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Designing a Bayesian Network for Preventive

Maintenance from Expert Opinions in a Rapid

and Reliable Way

G. Celeux∗, F. Corset†, A. Lannoy‡and B.Ricard‡

Abstract

In this study, a Bayesian Network (BN) is considered to represent a
nuclear plant mechanical system degradation. It describes a causal repre-
sentation of the phenomena involved in the degradation process. Inference
from such a BN needs to specify a great number of marginal and condi-
tional probabilities. As, in the present context, information is based essen-
tially on expert knowledge, this task becomes very complex and rapidly
impossible. We present a solution which consists of considering the BN as
a log-linear model on which simplification constraints are assumed. This
approach results in a considerable decrease in the number of probabilities
to be given by experts. In addition, we give some simple rules to choose
the most reliable probabilities. We show that making use of those rules
allows to check the consistency of the derived probabilities. Moreover,
we propose a feedback procedure to eliminate inconsistent probabilities.
Finally, the derived probabilities that we propose to solve the equations
involved in a realistic Bayesian network are expected to be reliable. The
resulting methodology to design a significant and powerful BN is applied
to a reactor coolant sub-component in EDF Nuclear plants in an illustra-
tive purpose.

Keywords: Bayesian Network, Degradation Process, Log-Linear Model,
Expert Opinion, Complexity Reduction, Maintenance.

1 Introduction

Preventive maintenance is considered in a lot of industries because costs due
to failures and repairs could be very important. Moreover, since system safety
is an important goal for industries, the knowledge of the degradation processes
has became essential. Preventive maintenance of a system is taking into account
expert knowledge, feedback observations and degradations in order
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• to model the system lifetime and to quantify the degradation or failure
probability,

• to detect important variables involved in the degradation process and to
design maintenance tasks in order to differ or eliminate ageing,

• to quantify the effect of maintenance actions on the system behavior,

• to propose diagnosis and decision help,

• to propose data mining and sensibility analysis.

Bayesian Networks, abbreviated BNs in the following, could be thought of as
useful to help engineers to fulfill those purposes of preventive maintenance. BNs
provide an efficient way to represent the degradation process of an industrial
system or machine. Bayesian Networks are some specific graphical models in-
troduced by Pearl [11], and Lauritzen and Spiegelhalter [10]. Graphical Models
introduce a relation between graph and probability theories. The random vari-
ables of a probabilistic model are described with the vertices of a graph, where
edges describe their dependencies measured with conditional probabilities. A
great interest of BNs is to provide an efficient tool for modelling in a simple
and readable way the most probable links between events of different nature
(expert opinion, feedback experience, . . . ) using conditional independence be-
tween random variables. BNs which can also be regarded as a way to introduce
randomness in influence diagrams can be expected to be useful for preventive
maintenance in the future. The articles of [12] and [13] are recent examples of
such maintenance modelling with influence diagrams.

Bayesian Networks, by describing the main conditional probabilities between
variables, allow to compute easily the joint probability distribution of all the
variables involved in a complex process. However, in order to obtain this joint
probability distribution, the number of required probabilities increases expo-
nentially with the number of variables in the model. In the last decade, authors
developed algorithms in order to facilitate calculations in graphical models. We
can cite the well-known ”junction tree” algorithm (see Lauritzen [10] (1988),
Cowell [6] (1999) for instance). Thus many efficient algorithms to deal with
computations on more and more complex graphical models are available. These
algorithms are included in many software programs like, for instance, the Den-
mark software Hugin expert [16] and Netica [15] of Norsys Software Corp. If it
is essential to develop efficient algorithms to take full advantage of the knowl-
edge contained in graphical models, we must keep in mind that if the knowledge
base is poor or badly managed the best algorithm becomes useless (see the in-
troduction section in Cowell et al. [7]). The aim of the present paper is to
deal with the practical difficulties encountered when designing a BN for a real
maintenance modelling problem. All the ideas we present are motivated and
illustrated with the modelling of a nuclear mechanical system degradation with
a Bayesian Network.
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First, we address the problem of deriving reliable information from experts
in a graphical model setting and propose a method to obtain honest proba-
bility values in a simple and possibly interactive way from experts knowledge.
Then we deal with a second difficulty. In order to compute the joint probability
of the variable, the classical BN approach consists of asking for the marginal
probabilities of the entry variables and the conditional probabilities of the other
variables knowing all the possible combinations between their parents. Owing
to the great number of parameters a BN can invovle in practice, it can be-
come a formidable task, and we propose to approximate the graphical model
with an unsaturated log-linear model (see for instance [14], chapter 7). This
procedure leads to consider that some variables are conditionally independent.
In the maintenance modelling context, the experts are asked to provide the
marginal probabilities of all the variables and not only of the parent variables
as in the classical approach. We choose this method because generally experts
can more easily provide such simpler marginal probabilities than conditional
probabilities. This strategy leads to a system with more equations than un-
known quantities. Thus, it allows us to assess the consistency of the required
probabilities. According to Bayes theorem, the properly weighted summation
of conditional probabilities of a vertex N , knowing a parent vertex, is equal to
its marginal probability. After checking the consistency of the given probability
values, a feedback procedure is proposed when some inconsistency is encoun-
tered, and the experts can choose the reliable given probabilities from their
own viewpoint. Thus, the probabilities finally selected to solve the system of
n equations with n unknown quantities are expected to be the most reliable ones.

This paper is devoted to present our heuristic strategy to build practically
a graphical model in a realistic and relevant way. It is organized as follows.
In Section 2, Bayesian Networks models are introduced and a parallel between
graphical models and log-linear models which is helpful to reduce the BNs com-
plexity is presented. Section 3 is devoted to the presentation of our methodology
to get information from experts in a simple and reliable way. We indicate possi-
ble drawbacks of an over restrictive strategy and present ways to remedy these
drawbacks. An illustrative application concerning nuclear mechanical system
degradation is presented in Section 4 and a short conclusion section ends this
paper.

2 Bayesian Networks

Bayesian Networks are powerful graphical models to describe conditional inde-
pendence and analyze probable causal influence between random variables. In
our study, variables are all discrete and most of them are binary. These ran-
dom variables are represented by the vertices of the graph, and the probable
influence between two random variables is represented by an edge between the
corresponding vertices. We now give some definitions.

Definition 1 A directed graph is a couple G = (V, E), where V = (X1, . . . , Xn)
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denotes the vertices of the graph and E = (e1, . . . , em) denotes a part of Carte-

sian product V × V , where ei is called the edges of the graph.

If (Xi, Xj) lies in E, then this element is called an edge. It is denoted Xi −→ Xj ,
Xi is called the source and Xj the target of the edge. For directed graph, the
parents and the children of the vertices are defined as follows:

Definition 2 If a directed edge has source Xi and target Xj, then Xi is called

the parent of Xj and Xj is called the son or child of Xi. The set of the parents

of Xj is denoted pa(Xj)and the set of children of Xi is denoted ch(Xi).

In a directed graph, the oriented paths are defined as follows:

Definition 3 An oriented path is a set of distinct vertices Xi, . . . , Xj such that

(Xk−1, Xk) is an edge for all k = i + 1, . . . , j. This path is denoted Xi 7−→ Xj.

A cycle is a path such that Xi = Xj.

Directed graph without cycle are called Directed Acyclic Graphs (DAG). We
can now define a Bayesian Network.

Definition 4 A Bayesian Network is

• a set of variables V , defining the vertices, and a set of edges between

variables E,

• each variable has a finite number of exclusive states,

• variables and edges define a directed acyclic graph, denoted G = (V, E),

• for each variable Y with its parents X1, . . . , Xn, is associated a conditional

probability P (Y |X1, . . . , Xn). When a variable has no parent, the last

quantity becomes a marginal probability P (Y ).

The denomination ”Bayesian Networks” comes from the well-known Bayes
theorem. In a BN, the joint probability can be written as follows (recursive
factorization):

P (X1, . . . , Xn) =

n∏

i=1

P (Xi|pa(Xi)), (1)

where pa(Xi) is the set of parents of vertex Xi.

A first problem when designing a BN is to define sensible vertices between
the variables involved in the study. This task is made more difficult when nu-
merous variables are available. In our application, in order to deal with this
difficulty, we follow a strategy used in Højsgaard [9] to build the structure of
the BN. This strategy consists essentially of grouping variables playing analo-
gous roles (see [4]).
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In order to draw useful informations from the resulting BN, the knowledge
of the joint probability is required. Due to the lack of data, we essentially use
experts opinion and we use data when it is possible. However, even with bi-
nary variables in Equation (1), it is important to notice that if a vertex has
a lot of parent vertices (more than two parents for instance), there are a lot
of conditional probabilities to be estimated. In this situation, additional help
of experts is needed. But, experts can only give simple probabilities, and it is
out of matter to ask them a conditional probability knowing a great number of
possible combinations. To overcome this second difficulty, the BN is seen as an
unsaturated log-linear model. It is well-known that a BN is always equivalent
to an unsaturated log-linear model, where the conditional independences are
derived from the moral graph of the BN. Notice that conversely a log-linear
model needs that Condition 1 stated below is verified to be representable with
a BN. Log-Linear models allow to analyze the relationships between qualita-
tive variables in a contingency table (See Goodman [8], Bishop et al. [1] and
Christensen [3]). These models are flexible, currently available in many statis-
tical softwares and have a powerful interpretation in conditional independence
terms. With this representation in mind and in order to reduce the number
of required conditional probabilities (i.e. the complexity of the BN), some new
conditional independences are added.

In an illustrative purpose, consider the BN depicted in Figure 1.

C

A B

D

Figure 1: Bayesian Network with four variables.

Figure 1 exhibits the conditional independence of A and B knowing D, and of
C and D knowing A and B. Now consider the associated unsaturated log-linear
model:

log(p(a, b, c, d)) = u + uA(a) + uB(b) + uC(c) + uD(d)

+ uAB(a, b) + uAC(a, c) + uBC(b, c) + uABC(a, b, c)

+ uAD(a, d) + uBD(b, d), (2)

with the interaction terms u, called u-terms, being functions of the cell probabil-
ities of the four-way contingency table. We denote this model [ABC][AD][BD].
In this model, C and D are conditionally independent knowing A and B. These
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two representations are strictly equivalent. A possible way to reduce the com-
plexity of the model is to assume that A and B are conditionally independent
knowing C. It leads to delete the term uABC in Equation (2). This new unsat-
urated log-linear model is making sense, but we are facing a problem because it
cannot be represented with a BN. This problem can easily be solved by using
the following condition (see for instance Christensen [3]).

Condition 1 A log-linear model can be represented by a Bayesian Network

if, whenever the model contains all two-order interaction terms generated by

a higher-order interaction terms, then the model contains this higher-order in-

teraction terms.

With a more complex BN, for a vertex with a lot of parents, we think that it
is impossible to manage all conditional dependences. Thus, to reduce the com-
plexity of a causal BN, we propose to first assume that all u-terms, with order
greater than two, are equal to zero. It is equivalent to consider conditional inde-

pendence between parent vertices knowing their son. As this assumption could
be too restrictive, in a second stage, we ask the experts to add some higher or-
der associations (three-way interaction terms):The ones they considered useful
and reliable. In practice, this additional complexity required by condition (1)
to make the log-linear model representable with a BN does not appear to be too
important because it is not judicious to model associations of order larger than
three. It is important to note that if the expert adds an association, he has to
quantify this association by giving the corresponding conditional probabilities.

After this complexity reduction step has been completed, we can design a
strategy to extract information from data and experts.

3 Information Extraction Strategy

As seen from Equation (1), the joint probability of a BN can be written in a
recursive factorization form. Thus, for all vertices, it is necessary to evaluate
the conditional probabilities of the variables knowing their parents. Most of
the probabilities are given by expert opinions. The statistician must prepare
a questionnaire for the experts. At each probability to be given corresponds
a question, written in simple words, without technical stuff. Moreover, the
interviews are completed expert by expert. This organization allows to avoid
correlations between experts answers.

The main difficulty for a non-statistician expert is to apprehend the condi-
tional probability concept. For instance, let us consider a BN with three binary
variables, S, A et C, respectively smoker, alcoholic, and cancer of throat. Ex-
perts are able to give the probability that someone have a cancer of throat
knowing that he is a smoker, and the marginal probability to have this cancer.
But, the probability that someone has a cancer knowing he is not a smoker is
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more difficult to evaluate. Most of experts tend to give, for this last probabil-
ity, the marginal probability to have cancer, considering implicitly that to be a
non-smoker is not an information. In this example, experts must be able to give
four conditional probabilities, as the probability that someone has a cancer of
throat, knowing that he is a non-smoker and a non-alcoholic. This combination
is relatively simple for a vertex with two parents, but it seems difficult to give
all conditional probabilities with a greater number of parents.

When preparing the questionnaire, it is important not to forget rare events.
For instance, let us consider the case of a very reliable component with a prob-
ability of default equal to 10−6. Assume a Bayesian Network with two binary
variables: ”default” (yes/no) and ”state” (healthy/failure), where the variable
”state” is a probable consequence of the variable ”default”. In order to com-
pute the joint probability, it is necessary to evaluate the marginal probability
of “default” and the two conditional probabilities of the “state” knowing the
“default” variable. In this case, it is clearly preferable to query the conditional
probability of failure knowing the presence or the absence of default, because
both probabilities are significantly different.

The evaluation of all required probabilities, especially conditional probabil-
ities, becomes rapidly an impossible task for experts. Thus, it is of primary
importance to give simple rules in order to realize this preliminary step (see
[2]). Hereunder, we summarize the rules we have chosen according to the above
mentioned considerations.

Rule 1: Query all marginal probabilities. Considering that marginal prob-
abilities are easier to be evaluated, these probabilities are asked even for non
input variables. In the classical procedure, only marginal probabilities of input
variables are required. However, evaluating all the marginal probabilities does
not allow to compute the joint probability. Generally, some conditional proba-
bilities are needed, except if variables are all independent. In the binary case,
the number of conditional probabilities is 2n, where n is the number of parents.
It is impossible to evaluate these probabilities as soon the number of parents is
greater than three or four.

Rule 2: Query only the conditional probabilities of first order. For
instance, let us consider a Bayesian Network with three parent vertices A, B,
C and a son node D. For inference, three marginal probabilities are required
(p(A), p(B), p(C)) and p(D|ABC), corresponding to eight conditional prob-
abilities. in a first approximation, our methodology consists of querying the
four marginal probabilities and the following conditional probabilities: p(D|A),
p(D|Ā), p(D|B), p(D|B̄), p(D|C), p(D|C̄). These probabilities are usually the
simplest ones to give for non-statistician experts. Moreover, one can see that
those probabilities involve a lot of redundancies. Thus, this method allows to
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turn out the incoherences in the expert allocation. Indeed, we have

p(D) =
∑

A

p(D|A)p(A) =
∑

B

p(D|B)p(B) =
∑

C

p(D|C)p(C). (3)

In practice, these equations are never exactly verified. The statistician must de-
cide to eliminate some of them. In the example below, one can choose to remove
three conditional probabilities. Keeping in mind that conditional probabilities
knowing a ”non-event” are difficult to evaluate, thus statistician should remove
p(D|Ā), p(D|B̄) and p(D|C̄). However, this rule is not an absolute rule. Here-
after, we propose others rules to decide which probabilities have to be removed.

Rule 3: The most relevant probabilities come from databases. We
consider that the feedback experience is more reliable than the expert opinion,
especially for conditional probabilities. Moreover, when feedback experience is
available, experts based generally their opinion on this feedback experience. In
such a situation, some marginal probabilities can be derived wihout too much
difficulty, but unfortunately for some variables, with a lot of parent vertices,
estimating a conditional probability requires a lot of data.

Rule 4: Favor marginal probabilities provided by the experts. This rule
arises from the fact that those probabilities are easier to evaluate, in particular
for a non-statistician expert. Thus, it remains to choose one of the conditional
probabilities per parent vertex.

For instance, let us consider a Bayesian Network with three vertices as in
Figure 2. A possible strategy consists of requiring to which probabilities the

A

C

B

Figure 2: BN with two parent vertices.

expert is more confident. However, in most cases, the choice is very restricted.
Indeed, let us suppose that for the BN in Figure 2 where A is a three-level
variable, the expert give probabilities displayed in Table 1. From Table 1, it is

P (C) = 0.25
P (C|A = 0) = 0.05 P (A = 0) = 0.33
P (C|A = 1) = 0.25 P (A = 1) = 0.66
P (C|A = 2) = 0.30 P (A = 2) = 0.01

Table 1: Example of probabilities given by expert.
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possible to compute the probability of C:

Pcalc(C) = 0.05 ∗ 0.33 + 0.25 ∗ 0.66 + 0.30 ∗ 0.01 = 0.183,

which is different of the probability given by the expert. Assume now that, in
order to remove this gap, the expert decides to evaluate the last conditional
probability from an algebraic calculus. It leads to the new conditional proba-
bility

Pcalc(C|A = 2) =
0.25 − 0.05 ∗ 0.33 − 0.25 ∗ .66

0.01
= 6.85!

This anomaly comes from the fact that the expert changes the conditional prob-
ability which has the lowest weight, namely the weight corresponding to the
marginal probability of the parent vertice. Moreover, the highest conditional
probability P (C|A = 1) with weight of P (A = 1) = 0.66 is equal to the marginal
probability and the other conditional probability P (C|A = 0) with a significant
weight P (A = 0) = 0.33 is rather low. Thus, to remove the difference between
the two marginal probabilities (between 0.183 and 0.25), the conditional prob-
ability is strongly increased and exceeds one . . .

Rule 5: It is more convenient to change conditional probabilities with

large weights, if those probabilities are significantly different of the

corresponding marginal probability.

In the previous example, the application of rule 5 gives

Pcalc(C|A = 1) =
0.25 − 0.05 ∗ 0.33 − 0.30 ∗ 0.01

0.66
= 0.3492

which replace the previous value of 0.25. Note here that the ranking of the three
conditional probabilities has changed. To preserve the ranking and the ratio be-
tween the conditional probabilities, we can change all conditional probabilities
by keeping the ratio between the given probabilities.

Assume now that an expert gives the probabilities displayed in Table 2.
The marginal probability can be seen as a convex combination of the condi-

P (C) = 0.05
P (C|A = 0) = 0.01 P (A = 0) = 0.33
P (C|A = 1) = 0.03 P (A = 1) = 0.66
P (C|A = 2) = 0.05 P (A = 2) = 0.01
P (C|B = 0) = 0.10 P (B = 0) = 0.10
P (C|B = 1) = 0.03 P (B = 1) = 0.90

Table 2: Another example of probabilitiesgiven by an expert.

tional probabilities, where the weights are the marginal probabilities of the
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vertices parents. Thus, in the fourth line of Table 2, the conditional probabil-
ity is equal to the marginal probability, P (C|A = 2) = P (C). Moreover, two
other conditional probabilities (P (C|A = 0) and P (C|A = 1) are strictly lower
than the marginal probability. Thus, the weight of the conditional probability
P (C|A = 2), namely P (A = 2) must be equal to one. In this particular case,
we propose to change the marginal probability of C. The probability P (C) can
be computed from the two vertices parents

PA
calc(C) = 0.029,

PB
calc(C) = 0.037.

The first probability is not a convex combination of the conditional probabilities
of C knowing B, i.e. 0.0029 /∈ [0.03; 0.10]. Thus, the second computed proba-
bility is to be preferred, and the same rules as previously defined are observed
in order to change one of the conditional probabilities of C knowing A.

Finally, it is possible to keep ratio between conditional probabilities by solv-
ing the following linear program

min
0≤x≤1

|P (C) −
3∑

i=1

kixP (A = i)|

where ki represents the ratio between the conditional probabilities given by ex-
perts.

In the last example, if no assumption is made on conditional independence,
experts must give the conditional probability of C knowing A and B. Thus,
we apply the same rules for these conditional probabilities, keeping in mind
that we asked first the conditional probabilities of C knowing A and the con-
ditional probabilities of C knowing B. If the number of parents vertices is n
and if associations with order greater than three are considered, the conditional
probabilities can be computed by induction.

4 Application

The above described methodology has been applied to build a BN for a sub-
component of a Reactor Coolant Pumps, observed on the French Nuclear Plants.
In this context, the choice of the system and the experts is crucial. First, the
study must concern a system which the experts considered significant for the
safety of the whole industrial entity (here a nuclear plant). Moreover, the sys-
tem must be well-known by the experts and the availability of the experts to
build the structure of the graph must be a significant criterion, because this
kind of project could be long and demanding and need many meetings. It is
important to underline that the statistician have to play a role of mediator. He
has to clearly define the goal of the project and describe the various powerful
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possibilities of this kind of model.

In the present case, the main goal of the study was to model the system
degradation with a BN in order to define the most appropriate maintenance
tasks and to evaluate the possible effects of this maintenance tasks. In what
follows we sketch the important points of this study according to the above
described modelling and indicate the practical interest of this study.

In Figure 3, we present a BN, built from experts opinions of the research and
development division of EDF according to the strategy described in [9]. This
Bayesian Network contains 22 discrete variables, 17 variables are binary and the
other five ones have three modalities. According to the strategy of Højsgaard
[9], variables have been divided in four sets: environmental variables A =
{PI3, Ad, Ab, PI6, P I4, Ag, DJ, PI2, DI}, degradation variables M = {M1

′

,-
M1

′′

, M2, M3, M4, M5, M6}, observation variablesO = {O1, O2, O2
′

, O2
′′

, O5}
and finally the variable of interest: the state of the system (E).

From the Bayesian Network presented in Figure 3, the likelihood of the
model is given by

p(U) = p(Ab)p(Ad)p(Ag)p(PI2)p(PI3)p(PI4)p(PI6)p(DI)p(DJ)

× p(M1
′

|Ag, DJ)p(M1
′′

|DJ, PI2)p(M2|Ag, PI3)P (M3|Ad, PI3)

× p(M4|Ab, PI4, P I6)p(M5|DI, PI3)p(M6|Ad, Ab)

× p(O1|M1
′′

, M4, M5, M6)p(O5|M3, M4, M5, M6)p(O2|M5)

× p(O2
′′

|M2, M3, M4, M6, O2)

× p(O2
′

|M1
′

, M1
′′

, M2, M3, M4, M6, O2
′′

)p(E|O1, O5, O2
′

). (4)

Inference from this BN requires the estimation of 381 probabilities in Equa-
tion (3). Now, since few data from feedback experience are available, experts
must give a lot of probabilities and especially a lot of conditional probabilities.
For instance, for the node O2

′

, the classical approach requires to evaluate 192
conditional probabilities, a formidable task to deal with. Thus, in order to make
the inference step feasible, we regard the BN as an unsaturated log-linear model,
where all association terms of order greater than two are constrained to be zero.
As stated above, this point of view is equivalent to assume that all parent nodes
(variables) are conditionally independent knowing their sons. To evaluate all
the probabilities needed for the computation of the joint probability, we pro-
ceeded by induction from the environmental variables to the variable of interest.

For instance, p(M6 | Ab, Ad) had to be computed in Equation (3). Assum-
ing that Ad and Ab are conditionally independent knowing M6, P (Ab), P (Ad),
P (M6), P (M6 | Ab) and P (M6 | Ad) were needed to compute P (M6 | Ab, Ad).
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P (M6 | Ad, Ab) =
P (Ad, Ab | M6)P (M6)

P (Ab)P (Ad)
=

P (Ad | M6)P (Ab | M6)P (M6)

P (Ab)P (Ad)

=
P (M6 | Ab)P (M6 | Ad)

P (M6)
.

The above formula is quite simple since Ab and Ad are conditionally independent
knowing M6, but P (M6) had to be provided.

In the same manner, to compute p(O1|M1
′′

, M4, M5, M6), by assuming that
M1

′′

, M4, M5, M6 are conditionally independent knowing O1, we get

P (O1 | M1
′′

, M4, M5, M6) =
P (M1

′′

, M4, M5, M6 | O1)P (O1)

P (M1′′ , M4, M5, M6)

=
P (M1

′′

| O1)P (M4 | O1)P (M5 | O1)P (M6 | O1)P (O1)

P (M1′′ , M4, M5, M6)
,

with

P (M1
′′

, M4, M5, M6) = P (M1
′′

)P (M5)
∑

Ab

P (M4 | Ab)P (M6 | Ab)P (Ab),

where M4 and M6 are not independent, but are conditionally independent
knowing Ab. Finally, P (O1 | M1

′′

, M4, M5, M6) could be written

P (O1 | M1
′′

, M4, M5, M6) =

P (O1 | M5)P (O1 | M1
′′

)P (O1 | M4)P (O1 | M6)P (M4)P (M6)

P (O1)3
∑

Ab P (M4 | Ab)P (M6 | Ab)P (Ab)
.

The last example concerns the variable of interest E and the conditional
probability P (E | O1, O5, O2

′

):

P (E | O1, O5, O2
′

) =
P (O1, O5, O2

′

| E)P (E)

P (O1, O5, O2′)
=

=
P (O1 | E)P (O5 | E)P (O2

′

| E)P (E)

P (O1, O5, O2′)

=
P (E | O1)P (E | O5)P (E | O2

′

)

P (E)2P (O1, O5, O2′)

with

P (O1, O5, O2
′

) =
∑

M

P (O1, O5, O2
′

| M)P (M)

=
∑

M

P (O1 | M)P (O5 | M)P (O2
′

| M)P (M)

=
∑

M

P (O1 | pa(O1))P (O5 | pa(O5))P (O2
′

| pa(O2
′

)P (M)
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and

P (M) =
∑

A

P (M | A)P (A)

=
∑

A

∏

X∈M

P (X | A)
∏

Y ∈A

P (Y )

=
∑

A

∏

X∈M

P (X | pa(X))
∏

Y ∈A

P (Y ).

Using the assumption that all the association terms of order greater than
two were null, the likelihood could be computed from all marginal probabili-
ties and conditional probabilities of order one (namely, conditional probability
of a variable knowing a unique variable and not a combination of numerous
variables). For instance, for the node O2

′

, the classical approach required 192
conditional probabilities, whereas our method required only seven conditional
probabilities.

For the whole BN, in the present application, the number of required prob-
abilities decreased from 381 to 69. Moreover all required probabilities are now
easily interpreted and evaluated by the experts. To determine the final proba-
bilities from the evaluations provided by the experts we made use of the rules
given in the previous section. It can be noticed that by querying more proba-
bilities that necessary allowed us to choose the most reliable probabilities in a
repeated dialog with the experts.

Thus after analyzing the first results on the initial BN, the experts wished to
be more precise by adding nine conditional dependences. With this new graph-
ical model, the experts suggested to introduce some carefully selected two-order
interactions. After they evaluated the additional probabilities, the same com-
putation rules were applied to lead to a new Bayesian network. The inference
on the resulting BN shows that three variables (Ab, Ad and PI3) appeared to
be quite influent on the system degradation.

These results encouraged to add maintenance tasks on those three variables
in order to improve the reliability of the system. The maintenance tasks were
easily included in the model as new variables of the BN (see [5]) and the ex-
perts gave the new conditional probabilities (typically, the probability of an
environmental variable knowing a maintenance task) by using the methodology
previously described. A new inference from this updated BN allowed to give
the effect of the maintenance actions and to simulate a great number of possible
strategies.

5 Conclusion

Bayesian Network is a powerful tool to model associations between relevant
variables of a problem. This kind of modelling requires the intervention of

13



experts. In this work, we concentrated efforts to provide efficient heuristic
methods to get a reliable and meaningful Bayesian network from the practical
point of view. First, we applied simple rules to collect information and to design
the structure of the graph. Then, we defined simple and coherent methods
to evaluate the probabilities that are needed for inference. We gave simple
rules in order to keep the more reliable probabilities, required to compute the
joint probability of the network. Marginal and conditional probabilities are
determined first from operating experience and secondly from expertise. One of
the main interests of this work which is detailed in [4] is to propose a strategy
avoiding a too heavy and too unstable acquisition of expert information. This
strategy is reducing the number of questions to be asked. Moreover it allows to
include maintenance actions as new vertices of the BN (see Corset et al. [5]).
Thus, the effect of a maintenance action can be predicted, a point which is
rather new and of interest.
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Figure 3: Bayesian Network of a system degradation process.
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