c) P is located on the extremities of two different segments of ∂Ω∗.
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Proof: It is an immediate consequence of theorem 4.3 that points which are not in the
interior of a segment of ∂Ω∗ are all diametrical points. Additionally, theorem 4.4 shows
that points located in the interior of a segment ∂Ω∗ are all non diametrical. We still have
to establish what may happen to a point P which is a vertex of a segment of ∂Ω∗. If we
are not in the situation c), it exists a connected part of ∂Ω∗ which is not a segment which
contains P . Since all the points of that part are diametrical, by continuity of the distance
function, P is also a diametrical point. Thus P is in the situation b). ⊓⊔

Now we state and prove one of the main step in the description of ∂Ω∗.

Theorem 4.6 Suppose P0 ∈ ∂Ω∗ ∩ ∂B∞. Then, there exists a neighborhood UP0
of P0

such that ∂Ω∗ ∩ UP0
is a segment.

Remarks 4.7 At a first guess, a ”cutted Reuleaux triangle” (see figure 1) seems to be a
natural candidate for optimality. We will see later, as a consequence of Lemma 4.13, that
this is not true.

Figure 1: A cutted Reuleaux triangle

Proof: (of Theorem 4.6 ) Suppose that the thesis is not true, then in a neighborhood of
the point P0 = (x0, y0) ∈ ∂Ω∗∩∂B∞ the boundary of the minimizer ∂Ω∗ is not a segment.
As a consequence of theorem 4.3, P0 is a diametrical point. Our claim is the following:
there exists a domain variation in the direction of the normal to the boundary in (x0, y0)
that decreases F(Ω∗). This would contradict the minimality of Ω∗.

Let us construct such a domain variation. First we study the functional derivative
with respect to the boundary variation of a special family of vector fields (Vǫ). Then we
will establish that among this family, it exists at least one vector field which decreases the
cost function.

Fix the origin in the center of B∞, and suppose the y−axis directed as −ν(x0, y0) (the
same direction of the normal, but with reversed sign). For all ǫ > 0 consider the vector
field

Vǫ(x, y) := (0, y0 + ǫ − y), (x, y) ∈ IR2

and for every t > 0, the set
Ωǫ

t := Ω∗ + tVǫ(Ω
∗).

For ǫ small enough, it exists a compactly supported vector field equal to Vǫ in a
neighborhood of P0 such that Ωǫ

t is still convex for t small. We still denote by Vǫ such a
vector field. A direct computation gives the following estimate

|d(Ω∗) − d(Ωǫ
t)| ≤ ktǫ
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for some constant k > 0 independant of t and ǫ. This implies the asymptotic development
of Λ∞

Λ∞(Ωǫ
t) = Λ∞(Ω∗) + ctǫ + o(t).(4.2)

for some constant c > 0 also independant of t and ǫ. Following [He] pp.38, we have to
compute the first derivative of the first eigenvalue of the laplacian λ2(Ω

∗) with respect to
the domain variation induced by Vǫ:

(
d

dt
λ2(Ω

ǫ
t)

)

t=0
= −

∫

∂Ω∗

|∇u2|2Vǫ · ν dσ,(4.3)

where u2 is the first eigenfunction of the laplacian. We have that
∣∣∣∣
∫

∂Ω∗

|∇u2|2Vǫ · ν dσ

∣∣∣∣ ≤ Cǫf(ǫ),(4.4)

where C is a constant independent of ε and f(ǫ) is the length of the part of the boundary
changed by Vǫ, that is (Ω∗\Ωǫ) ∩ ∂Ω∗.

A crucial point is that f(ǫ) → 0 as ǫ → 0. This is a direct consequence of the following
facts:

- P0 is a diametrical point;

- the following inclusion holds (we set D := (x0, y0) − ν(x0, y0))

(Ω∗\Ωǫ) ∩ ∂Ω∗ ⊂ (B(D, 1) \ B∞) .

Then, the following asymptotic development follows:

Λ2 (Ωǫ
t) = Λ2(Ω

∗) +
[

1
2 (λ2(Ω

∗))−1/2
(

d
dtλ2(Ω

ǫ
t)
)

t=0

]
t + o(t)

≤ Λ2(Ω
∗) + C ′ǫf(ǫ)t + o(t).

(4.5)

for some constant C ′ independent of t and ǫ. Collecting the development (4.2) and (4.5),
we can choose ǫ small enough and then t small such that

F(Ωǫ
t) = Λ2(Ω

ǫ
t) − Λ∞(Ωǫ

t)
≤ Λ2(Ω

∗) + C ′ǫf(ǫ)t − Λ∞(Ω∗) − ctǫ + o(t)
= F(Ω∗) + ǫ(C ′f(ǫ) − c)t + o(t)
< F(Ω∗)

(4.6)

for a suitable choice of t, that is our claim, and so the thesis follows. ⊓⊔
A maximal inscribed ball B∞ has at least 2 points of contact with ∂Ω∗. The following

theorem proves that the number of contact points must be at most 3.

Theorem 4.8 A ball of maximal radius B∞ has at most 3 distinct points of contact with
∂Ω∗.

Proof: Theorem 4.6 implies that ∂Ω∗ is flat around every contact point with B∞. Suppose
there exists just one maximal inscribed ball B∞ (if not, the number of contact points is
obviously 2) with more than 3 points of contact. Consider 4 distinct points of contact.
Among those 4 points, we select 3 of them such that their convex envelope contains the
center of B∞. The segment (AB) of the boundary of ∂Ω∗ containing the fourth point x
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is made of non diametrical points (with possibly the exception of A and B). Then there
exists a point ω in the exterior of Ω∗ - sufficiently close to (AB) - such that ‖ω − x‖ ≤ 1
for every x ∈ Ω∗. Set Ω̂∗ = co(ω ∪ Ω∗). This set is still admissible because it is convex
and has diameter less or equal than 1.

By construction Ω∗ ⊂ Ω̂∗ and the maximal inscribed ball B∞ is unchanged. We
have Λ∞(Ω∗) = Λ∞(Ω̂∗) and Λ2(Ω

∗) > Λ2(Ω̂∗). The above inequalities implies that
F(Ω∗) > F(Ω̂∗), a contradiction. ⊓⊔

Theorem 4.9 Let Ω∗ be a minimizer. Suppose that A and B are the extrema of a segment
(AB) ⊂ ∂Ω∗, then A and B must be singular points.

Proof: We prove the result for one extremal point A. We have three cases.

• A is non diametrical: by c) of Theorem 4.5, this point must be vertex of two segment.
Then A is singular.

• A is diametrical and vertex of two non-parallel segment, then we conclude as before.

• A is diametrical and is an extremum of a non-flat region S of Ω. The tangent to S
in A must not contains (AB): if not, let y ∈ ∂Ω∗ be such that d(A, y) = 1. There
exists x ∈ (AB) such that d(x, y) > 1 (because (A − y) · (A − B) = 0), which is
clearly a contradiction. This implies that ∂Ω∗ is not differentiable in A, and this
concludes the proof.

⊓⊔

Theorem 4.10 Let Ω∗ be a minimizer. Then the boundary of Ω∗, contains at most 3 flat
parts.

Proof: As a direct consequence of Theorems 4.6 and 4.8, given a ball of maximal radius
B∞ there exists at most 3 flat parts of the boundary touching it. The result will be proved
if we show that every flat part of the boundary must be tangent to B∞.
Suppose by contradiction that there exists a segment (A,B) ⊂ ∂Ω∗ such that (A,B) ∩
∂B∞ = ∅. Theorem 4.9 implies that A and B are both singular points. Also, by Theorem
4.4, there are not diametrical points in the interior of the segment (A,B). Now we argue
as in the proof of Theorem 4.3, case 1). Let P = (A+B)/2, fix ε > 0 and consider a point
Q ∈ B(P, ε) \ Ω∗. We define the convex envelope Ω̂∗ := co (Ω∗ ∪ Q). If ε is small enough,
we have that Ω̂∗ satisfies the following properties:

• Ω̂∗ is convex,

• by continuity of the distance function, Ω̂∗ has diameter less or equal to 1,

• Λ∞(Ω∗) = Λ∞(Ω̂∗) since the radius of maximal inscribed balls does not change,

• Λ2(Ω
∗) > Λ2(Ω̂∗), since Ω∗ ⊂ Ω̂∗.

We have the contradiction F(Ω∗) > F(Ω̂∗), and then the thesis follows. ⊓⊔
As a direct consequence of Theorems 4.10 and 4.9, every minimizer has at least 4 and

at most 6 singular points on the boundary.
We will distinguish in the following subsections optimality conditions depending on the

number of contact points in between the boundary of the optimal set and of its maximal
inscribed balls.
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4.1 The maximal inscribed ball is not unique

Under this property, we describe completely the shape of the minimizer, see figure 2.

Figure 2: Optimal set when the maximal inscribed ball is not unique

Theorem 4.11 Suppose that an optimal set Ω∗ has many maximal inscribed balls. Then
Ω∗ is the intersection of a disk of diameter 1 and a strip which is symmetric with respect
to the center of the disk.

Proof: Let x1 6= x2 ∈ Ω∗. If B(xi, R) ⊂ Ω∗ for i = 1, 2, where R = Λ−1
∞ is the maximal

inscribed radius, then by convexity co (B(x1, R) ∪ B(x2, R)) ⊂ Ω∗. This implies that there
exists at least 2 flat parts on the boundary of Ω∗. As in the proof of Theorem 4.8, we can
show that the number of flat parts is exactly 2.

Let us suppose that (modulo a rotation and a translation of Ω∗) the x-axis is in between
and at equal distance from the flat parts. Considering the Steiner symmetrization [PS, K]
of Ω∗ with respect to the x-axis, we get that Ω∗ is symmetric w.r.t. this axis. In fact,
Steiner symmetrization decreases Λ2 and, in this case, preserves the radius of a maximal
inscribed ball.

Analogously, Steiner symmetrization w.r.t. the y−axis establishes that Ω∗ is also
symmetric w.r.t. the y−axis.
It remains to show that S = ∂Ω∗ \ ((AB) ∪ (CD)), where (AB) and (CD) are the two
parallel segments on ∂Ω∗, is the union of 2 symmetric ars of a unit circle. Consider
a regular point P ∈ S and P̃ its symmetric w.r.t. the origin O. Since P and P̃ are
diametricals and regular, by Proposition 4.2 we have that ‖P − P̃‖ = 1. Consequently
‖P − O‖ = 1/2 for every regular point of S. By density, we obtain that this property
holds for every point on S. ⊓⊔

4.2 The maximal inscribed ball is unique

In this situation we provide some properties of a minimizer. The first one is an obvious
consequence of Theorem 4.8.

Proposition 4.12 Suppose that an optimal set Ω∗ has a unique maximal inscribed ball.
Then the boundary of Ω∗ contains exactly 3 flat parts.

Proof: Theorem 4.10 tell us that there exists at most 3 flat regions in the boundary of
Ω∗. If the optimal set Ω∗ has just one maximal inscribed ball B∞, then its number of
contact points with ∂Ω∗ must be at least 3. But Theorem 4.8 tells us that this number is
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at most 3. The thesis now follows from Theorem 4.6 because every contact point must be
contained in a flat region of ∂Ω∗. ⊓⊔

Lemma 4.13 The boundary ∂Ω∗ of an optimal set can not contain both an arc of radius
1 and its center.

Proof: Let C be one hypothetic arc of circle and PC its center. The idea of the proof
is to construct a domain variation which ”push inside” the small portion ∂Ω∗ where the
center PC lies and ”push outside” the corresponding arc.

Modulo a rotation and a translation, we assume that PC and the middle of the arc
C are both on the x-axis with coordinates (−1/2, 0) and (1/2, 0) respectively. For every
ǫ > 0 we consider Pǫ = (1/2 + ǫ, 0). We define

Ωǫ = co (Ω∗ ∪ Pǫ) ∩ B(Pǫ, 1).

It is straightforward to prove that for ǫ sufficiently small, the following facts holds

• Λ∞(Ωǫ) = Λ∞(Ω∗),

• d(Ωǫ) ≤ 1,

• |∂Ω∗ \ Ωǫ| is of order ǫ and |∂Ωǫ \ Ω∗| is of order
√

ǫ.

As in the proof of Theorem 4.6, we can show that it exists a positive c such that

Λ2(Ωǫ) = Λ2(Ω
∗) − cǫ3/2 + o(ǫ3/2).

The previous development contradicts the minimality of Ω∗. ⊓⊔
As a consequence of Lemma 4.13, a ”cutted Reuleaux triangle” si never optimal.

Theorem 4.14 Suppose that an optimal set Ω∗ has a unique maximal inscribed ball. Then
Ω∗ has at most one axis of symmetry.

Proof: Suppose, ex absurdum, that there are at least 2 axis of symmetry. Since the
maximal inscribed ball is unique, by Theorem 4.12 we have that B∞∩∂Ω∗ = {P1, P2, P3},
each one lying inside a flat region. Since the number of flat parts is exactly 3, each axis
of symmetry must cross one and only one point of contact. As a consequence also the
triangle (P1, P2, P3) has 2 axis of symmetry. This implies the existence of a third axis of
symmetry for this triangle. As in the proof of Theorem 4.11, Steiner symmetrization gives
that Ω∗ is symmetric w.r.t. this new axis. The axes of symmetry are then 3. Geometrical
considerations implies that the optimal shape must be a ”cutted Reuleaux triangle” (see
figure 1), which is not admissible as optimal set because of Lemma 4.13. This contradiction
proves the theorem. ⊓⊔

5 First order optimality conditions when the maximal in-

scribed ball is unique

We already described in Section 4.1 the minimizer’s shape if the maximal inscribed ball
is not unique. Then, in the present section, we concentrate our attention in deriving first
order optimality conditions only when the maximal inscribed ball is unique.
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We first prove that any local variation of a flat part of the boundary of optimal sets
do not provide more information than linear perturbations. More precisely, for all set Ω,
for all vector field V and for t > 0 let us define

ΩV (t) = co({x + tV (x) : x ∈ Ω})
⋂{⋂

x∈Ω

B(x, 1)

}
.(5.7)

Consider a flat part of the boundary of an optimal set S. Up to a rotation and a
translation we can assume that S = [0, 1] × {0} and that Ω∗ is below the x-axis. Let
Vφ = φ(x)ν(x)χS(x) be for all concave function φ > 0 on the interior of the segment S,
ν is the outward normal vector and χS is the usual characteristic function of S. If Ω∗ is
optimal for problem (3.6) and differentiable in the direction of Vφ, we must have

dF(ΩVφ
(t))

dt

∣∣∣∣∣
t=0+

≥ 0(5.8)

for all such vector field Vφ.
We define

{
V1(x) = φ1(x)ν(x)χS(x), φ1(x) = 1 ∀x ∈ S
V2(x) = φ2(x)ν(x)χS(x), φ2(x) = x ∀x ∈ S.

(5.9)

The actions of the vector fields V1 and V2 on a flat part of Ω are drawn in figure 3(a) and
3(b) respectively.

(a) The action of V1 (b) The action of V2

Figure 3: Linear vector fields

Theorem 5.1 The set of one side optimality conditions (5.8), where φ is a concave func-
tion defined on a flat part S, is equivalent to the 4 conditions (5.8) for V = ±V1 and
V = ±V2.

Proof: Let Vφ(x) = φ(x)ν(x)χS(x) be defined on a flat part of the boundary S = [0, 1] ×
{0} (modulo a rotation and a translation) of a mimimizer Ω∗, where φ 6= φi, i = 1, 2. Let
us consider Ω∗

Vφ
(t) as defined in (5.7). For t small enough, it exists at least one point Pt of

contact in between the maximal inscribed ball B∞(t) and ∂Ω∗
Vφ

(t) along the curve Vφ(S).

Consider the tangent line to Ω∗
Vφ

(t) in Pt, and construct the new domain Ω∗
Ṽφ

(t) = Ω∗
Vϕt

,

where ϕt(x) is the equation of the tangent line in Pt to ∂Ω∗
Vφ

(t). We have Ω∗
Vφ

(t) ⊂
Ω∗

Vϕt
. Moreover, since the maximal inscribed ball in Ω∗ is unique, we can assume that

12



Λ∞
(
Ω∗

Vφ
(t)
)

= Λ∞
(
Ω∗

Vϕt

)
with a suitable choice of the point Pt. This imply, for every

t > 0,

F
(
Ω∗

Vφ
(t)
)
−F (Ω∗)

t
≥

F
(
Ω∗

Vϕt
(t)
)
−F (Ω∗)

t
.

Now for every t > 0 there exists (a(t), b(t)) such that ϕt(x) = a(t)φ1(x) + b(t)φ2(x).
Bolzano-Weierstrass theorem implies that, there exists at least a cluster point (a∗, b∗) of
(a(t), b(t)). Eventually passing to a subsequence we have that (a(t), b(t)) → (a∗, b∗) as
t → 0+. Then

dF(ΩVφ
(t))

dt

∣∣∣∣∣
t=0+

≥ dF(Ωt(a∗φ1+b∗φ2))

dt

∣∣∣∣∣
t=0+

which is our claim. ⊓⊔
By Theorem 4.12 there exists only 3 flat regions in ∂Ω. Let us call them la, lb and lc.

Assume (ABC) be the triangle enveloping Ω∗ containing the three flat regions la, lb and
lc. Suppose that la ⊂ (BC), lb ⊂ (CA) and lc ⊂ (AB). We set

a = |(BC)|, b = |(CA)| and c = |(AB)|,
Â = B̂AC, B̂ = ÂBC and Ĉ = B̂CA.

Finally, let p = a+b+c be the perimeter ot the triangle and R∞ the radius of the maximal
inscribed ball B∞ (which is, by construction, the incircle of the triangle ABC).

In this case, the uniqueness of the maximal inscribed ball provides differentiability of
F(Ω∗

Vi
(t)), i = 1, 2, in t = 0.

Now we can deduce the first order optimality conditions.

Theorem 5.2 Suppose Ω∗ is a minimizer with a unique maximal inscribed ball B∞. Then
the following relations hold (where V1, V2 are defined in 5.9):

1

2
(λ2(Ω

∗))−1/2
∫

la
|∇u2|2V1 · ν dσ =

a

pR2
∞

;(5.10)

1

2
(λ2(Ω

∗))−1/2
∫

lb

|∇u2|2V1 · ν dσ =
b

pR2
∞

;(5.11)

1

2
(λ2(Ω

∗))−1/2
∫

lc
|∇u2|2V1 · ν dσ =

c

pR2
∞

;(5.12)

1

2
(λ2(Ω

∗))−1/2
∫

la
|∇u2|2V2 · ν dσ =

a

R∞ sin Ĉ

(
1 + cos Ĉ

p
− 1

b

)
;(5.13)

1

2
(λ2(Ω

∗))−1/2
∫

lb

|∇u2|2V2 · ν dσ =
b

R∞ sin Ĉ

(
1 + cos Ĉ

p
− 1

a

)
;(5.14)

1

2
(λ2(Ω

∗))−1/2
∫

lc
|∇u2|2V2 · ν dσ =

c

R∞ sin B̂

(
1 + cos B̂

p
− 1

a

)
.(5.15)

Proof: Formulas (5.10) ... (5.15) are obtained observing that

0 =
dF(ΩVi

(t))

dt

∣∣∣∣
t=0

=
dΛ2(ΩVi

(t))

dt

∣∣∣∣
t=0

− dΛ∞(ΩVi
(t))

dt

∣∣∣∣
t=0

, i = 1, 2.(5.16)

together with elementary geometrical computations. Equalities 5.16 are obtained applying
Theorem 5.1 on all the flat parts of Ω∗. ⊓⊔
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6 Concluding remarks

0.34 0.36 0.38 0.4 0.42 0.44 0.46 0.48 0.5
2.66

2.68

2.7

2.72

2.74

2.76

2.78

2.8
Numerical optimal value : 2.7782 | rbest 0.40417

Figure 4: Numerical evaluations of the shape functional w.r.t. the width (d(Ω) = 1)

Together with the analysis done in the previous sections, we carried out some numer-
ical experiments computing our cost function for standard convex sets (ellipses, stadium,
polygons, ...). The eigenvalue was computed by a standard P1 finite element method and
the inradius was estimated using the The Convex Geometry toolbox (see [Ou]). Those
numerical results let us think that the shape of the figure 2 may be the optimal one.

In this case we provide numerical evaluations of the shape functional F w.r.t. the
width of the strip defined by the two flat parts in figure 4.
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