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The minimal gap between Λ 2 (Ω) and Λ ∞ (Ω) in a class of convex domains

We consider the minimization problem min

where Λ 2 (Ω) and Λ ∞ (Ω) are the (square root of the) first eigenvalue of the Laplacian and the first eigenvalue of the ∞-Laplacian respectively. X is the class of convex domains with prescribed diameter. We prove existence of a solution, and we provide several geometrical properties of minimizers.

Introduction

Let G be a shape functional which is monotone decreasing with respect to the set inclusion. Consider the minimization problem inf{G(Ω) : Ω convex, d(Ω) = c} (1.1) where d(Ω) stands for the diameter of the set Ω. Suppose that this problem is well posed. In this case, a direct consequence of the geometrical characterization of constant width sets provided in [LRO] in Theorem 3.4 and the monotonicity of G is the fact that any optimal shape of (1.1) is of constant width.

When the set functional is not monotone, the picture may be completely different. One very illuminating example is the famous shape optimization problem inf{(µ 2λ 2 )(Ω) : Ω convex, d(Ω) = c} (1.2) where λ 2 and µ 2 are respectively the first and the second eigenvalue of the Laplacian operator ∆ with zero Dirichlet data on the boundary. Even in this basic situation the existence of a minimizer for problem (1.2) is not known. Actually, problem (1.2) is suspected to be ill-posed and the sequence of rectangles Ω ε = (0, c 2ε 2 ) × (0, ε) may be one of the minimizing sequences of this problem (see [He] for more details on extremum problems related to the eigenvalues of the Laplacian).

Recently a lot of attention has been devoted to the infinity-Laplacian operator ∆ ∞ which may be defined as the limit when p → ∞ of the p-Laplacian operator ∆ p (see [A], [ACJ] and references therein). In opposition to the classical Laplacian, very few is known on the eigenvalues of the p-Laplacian and the ∞-Laplacian operators [START_REF] Lindqvist | On a nonlinear eigenvalue problem[END_REF][START_REF] Juutinen | The ∞-eigenvalue problem[END_REF][START_REF] Belloni | The ∞ Eigenvalue Problem from a Variational Point of View[END_REF][START_REF] Yu | Some properties of the ground states of the infinity Laplacian[END_REF].

In this paper we study the spectral gap in between ∆ and ∆ ∞ . More precisely we study the extremal problem

inf{(Λ 2 -Λ ∞ )(Ω) : Ω convex, d(Ω) = c} (1.3)
where Λ 2 = √ λ 2 , and Λ ∞ is the first eigenvalue of ∆ ∞ with zero Dirichlet boundary conditions (see section 2 for the definition of the eigenvalue for the nonlinear operator ∆ ∞ ). The choice of the admissible class is dictated by several necessary conditions to have existence: see section 3.

Let us mention that the link between the first eigenvalue of the Laplacian and the inradius R ∞ (recall the geometrical characterization of Λ ∞ : Λ ∞ (Ω) = 1/R ∞ (Ω), see section 2) has been previously studied by several authors. As an example, let us reformulate an interesting problem originally settled by Polya (see [Her, Pr]) :

min Λ 2 (Ω) Λ ∞ (Ω) | Ω ∈ X
where X is a suitable class of convex bounded domains. Hersch [Her] showed that the infimum ot the functional Λ 2 /Λ ∞ is greater or equal than π/2, when Ω varies among plane convex domains. Protter [Pr] extended the Hersch's result to bounded convex domains in IR n . The plan of the paper is as follows: in section 2 we recall some definitions and known result about Λ 2 and Λ ∞ ; in section 3 we prove the existence of a minimum for the functional F in the admissible class of convex set with prescribed diameter; in section 4 we obtain several geometrical properties of minimizers; in section 5 we deduce some analytical first order necessary conditions.

2 Some facts about the infinity-Laplacian operator

Let Ω be an open bounded domain in IR N . The first eigenvalue λ p (Ω) of the nonlinear operator ∆ p u = div |∇u| p-2 ∇u , the p-Laplacian, is defined in the following way [L3] λ p (Ω) := min ∇u p p : u ∈ W 1,p 0 (Ω), u p = 1 (2.1) for every 1 < p < ∞. When p = 2, (2.1) reduces to the first eigenvalue λ 2 (Ω) of the Laplacian operator. We set, for every 1 < p < ∞,

Λ p := (λ p ) 1/p . (2.2)
Let us observe that Λ p (µΩ) = Λ p (Ω)/µ holds for every µ > 0. It has been shown in [START_REF] Juutinen | The ∞-eigenvalue problem[END_REF][START_REF] Belloni | The ∞ Eigenvalue Problem from a Variational Point of View[END_REF] 

that Λ p → Λ ∞ , p → ∞ where Λ ∞ (Ω) := min ∇u ∞ : u ∈ W 1,∞ 0 (Ω), u ∞ = 1 . (2.3)
The number Λ ∞ introduced in (2.3) is called (see [L3]) the first eigenvalue of the operator

∆ ∞ u =< D 2 u • ∇u, ∇u >
where D 2 u is the Hessian of u.The operator ∆ ∞ is the so-called ∞-Laplacian: see [ACJ] and the references therein. The differential equation satisfied by a first eigenfunction of

∆ ∞ is max{Λ ∞ u(x) -|Du(x)|, ∆ ∞ u(x)} = 0 x ∈ Ω u = 0 x ∈ ∂Ω. (2.4)
Equation (2.4), which have to be intended in the sense of viscosity solutions (see [CIL]), is obtained in [START_REF] Juutinen | The ∞-eigenvalue problem[END_REF] as the limit for p → ∞ of the p-eigenvalue equations

-∆ p u = λ p |u| p-2 u, x ∈ Ω. (2.5)
Remark that equation (2.4) can also be obtained as the Euler-Lagrange equation of (2.3): see [BW]. Uniqueness for the solution of (2.4) is known only for some particular domains: see [BW, Yu]. A quite remarkable property of the first egenvalue Λ ∞ of ∆ ∞ is its geometrical caracterization (see [START_REF] Juutinen | The ∞-eigenvalue problem[END_REF][START_REF] Lindqvist | On a nonlinear eigenvalue problem[END_REF]):

1 Λ ∞ (Ω) = max {R : B(x 0 , R) ⊆ Ω} . (2.6)

An existence result

In this section we will consider the minimization problem min

X F(Ω) (3.1)
where F(Ω) := Λ 2 (Ω)-Λ ∞ (Ω) and X stands for some class of admissible domains Ω ⊆ IR 2 .

In the following, we use the fact that our functional is homogeneous of order -1, namely

F(λΩ) = 1 λ F(Ω), ∀λ > 0. (3.2)
As a preliminary question let us look at the sign of the functional (3.1). It holds the following result Theorem 3.1 (see [Pr]) Let Ω be a plane convex domain. Then

λ 2 (Ω) ≥ π 2 4R 2 ∞ (Ω) , (3.3)
where λ 2 is the first eigenvalue of the Laplacian and R ∞ is the radius of the maximal inscribed ball in Ω.

Theorem 3.1 implies that, for every convex domain Ω, (3.4) which implies that our functional F, restricted to this class of domains, is positive.

Λ 2 (Ω) -Λ ∞ (Ω) > Λ 2 (Ω) - π 2 Λ ∞ (Ω) ≥ 0,
Corollary 3.2 Let C = Ω ⊆ IR 2 : Ω convex and bounded . Then, inf Ω∈C (Λ 2 -Λ ∞ )(Ω) = 0.
Proof: Theorem 3.1 tells us that (Λ 2 -Λ ∞ )(Ω) > 0 for every convex set Ω. By the homogeneity of degree -1 we have

(Λ 2 -Λ ∞ )(tΩ) = 1 t (Λ 2 -Λ ∞ )(Ω) → 0, t → ∞. ⊓ ⊔
Now, let us go back to the well-posedness of the problem (3.1). Taking into account Corollary 3.2, some additional constraints must be imposed to the admissible class X in order to have existence of a minimizer of problem (3.1). First we must exclude the rescaling which provides the ill-posedness of Corollary 3.2. Additionally, the number of holes of the admissible sets must be bounded from above. This kind of hypothesis is also necessary: removing a point doesn't change Λ 2 (points have capacity 0 in IR N for N > 1), but this operation would reduce dramatically the radius 1/Λ ∞ of the largest inscribed ball.

In the following we consider the class of convex domain with fixed diameter, namely

X d = Ω ⊆ IR 2 : Ω convex, d(Ω) = 1 , (3.5)
where d(Ω) stands for the diameter of Ω, i.e. d(Ω) = sup

x,y∈Ω d(x, y). This class obviously satisfies the above requirements.

Notice that the constraint on the diameter may be relaxed to d(Ω) ≤ 1. By the homogeneity of F, if d(Ω) < 1 we have

F 1 d(Ω) Ω = d(Ω)F(Ω) < F(Ω).
For this class of admissible sets, we have the following existence result.

Theorem 3.3 The minimum problem min Ω∈X d F(Ω) (3.6) admits a solution. Proof: Let (Ω n ) be a minimizing sequence, i.e. F(Ω n ) → inf X d F(Ω).
We can assume that the sequence (Ω n ) converges with respect to the Hausdorff complementary topology [HePi, BuBu]. Indeed, since the diameter is bounded, we can suppose that the sets (Ω n ) are all contained in a fixed compact set (the functional is translation invariant) which provides the existence of a convergent sub-sequence. Let Ω * be the limit set. It is straightforward to establish that Ω * is convex with diameter less or equal to 1.

We claim that |Ω * | = 0 (where | • | stands for the Lebesgue measure in IR 2 ). Suppose by contradiction that there exists a sub-sequence (still indexed by n) (Ω n ) such that the radius (ǫ n ) of the maximal inscribed balls B ǫn converges to 0.

From [ScAw], for all convex set Ω ⊂ IR 2 , we have the following inequality:

√ 3(w -2r)d ≤ 2wr
where d is the diameter of Ω, r its inradius, and w stands for its minimal width. In our situation, we get

w n ≤ 2 √ 3 √ 3 -2ε n ε n .
Then, we can enclose the whole set Ω n in a rectangle R n of length's sides respectively equal to 1 and

γ n := 2 √ 3 √ 3-2εn ε n , so d(R n ) = 1 + γ 2 n .
By the previous inequality, we have

F(Ω n ) = Λ 2 (Ω n ) -Λ ∞ (B ǫn ) ≥ Λ 2 (R n ) - 1 ǫ n ≥ πǫ n 1 + 1 γ 2 n -1 1 ǫ n = a n (3.7)
where a n → +∞. The previous computations shows that |Ω * | = 0. The continuity of F with respect to the Hausdorff complementary convergence ends the proof.

⊓ ⊔

Geometrical properties of optimal domains

In this section we prove some geometrical properties of the minimizers of problem (3.6).

We will make use of the following definition:

Definition 4.1 Let Ω be a subset of IR 2 . A point x ∈ Ω is called diametrical if there exists y ∈ Ω such that d(Ω) = d(x, y).
Let us give whitout proof the following proposition.

Proposition 4.2 Let Ω be a convex set with d(Ω) = 1 and let x be a diametrical point. Then there exists y ∈ ∂Ω such that xy = 1 and

ν(x) = -ν(y) = y -x y -x , (4.1)
with ν(x) in the normal cone of x and ν(y) in the normal cone of y.

In the next theorem we establish that non diametrical points on the boundary of an optimal set are always inside flat parts. Theorem 4.3 Let P ∈ ∂Ω * be a non diametrical point. Then there exists a non empty segment S ⊂ ∂Ω * containing P .

Proof: In the following B ∞ denotes a ball contained in Ω * having maximal radius (notice that such a ball is not necessarily unique). We consider the two following cases: 1) P ∈ ∂Ω * and P is not on the boundary of a ball of maximal radius,

2) It exists a ball B ∞ of maximal radius such that P ∈ ∂Ω * ∩ ∂B ∞ .

In case 1), suppose by contradiction that the non diametrical point P does not belong to a segment of ∂Ω * . Let ε > 0 and consider a point Q ∈ B(P, ε) \ Ω * . We define the convex envelope Ω * := co (Ω * ∪ Q). If ε is small enough, we have that Ω * satisfies the following properties:

• Ω * is convex,
• by continuity of the distance function, Ω * has diameter less or equal to 1,

• Λ ∞ (Ω * ) = Λ ∞ ( Ω *
) since the radius of maximal inscribed balls does not change,

• Λ 2 (Ω * ) > Λ 2 ( Ω * ), since Ω * ⊂ Ω * .
It follows the contradiction F(Ω * ) > F( Ω * ) and then the thesis.

In case 2), the strategy is similar. Still by contradiction, suppose P belongs in the interior of a non-flat portion of ∂Ω * . Consider the tangent line to ∂Ω * in P (which exists because in this point ∂Ω * is internally tangent to B ∞ ). Then fix two neighboring points Q 0 , Q 1 = P on this tangent line such that P ∈ (Q 0 , Q 1 ). As done in case 1), we construct

Ω * = co(Ω * ∪ Q 0 ∪ Q 1 )
. With a proper choice of Q 0 , Q 1 we have that the new set Ω * is convex, has diameter less or equal than 1 and Ω * ⊂ Ω * . Let us show that the inradius r is not changed. Again, we have two situations: first if Ω * is contained in the strip defined by the line through (Q 0 , Q 1 ) and its parallel at distance 2r, then Ω * is still contained in the same strip and by construction has the same inradius. Second, if it exists a triangle T containing Ω * whose sides are tangent to B ∞ , then Ω * ⊂ T and the inradius is again unchanged.

⊓ ⊔

If the boundary of Ω * does not contain flat part, the previous theorem would implies that all the points on ∂Ω * are diametrical. As a consequence, Ω * would be of constant width (see [LRO]). Theorem 4.6 will show that the boundary of every minimizer must contain at least 2 flat parts.

The statement of the previous theorem can be reversed in the following way:

Theorem 4.4 Let P ∈ ∂Ω * . Suppose P is contained in the interior of a flat neighborhood of ∂Ω * , then P is non diametrical.

Proof: It is a direct consequence of Pythagora's theorem: suppose by contradiction that the diametrical point P belongs to the interior of a segment I = co(A∪B) ⊂ ∂Ω * . Let P ∈ ∂Ω * be such that

P -P = 1. It is straightforward to prove that max(|A-P |, |B-P |) > 1 which contradicts Ω * ∈ X d . ⊓ ⊔
We are now able to give some additional informations related to the boundary of an optimal convex set. Proof: It is an immediate consequence of theorem 4.3 that points which are not in the interior of a segment of ∂Ω * are all diametrical points. Additionally, theorem 4.4 shows that points located in the interior of a segment ∂Ω * are all non diametrical. We still have to establish what may happen to a point P which is a vertex of a segment of ∂Ω * . If we are not in the situation c), it exists a connected part of ∂Ω * which is not a segment which contains P . Since all the points of that part are diametrical, by continuity of the distance function, P is also a diametrical point. Thus P is in the situation b).

⊓ ⊔

Now we state and prove one of the main step in the description of ∂Ω * .

Theorem 4.6 Suppose P 0 ∈ ∂Ω * ∩ ∂B ∞ . Then, there exists a neighborhood U P 0 of P 0 such that ∂Ω * ∩ U P 0 is a segment.

Remarks 4.7 At a first guess, a "cutted Reuleaux triangle" (see figure 1) seems to be a natural candidate for optimality. We will see later, as a consequence of Lemma 4.13, that this is not true. Proof: (of Theorem 4.6 ) Suppose that the thesis is not true, then in a neighborhood of the point P 0 = (x 0 , y 0 ) ∈ ∂Ω * ∩ ∂B ∞ the boundary of the minimizer ∂Ω * is not a segment. As a consequence of theorem 4.3, P 0 is a diametrical point. Our claim is the following: there exists a domain variation in the direction of the normal to the boundary in (x 0 , y 0 ) that decreases F(Ω * ). This would contradict the minimality of Ω * .

Let us construct such a domain variation. First we study the functional derivative with respect to the boundary variation of a special family of vector fields (V ǫ ). Then we will establish that among this family, it exists at least one vector field which decreases the cost function.

Fix the origin in the center of B ∞ , and suppose the y-axis directed as -ν(x 0 , y 0 ) (the same direction of the normal, but with reversed sign). For all ǫ > 0 consider the vector field V ǫ (x, y) := (0, y 0 + ǫy), (x, y) ∈ IR 2 and for every t > 0, the set Ω ǫ t := Ω * + tV ǫ (Ω * ). For ǫ small enough, it exists a compactly supported vector field equal to V ǫ in a neighborhood of P 0 such that Ω ǫ t is still convex for t small. We still denote by V ǫ such a vector field. A direct computation gives the following estimate

|d(Ω * ) -d(Ω ǫ t )| ≤ ktǫ
for some constant k > 0 independant of t and ǫ. This implies the asymptotic development

of Λ ∞ Λ ∞ (Ω ǫ t ) = Λ ∞ (Ω * ) + ctǫ + o(t). (4.2)
for some constant c > 0 also independant of t and ǫ. Following [He] pp.38, we have to compute the first derivative of the first eigenvalue of the laplacian λ 2 (Ω * ) with respect to the domain variation induced by V ǫ :

d dt λ 2 (Ω ǫ t ) t=0 = - ∂Ω * |∇u 2 | 2 V ǫ • ν dσ, (4.3)
where u 2 is the first eigenfunction of the laplacian. We have that

∂Ω * |∇u 2 | 2 V ǫ • ν dσ ≤ Cǫf (ǫ), (4.4)
where C is a constant independent of ε and f (ǫ) is the length of the part of the boundary changed by V ǫ , that is (Ω * \Ω ǫ ) ∩ ∂Ω * .

A crucial point is that f (ǫ) → 0 as ǫ → 0. This is a direct consequence of the following facts:

-P 0 is a diametrical point; -the following inclusion holds (we set D := (x 0 , y 0 )ν(x 0 , y 0 ))

(Ω * \Ω ǫ ) ∩ ∂Ω * ⊂ (B(D, 1) \ B ∞ ) .
Then, the following asymptotic development follows:

Λ 2 (Ω ǫ t ) = Λ 2 (Ω * ) + 1 2 (λ 2 (Ω * )) -1/2 d dt λ 2 (Ω ǫ t ) t=0 t + o(t) ≤ Λ 2 (Ω * ) + C ′ ǫf (ǫ)t + o(t). (4.5)
for some constant C ′ independent of t and ǫ. Collecting the development (4.2) and (4.5), we can choose ǫ small enough and then t small such that

F(Ω ǫ t ) = Λ 2 (Ω ǫ t ) -Λ ∞ (Ω ǫ t ) ≤ Λ 2 (Ω * ) + C ′ ǫf (ǫ)t -Λ ∞ (Ω * ) -ctǫ + o(t) = F(Ω * ) + ǫ(C ′ f (ǫ) -c)t + o(t) < F(Ω * ) (4.6)
for a suitable choice of t, that is our claim, and so the thesis follows.

⊓ ⊔

A maximal inscribed ball B ∞ has at least 2 points of contact with ∂Ω * . The following theorem proves that the number of contact points must be at most 3. Proof: Theorem 4.6 implies that ∂Ω * is flat around every contact point with B ∞ . Suppose there exists just one maximal inscribed ball B ∞ (if not, the number of contact points is obviously 2) with more than 3 points of contact. Consider 4 distinct points of contact. Among those 4 points, we select 3 of them such that their convex envelope contains the center of B ∞ . The segment (AB) of the boundary of ∂Ω * containing the fourth point x is made of non diametrical points (with possibly the exception of A and B). Then there exists a point ω in the exterior of Ω * -sufficiently close to (AB) -such that ωx ≤ 1 for every x ∈ Ω * . Set Ω * = co(ω ∪ Ω * ). This set is still admissible because it is convex and has diameter less or equal than 1.

By construction Ω * ⊂ Ω * and the maximal inscribed ball B ∞ is unchanged. We have Λ ∞ (Ω * ) = Λ ∞ ( Ω * ) and Λ 2 (Ω * ) > Λ 2 ( Ω * ). The above inequalities implies that F(Ω * ) > F( Ω * ), a contradiction.

⊓ ⊔ Theorem 4.9 Let Ω * be a minimizer. Suppose that A and B are the extrema of a segment (AB) ⊂ ∂Ω * , then A and B must be singular points.

Proof: We prove the result for one extremal point A. We have three cases.

• A is non diametrical: by c) of Theorem 4.5, this point must be vertex of two segment. Then A is singular.

• A is diametrical and vertex of two non-parallel segment, then we conclude as before.

• A is diametrical and is an extremum of a non-flat region S of Ω. The tangent to S in A must not contains (AB): if not, let y ∈ ∂Ω * be such that d(A, y) = 1. There exists x ∈ (AB) such that d(x, y) > 1 (because (Ay) • (A -B) = 0), which is clearly a contradiction. This implies that ∂Ω * is not differentiable in A, and this concludes the proof.

⊓ ⊔

Theorem 4.10 Let Ω * be a minimizer. Then the boundary of Ω * , contains at most 3 flat parts.

Proof: As a direct consequence of Theorems 4.6 and 4.8, given a ball of maximal radius B ∞ there exists at most 3 flat parts of the boundary touching it. The result will be proved if we show that every flat part of the boundary must be tangent to B ∞ . Suppose by contradiction that there exists a segment (A, B) ⊂ ∂Ω * such that (A, B) ∩ ∂B ∞ = ∅. Theorem 4.9 implies that A and B are both singular points. Also, by Theorem 4.4, there are not diametrical points in the interior of the segment (A, B). Now we argue as in the proof of Theorem 4.3, case 1). Let P = (A + B)/2, fix ε > 0 and consider a point Q ∈ B(P, ε) \ Ω * . We define the convex envelope Ω * := co (Ω * ∪ Q). If ε is small enough, we have that Ω * satisfies the following properties:

• Ω * is convex,

• by continuity of the distance function, Ω * has diameter less or equal to 1,

• Λ ∞ (Ω * ) = Λ ∞ ( Ω *
) since the radius of maximal inscribed balls does not change,

• Λ 2 (Ω * ) > Λ 2 ( Ω * ), since Ω * ⊂ Ω * .
We have the contradiction F(Ω * ) > F( Ω * ), and then the thesis follows.

⊓ ⊔

As a direct consequence of Theorems 4.10 and 4.9, every minimizer has at least 4 and at most 6 singular points on the boundary.

We will distinguish in the following subsections optimality conditions depending on the number of contact points in between the boundary of the optimal set and of its maximal inscribed balls.

The maximal inscribed ball is not unique

Under this property, we describe completely the shape of the minimizer, see figure 2.

Figure 2: Optimal set when the maximal inscribed ball is not unique Theorem 4.11 Suppose that an optimal set Ω * has many maximal inscribed balls. Then Ω * is the intersection of a disk of diameter 1 and a strip which is symmetric with respect to the center of the disk.

Proof: Let x 1 = x 2 ∈ Ω * . If B(x i , R) ⊂ Ω * for i = 1, 2, where R = Λ -1
∞ is the maximal inscribed radius, then by convexity co (B(x 1 , R) ∪ B(x 2 , R)) ⊂ Ω * . This implies that there exists at least 2 flat parts on the boundary of Ω * . As in the proof of Theorem 4.8, we can show that the number of flat parts is exactly 2.

Let us suppose that (modulo a rotation and a translation of Ω * ) the x-axis is in between and at equal distance from the flat parts. Considering the Steiner symmetrization [PS, K] of Ω * with respect to the x-axis, we get that Ω * is symmetric w.r.t. this axis. In fact, Steiner symmetrization decreases Λ 2 and, in this case, preserves the radius of a maximal inscribed ball.

Analogously, Steiner symmetrization w.r.t. the y-axis establishes that Ω * is also symmetric w.r.t. the y-axis. It remains to show that S = ∂Ω * \ ((AB) ∪ (CD)), where (AB) and (CD) are the two parallel segments on ∂Ω * , is the union of 2 symmetric ars of a unit circle. Consider a regular point P ∈ S and P its symmetric w.r.t. the origin O. Since P and P are diametricals and regular, by Proposition 4.2 we have that P -P = 1. Consequently P -O = 1/2 for every regular point of S. By density, we obtain that this property holds for every point on S.

⊓ ⊔

The maximal inscribed ball is unique

In this situation we provide some properties of a minimizer. The first one is an obvious consequence of Theorem 4.8.

Proposition 4.12 Suppose that an optimal set Ω * has a unique maximal inscribed ball.

Then the boundary of Ω * contains exactly 3 flat parts.

Proof: Theorem 4.10 tell us that there exists at most 3 flat regions in the boundary of Ω * . If the optimal set Ω * has just one maximal inscribed ball B ∞ , then its number of contact points with ∂Ω * must be at least 3. But Theorem 4.8 tells us that this number is at most 3. The thesis now follows from Theorem 4.6 because every contact point must be contained in a flat region of ∂Ω * . ⊓ ⊔ Lemma 4.13 The boundary ∂Ω * of an optimal set can not contain both an arc of radius 1 and its center.

Proof: Let C be one hypothetic arc of circle and P C its center. The idea of the proof is to construct a domain variation which "push inside" the small portion ∂Ω * where the center P C lies and "push outside" the corresponding arc. Modulo a rotation and a translation, we assume that P C and the middle of the arc C are both on the x-axis with coordinates (-1/2, 0) and (1/2, 0) respectively. For every ǫ > 0 we consider P ǫ = (1/2 + ǫ, 0). We define

Ω ǫ = co (Ω * ∪ P ǫ ) ∩ B(P ǫ , 1).
It is straightforward to prove that for ǫ sufficiently small, the following facts holds

• Λ ∞ (Ω ǫ ) = Λ ∞ (Ω * ), • d(Ω ǫ ) ≤ 1, • |∂Ω * \ Ω ǫ | is of order ǫ and |∂Ω ǫ \ Ω * | is of order √ ǫ.
As in the proof of Theorem 4.6, we can show that it exists a positive c such that

Λ 2 (Ω ǫ ) = Λ 2 (Ω * ) -cǫ 3/2 + o(ǫ 3/2 ).
The previous development contradicts the minimality of Ω * . ⊓ ⊔

As a consequence of Lemma 4.13, a "cutted Reuleaux triangle" si never optimal.

Theorem 4.14 Suppose that an optimal set Ω * has a unique maximal inscribed ball. Then Ω * has at most one axis of symmetry.

Proof: Suppose, ex absurdum, that there are at least 2 axis of symmetry. Since the maximal inscribed ball is unique, by Theorem 4.12 we have that B ∞ ∩ ∂Ω * = {P 1 , P 2 , P 3 }, each one lying inside a flat region. Since the number of flat parts is exactly 3, each axis of symmetry must cross one and only one point of contact. As a consequence also the triangle (P 1 , P 2 , P 3 ) has 2 axis of symmetry. This implies the existence of a third axis of symmetry for this triangle. As in the proof of Theorem 4.11, Steiner symmetrization gives that Ω * is symmetric w.r.t. this new axis. The axes of symmetry are then 3. Geometrical considerations implies that the optimal shape must be a "cutted Reuleaux triangle" (see figure 1), which is not admissible as optimal set because of Lemma 4.13. This contradiction proves the theorem. ⊓ ⊔ 5 First order optimality conditions when the maximal inscribed ball is unique

We already described in Section 4.1 the minimizer's shape if the maximal inscribed ball is not unique. Then, in the present section, we concentrate our attention in deriving first order optimality conditions only when the maximal inscribed ball is unique. Together with the analysis done in the previous sections, we carried out some numerical experiments computing our cost function for standard convex sets (ellipses, stadium, polygons, ...). The eigenvalue was computed by a standard P 1 finite element method and the inradius was estimated using the The Convex Geometry toolbox (see [Ou]). Those numerical results let us think that the shape of the figure 2 may be the optimal one.

In this case we provide numerical evaluations of the shape functional F w.r.t. the width of the strip defined by the two flat parts in figure 4.

Theorem 4. 5

 5 Let P ∈ ∂Ω * . Then one and only one of the following eventualities holds: a) P is not a diametrical point and belongs to the interior of a segment of ∂Ω * , b) P is diametrical and is not in interior of a segment of ∂Ω * , c) P is located on the extremities of two different segments of ∂Ω * .

Figure 1 :

 1 Figure 1: A cutted Reuleaux triangle

  Theorem 4.8 A ball of maximal radius B ∞ has at most 3 distinct points of contact with ∂Ω * .

Figure 4 :

 4 Figure 4: Numerical evaluations of the shape functional w.r.t. the width (d(Ω) = 1)

We first prove that any local variation of a flat part of the boundary of optimal sets do not provide more information than linear perturbations. More precisely, for all set Ω, for all vector field V and for t > 0 let us define Ω V (t) = co({x + tV (x) : x ∈ Ω}) x∈Ω B(x, 1) .

(5.7) Consider a flat part of the boundary of an optimal set S. Up to a rotation and a translation we can assume that S = [0, 1] × {0} and that Ω * is below the x-axis. Let V φ = φ(x)ν(x)χ S (x) be for all concave function φ > 0 on the interior of the segment S, ν is the outward normal vector and χ S is the usual characteristic function of S. If Ω * is optimal for problem (3.6) and differentiable in the direction of V φ , we must have

for all such vector field V φ .

We define

The actions of the vector fields V 1 and V 2 on a flat part of Ω are drawn in figure 3 Proof:

x) be defined on a flat part of the boundary S = [0, 1] × {0} (modulo a rotation and a translation) of a mimimizer Ω * , where φ = φ i , i = 1, 2. Let us consider Ω * V φ (t) as defined in (5.7). For t small enough, it exists at least one point P t of contact in between the maximal inscribed ball B ∞ (t) and ∂Ω * V φ (t) along the curve V φ (S). Consider the tangent line to Ω * V φ (t) in P t , and construct the new domain

, where ϕ t (x) is the equation of the tangent line in

. Moreover, since the maximal inscribed ball in Ω * is unique, we can assume that

with a suitable choice of the point P t . This imply, for every t > 0,

Now for every t > 0 there exists (a(t), b(t)) such that ϕ t (x) = a(t)φ 1 (x) + b(t)φ 2 (x). Bolzano-Weierstrass theorem implies that, there exists at least a cluster point (a * , b * ) of (a(t), b(t)). Eventually passing to a subsequence we have that (a(t), b(t)) → (a * , b * ) as t → 0 + . Then

which is our claim. ⊓ ⊔ By Theorem 4.12 there exists only 3 flat regions in ∂Ω. Let us call them l a , l b and l c . Assume (ABC) be the triangle enveloping Ω * containing the three flat regions l a , l b and l c . Suppose that l a ⊂ (BC), l b ⊂ (CA) and l c ⊂ (AB). We set

Finally, let p = a+b+c be the perimeter ot the triangle and R ∞ the radius of the maximal inscribed ball B ∞ (which is, by construction, the incircle of the triangle ABC).

In this case, the uniqueness of the maximal inscribed ball provides differentiability of

Now we can deduce the first order optimality conditions.

Theorem 5.2 Suppose Ω * is a minimizer with a unique maximal inscribed ball B ∞ . Then the following relations hold (where V 1 , V 2 are defined in 5.9): (5.16) together with elementary geometrical computations. Equalities 5.16 are obtained applying Theorem 5.1 on all the flat parts of Ω * . ⊓ ⊔

Acknowledgement

The financial support of Marino Belloni and Edouard Oudet has been given by C.N.R.S. and G.N.A.M.P.A. respectively. The authors would like to thank an anonymous referee for several useful remarks.