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NUMERICAL SOLUTION OF A PARABOLIC SYSTEM WITH BLOW-UP OF THE SOLUTION

In this paper, the author proposes a numerical method to solve a parabolic system of two quasilinear equations of nonlinear heat conduction with sources. The solution of this system may blow up in finite time. It is proved that the numerical solution also may blow up in finite time and an estimate of this time is obtained. The convergence of the scheme is obtained for particular values of the parameters.

For what follows, it is more convenient to work with a transformed equation. Let

ν+1 , p = 1 µ+1 ; then we get m, p ∈]0, 1[ and we suppose that p ≤ m (or µ ≥ ν).

Introduction

The purpose of this paper is to study the numerical behavior of the solution of a nonlinear reaction diffusion system with nonlinear source terms.

Let Ω a smooth bounded domain in R d . We consider the system:

           u 1t -∆u ν+1 1 = αv µ+1 1 , x ∈ Ω, t > 0 v 1t -∆v µ+1 1 = αu ν+1
1 , x ∈ Ω, t > 0 u 1 (x, 0) = u 10 (x) > 0, x ∈ Ω v 1 (x, 0) = v 10 (x) > 0, x ∈ Ω u 1 = v 1 = 0, x ∈ ∂Ω, t > 0 with ν, µ > 0, α ≥ 0. Samarskii and al. [START_REF] Samarskii | Blow-up in Quasilinear Parabolic Equations[END_REF] have studied this system and obtained the following results: If λ 1 denotes the first eigenvalue of the Dirichlet problem: -∆ρ = λρ, x ∈ Ω, ρ = 0, x ∈ ∂Ω and if α > λ 1 , the problem has no global solutions and there exists T 0 > 0 such that lim t-→T 0 -u ν+1 1 (t, .)

2 L 2 (Ω) + v µ+1 1 (t, .) 2 L 2 (Ω) = +∞
In [START_REF] Le Roux | Semidiscretization in time of nonlinear parabolic equations with blowup of the solutions[END_REF], [START_REF] Le Roux | Numerical solution of nonlinear reaction diffusion processes[END_REF], we have proposed a numerical method to solve a quasilinear parabolic equation with blow-up of the solution. The numerical solution is computed by using the function u = u ν+1 1 ; so the nonlinearity is reported on the derivative in time. This solution has the same properties as the exact solution, in particular blow-up in finite time. We generalize this method to the system of two equations.

Then (u, v) satisfies the following system:

(1.1)

       mu m-1 u t + Au = αv pv p-1 v t + Av = αu u(x, 0) = u ν+1 10 (x) = u 0 (x), x ∈ Ω v(x, 0) = v µ+1 10 (x) = v 0 (x), x ∈ Ω
where A is the operator -∆ of domain D(A) = H 1 0 (Ω) ∩ H 2 (Ω).

An outline of the paper is as follows: In Section 2, we study the asymptotic behavior of the solution.

In Section 3, we define a numerical scheme and prove the existence of the solution of this scheme.

The section 4 is devoted to the properties of the scheme, in particular, the existence of a numerical blow-up time in the case α > λ 1 . Finally, in Section 5, we study the particular case p = m and prove the convergence of the scheme in that case for a class of initial conditions.

Asymtotic behavior of the solution

Given u 0 , v 0 ∈ L ∞ (Ω), a couple (u, v) is a weak solution of (1.1) on [0, T ] if u, v ∈ L ∞ ((0, T ) × Ω) and

t 0 Ω (u m φ t -uAφ + αvφ)dxdt = Ω u(x, t)φ(x)dx - Ω u 0 (x)φ(x)dx t 0 Ω (v p φ t -vAφ + αuφ)dxdt = Ω v(x, t)φ(x)dx - Ω v 0 (x)φ(x)dx for all φ ∈ C 2 ((0, T ) × Ω) ∩ C 1 ([0, T ] × Ω), φ(x, t) = 0 f or x ∈ ∂Ω.
This problem admits a local solution and from the maximum principle, we get u(t), v(t) > 0 in Ω, 0 < t < T . We prove the following results: ι) if α > λ 1 , the solution blows up in finite time T ; we get:

lim t-→T -Ω m m + 1 u m+1 (t) + p p + 1 v p+1 (t) dx = +∞ ιι) if α < λ 1
, the problem has a global solution which tends to 0 when t-→∞ ιιι) if α = λ 1 , the problem has a global solution (u, v) which tends to θρ 1 when t-→∞ where ρ 1 is the first eigenfunction of A (Aρ 1 = λ 1 ρ 1 and ρ 1 L 1 (Ω) = 1) and θ is a constant depending on the initial condition.

We introduce the functions Φ, Z defined on [0, T ] by

Φ(t) = Ω m m + 1 u m+1 (t) + p p + 1 v p+1 (t) dx (2.1) Z(t) = Φ(t) m-1 m+1 = Ω m m + 1 u m+1 (t) + p p + 1 v p+1 (t) dx m-1 m+1
and the functional defined on

H 1 0 (Ω) × H 1 0 (Ω)by (2.2) J(u, v) = Ω (|∇u| 2 + |∇v| 2 -2αuv)dx Lemma 2.

The function Φ is convex and the function Z is concave

Proof: We prove that the second derivative of Φ is nonnegative.

We have: Φ ′ (t) = Ω (mu m u t + pv p v t )dx By multiplying the first equation of (1.1) by u, the second by v and integrating over Ω, we get:

Φ ′ (t) = Ω (mu m u t + pv p v t )dx = - Ω ((Au -αv)u + (Av -αu)v)dx = - Ω (|∇u| 2 + |∇v| 2 -2αuv)dx = -J(u, v).
Then we deduce:

Φ ′′ (t) = -2 Ω ((Au -αv)u t + (Av -αu)v t )dx = 2 Ω 1 m (Au -αv) 2 u 1-m + 1 p (Av -αu) 2 v 1-p dx and Φ ′′ (t) ≥ 0, ∀t ≥ 0. The function Φ is convex.
Besides, we have:

Z ′ (t) = m -1 m + 1 Φ(t) -2/(m+1) Φ ′ (t)
and

Z ′′ (t) = 1-m m+1 (Φ(t)) -2/(m+1)-1 2 m+1 (Φ ′ (t)) 2 -Φ(t)Φ ′′ (t) .
By using Cauchy-Schwarz inequality, we get:

Ω (Au -αv)udx ≤ m + 1 m Ω (Au -αv) 2 u 1-m dx 1/2 Ω m m + 1 u m+1 dx 1/2
and

Ω (Av -αu)vdx ≤ p + 1 p Ω (Av -αu) 2 v 1-p dx 1/2 Ω p p + 1 v p+1 dx 1/2
We deduce:

(Φ ′ (t)) 2 ≤ m + 1 m Ω (Au -αv) 2 u 1-m dx + p + 1 p Ω (Av -αu) 2 v 1-p dx Φ(t)
and

Z ′′ (t) ≤ 2 (1 -m) (m + 1) 2 p -m p Ω m m + 1 u m+1 + p p + 1 v p+1 dx -2/(m+1) Ω (Av -αu) 2 v 1-p dx.
Since p ≤ m, the function Z ′′ is nonpositive , that is the function Z is concave.

In the two next propositions, we prove that in the case α > λ 1 , the solution (u, v) of (1.1) blows up in finite time and obtain estimates of this time for a class of initial conditions.

Proposition 2.2. If α > λ 1 and if the initial condition satisfies J(u 0 , v 0 ) < 0, the solution blows up in finite time T such that

(2.3) T < 1 + m 1 -m Ω m m + 1 u m+1 0 + p p + 1 v p+1 0 dx - Ω |∇u 0 | 2 + |∇v 0 | 2 -2αu 0 v 0 dx . Proof:
The function Z ′ is nonincreasing, so we get:

(2.4)

Z(t) -Z(0) ≤ tZ ′ (0) and Z ′ (0) = 1 -m 1 + m (Φ(0)) -2 m + 1 J(u 0 , v 0 ).
The inequality (2.4) may be written as

Ω m m + 1 u(t) m+1 + p p + 1 v(t) p+1 dx m-1 m+1 ≤ Ω m m + 1 u m+1 0 + p p + 1 v p+1 0 dx m-1 m+1 (2.5) 1 + 1 -m m + 1 t Ω m m + 1 u m+1 0 + p p + 1 v p+1 0 dx -1 J(u 0 , v 0 ) .
If α > λ 1 , the set S = {(u 0 , v 0 ) ∈ H 1 0 (Ω)/ J(u 0 , v 0 ) < 0} is not empty. If J(u 0 , v 0 ) < 0, the right member of (2.5) becomes equal to zero for a finite time and so the solution blows up in a finite time T such that

T ≤ m + 1 1 -m Ω m m + 1 u m+1 0 + p p + 1 v p+1 0 dx -J(u 0 , v 0 ) .
Proposition 2.3. : If α > λ 1 , the solution blows up in finite time T and satisfies the inequality:

Ω m m + 1 u m+1 (t) + p p + 1 v p+1 (t) dx 1 m+1 ≤ T T -t 1 1-m Ω m m + 1 u m+1 0 + p p + 1 v p+1 0 dx 1 m+1
.

Proof: If J(u 0 , v 0 ) < 0, from Proposition 2.3, we know that the solution blows up in finite time. If J(u 0 , v 0 ) ≥ 0, the result is obtained by using the same proof as Friedman-McLeod in [START_REF] Friedman | Blowup of positive solutions of semilinear heat equations[END_REF].

Since the function Z is concave, it satisfies

Z(t) ≥ s -t s Z(0) + t s Z(s), 0 ≤ t ≤ s < T and lim s-→T - Z(s) = 0.
We deduce

Ω m m + 1 u m+1 (t) + p p + 1 v p+1 (t) dx m-1 m+1 ≥ T -t T Ω m m + 1 u m+1 0 + p p + 1 v p+1 0 dx m-1 m+1
, that is the inequality (2.3).

Proposition 2.4. If α < λ 1 , the solution tends to 0 when t-→ + ∞.

Proof: If λ 1 ≥ α, we get: J(u, v) ≥ (λ 1α) Ω (u 2 + v 2 )dx ≥ 0 and Φ ′ (t) ≤ 0. Since the function Φ is convex, the function Φ ′ is nondecreasing and lim

t-→+∞ Φ ′ (t) = l ≤ 0.
We deduce: Φ(t) ≤ Φ(0) + lt, ∀t > 0; since Φ(t) ≥ 0, we obtain that l = 0 and

(2.6) lim t-→+∞ J(u(t), v(t)) = 0.
If λ 1α > 0, then, we get lim t-→+∞ Ω (u 2 + v 2 )dx = 0 and the solution tends to 0 when t-→ + ∞.

Proposition 2.5. If λ 1 = α, then lim t-→+∞ u(t) = lim t-→+∞ v(t) = θρ 1 in L 2 (Ω)
where θ is a constant depending on the initial conditions.

Proof: If λ 1 = α, we get from (2.6) that lim t-→+∞ J(u(t), v(t)) = 0 and Φ(t) is bounded for t ≥ 0.
By interpolation, we obtain

Ω u 2 dx ≤ δ Ω |∇u| 2 dx + C 1 (δ) Ω u m+1 dx 2/(m+1) , Ω v 2 dx ≤ δ Ω |∇v| 2 dx + C 2 (δ) Ω v p+1 dx 2/(p+1)
,

where C 1 (δ) and C 2 (δ) are constants depending on Ω and m and p respectively and we get:

Ω (u 2 + v 2 )dx ≤ δJ(u(t), v(t))+2δλ 1 Ω uvdx +C 1 (δ) Ω u m+1 dx 2/(m+1) +C 2 (δ) Ω v p+1 dx 2/(p+1)
.

We deduce

(1 -δλ 1 ) Ω (u 2 + v 2 )dx ≤ δJ(u(t), v(t)) + C 1 (δ) Ω u m+1 dx 2/(m+1) + C 2 (δ) Ω v p+1 dx 2/(p+1)
.

Since J(u(t), v(t)) is bounded, if δ is chosen such that 1δλ 1 > 0, we deduce that u(t) and v(t) are uniformly bounded in L 2 (Ω) and in H 1 0 (Ω). So, we can extract subsequences t n -→ + ∞ such that u(t n ) and v(t n ) converge weakly in H 1 0 (Ω) and strongly in L 2 (Ω) to z 1 and z 2 respectively.

We have :

J(z 1 , z 2 ) ≤ lim J(u(t), v(t)) = 0, that is Ω |∇z 1 | 2 + |∇z 2 | 2 -2λ 1 z 1 z 2 dx = 0 or Ω |∇z 1 | 2 -λ 1 z 2 1 dx + Ω |∇z 2 | 2 -λ 1 z 2 2 dx + λ 1 Ω (z 1 -z 2 ) 2 dx = 0 We deduce that z 1 = z 2 = θρ 1 .
By multiplying the two equations of (1.1) by ρ 1 and integrating over Ω, we get:

d dt Ω (u m + v p )ρ 1 dx = 0 and then Ω (u m (t) + v p (t))ρ 1 dx = Ω (u m 0 + v m 0 )ρ 1 dx, for all t > 0.
Hence we obtain

Ω (θ m ρ m+1 1 + θ p ρ p+1 1 )dx = Ω (u m 0 + v p 0 )ρ 1 dx.
and there exists a unique positive value of θ satisfying this equation; we deduce the proposition

Definition of a numerical scheme

The classical Euler scheme cannot blow up in a finite time, so we generalize here to a system the numerical scheme used in [START_REF] Le Roux | Semidiscretization in time of nonlinear parabolic equations with blowup of the solutions[END_REF]. The first equation of (1.1) may be written:

- m 1 -p u m-p+1 d dt (u p-1 ) + Au = αv
and the second:

- p 1 -p v d dt (v p-1 ) + Av = αu.
So, we discretize the two derivatives in time in the same manner: If (u n , v n ) is the approximate solution at the time level t n = n∆t, ( where ∆t is the time step), the approximate solution at the time level t n+1 is solution of the system:

(3.1) m 1 -p u n+1 u m-p n (u p-1 n -u p-1 n+1 ) + ∆tAu n+1 = α∆tv n+1 , (3.2) p 1 -p v n+1 (v p-1 n -v p-1 n+1 ) + ∆tAv n+1 = α∆tu n+1 .
We prove first that the system (3.1), (3.2) has a unique positive solution if u n , v n are positive in Ω.

We need several lemmas. For what follows, we denote:

v r = v L r (Ω) .
Lemma 3.1. If the functions u n and v n are positive on Ω, continuous in Ω and satisfy the condition:

(3.3) u n 1-m ∞ v n 1-p ∞ < mp α 2 (1 -p) 2 ∆t 2 then the system (3.1), (3.2) has a positive solution u n+1 , v n+1 ∈ C 2 (Ω) Proof: Consider the functional defined on H 1 0 (Ω) × H 1 0 (Ω) by: (3.4) J n (u, v) = Ω (|∇u| 2 + |∇v| 2 -2αuv)dx + 1 (1 -p)∆t Ω (mu m-1 n u 2 + pv p-1 n v 2 )dx and let us denote K = (u, v) ∈ (H 1 0 (Ω)) 2 / Ω (mu m-p n |u| p+1 + p |v| p+1 )dx = 1 . Since (u n , v n ) satisfies (3.3), we get : mu m-1 n u 2 + pv p-1 n v 2 -2α(1 -p)∆tuv ≥ 0 and J n (u, v) ≥ 0, J n (|u| , |v|) ≤ J n (u, v), ∀u, v ∈ H 1 0 (Ω)
. Now, we consider the problem:

(3.5) min (u,v)∈K J n (u, v)
From the preceding remark, the solution of (3.5), if it exists, will be positive. We denote

φ(u, v) = Ω (mu m-p n u p+1 + pv p+1 )dx. If (û, v) is a solution of problem (3.5), there exists λ ∈ R such that:          ∂J n (û, v) ∂u -λ ∂φ ∂u (û, v) = 0 ∂J n (û, v) ∂v -λ ∂φ ∂v (û, v) = 0 φ(û, v) = 1
Then, we get for any ψ ∈ H 1 0 (Ω),

Ω (∇û ∇ψ -αvψ)dx + m (1 -p)∆t Ω u m-1 n ûψdx = λm(p + 1) Ω u m-p n ûp ψdx, Ω (∇v ∇ψ -αûψ)dx + p (1 -p)∆t Ω v p-1 n vψdx = λp(p + 1) Ω vp ψdx
and

Ω (mu p-1 n ûp+1 + pv p+1 )dx = 1.
Hence, (û, v) satisfies the equalities:

Aû -αv + m (1 -p)∆t u m-1 n û = λm(p + 1)u m-p n ûp , Av -αû + p (1 -p)∆t v p-1 n v = λp(p + 1)v p and (û, v) ∈ C 2 (Ω). Besides J n (û, v) = λ(p + 1). A solution of (3.1), (3.2) is then defined by u n+1 = γ û, v n+1 = γv; we get Au n+1 -αv n+1 + m (1 -p)∆t u m-1 n u n+1 = λγ 1-p m(p + 1)u m-p n u p n+1 , Av n+1 -αu n+1 + p (1 -p)∆t v p-1 n v n+1 = λγ 1-p p(p + 1)v p n+1 and (3.6) γ = 1 (1 -p)∆tJ n (û, v) 1/(1-p) .
Hence, the numerical scheme admits at least one positive solution.

Before proving the uniqueness of the solution, we first prove the existence of bounded supersolutions and of maximal solutions. Lemma 3.2. If the hypotheses of the lemma (3.1) are satisfied, the system (3.1), (3.2) admits a constant supersolution.

Proof: Let (C 1 n , C 2 n ) ∈ R 2 + ; (C 1 n , C 2 
n ) will be a supersolution of the system (3.1), (3.2) if these constants satisfy the inequalities:

(3.7) - m (1 -p)∆t (C 1 n ) p u m-p n + m (1 -p)∆t C 1 n u m-1 n ≥ αC 2 n , (3.8) - p (1 -p)∆t (C 2 n ) p + p (1 -p)∆t C 2 n v p-1 n ≥ αC 1 n . We note x = C 2 n C 1 n
The first inequality may be written:

m (1 -p)∆t u m-1 n -αx ≥ m (1 -p)∆t (C 1 n ) p-1 u m-p n ,
hence this inequality may be satisfied only for x <

m (1-p)α∆t u n m-1 ∞
. The second inequality may be written:

p (1 -p)∆t v p-1 n - α x ≥ p (1 -p)∆t (C 2 n ) p-1
and may be satisfied only if

1 x < p (1 -p)α∆t v n p-1 ∞ .
So a necessary condition to obtain inequalities (3.7), (3.8) is that :

(1 -p)α∆t p v n 1-p ∞ < m (1 -p)α∆t u n m-1 ∞ , that is the condition (3.3) and (1 -p)α∆t p v n 1-p ∞ < x < m (1 -p)α∆t u n m-1 ∞ . If we choose C 1 n = u n ∞ 1 - α(1 -p) m ∆tx u n 1-m ∞ 1/(1-p)
, then we get :

C 2 n = x u n ∞ 1 - α(1 -p) m ∆tx u n 1-m ∞ 1/(1-p) .
It remains to prove that x may be chosen in the interval [

(1 -p)α∆t p v n 1-p ∞ , m (1 -p)α∆t u n 1-m ∞ ] such that C 2 n satisfies : (C 2 n ) p-1 ≤ v p-1 n - α x 1 -p p ∆t.
In order to obtain this inequality, the parameter x must satisfy:

(3.9) v n ∞ 1 -α 1-p p ∆t x v n 1-p ∞ 1/(1-p) ≤ x u n ∞ 1 -α 1-p m ∆tx u n 1-m ∞ 1/(1-p) Let us denote a = 1-p p ∆tα v n 1-p ∞ , b = m (1-p)α∆t u n m-1 ∞ ;
we have : a < x < b and the condition (3.9) may be written:

p (1 -p)α∆t ab (1-p)/(1-m) 1 - x b ≤ m (1 -p)α∆t (1-p)/(1-m) 1 - a x x 1-p .
If we define the function f by

f (x) = p (1 -p)α∆t ab (m-p)/(1-m) x p (x -b) + m (1 -p)α∆t (1-p)/(1-m) (x -a)
the condition (3.9) becomes: f (x) ≥ 0.

The function f satisfies f (a) < 0 and f (b) > 0; so there exists

x 0 ∈]a, b[ such that f (x 0 ) = 0 and the couple      C 1 n = u n ∞ 1 -α (1 -p) m ∆tx 0 u n 1-m ∞ 1/(1-p) , C 2 n = v n ∞ 1 -α 1 -p p ∆t x 0 v n 1-p ∞ 1/(1-p)     
is a supersolution of the system (3.1), (3.2).

Lemma 3.3. System (3.1), (3.2) has a maximal solution (u, v) and any solution (u, v) satisfies:

0 ≤ u ≤ u, 0 ≤ v ≤ v.
Proof: We use the same method as Keller in [START_REF] Keller | Elliptic boundary value problems suggested by nonlinear diffusion process[END_REF]. We consider the sequences defined by:

u n+1,0 = C 1 n , v n+1,0 = C 2 n , Au n+1,j+1 + m (1 -p)∆t u m-1 n u n+1,j+1 = αv n+1,j + m (1 -p)∆t u p n+1,j u m-p n , Av n+1,j+1 + p (1 -p)∆t v p-1 n v n+1,j+1 = αu n+1,j + p (1 -p)∆t v p n+1,j .
We get:

A(u n+1,1 -u n+1,0 ) + m (1 -p)∆t u m-1 n (u n+1,1 -u n+1,0 ) = αC 2 n + m (1 -p)∆t u m-p n (C 1 n ) p -u p-1 n C 1 n .
The second member of this equality is negative; we deduce from the maximum principle that: u n+1,1 ≤ u n+1,0 . In the same manner, we get: v n+1,1 ≤ v n+1,0 . We prove recurently that the sequences (u n+1,j ) j≥0 and (v n+1,j) ) j≥0 are decreasing; in fact, we have:

A(u n+1,j+1 -u n+1,j ) + m (1 -p)∆t u m-1 n (u n+1,j+1 -u n+1,j ) = α(v n+1,j -v n+1,j-1 ) + m (1 -p)∆t u m-p n (u p n+1,j -u p n+1,j-1
) and the second member is negative from the recurrence hypothesis.

We deduce: u n+1,j+1 ≤ u n+1,j . Similarly, we get: v n+1,j+1 ≤ v n+1,j .

Since the two sequences (u n+1,j ) j≥0 and (v n+1,j ) j≥0 are nonnegative, they converge to u and v and taking the limit when j-→ + ∞, we obtain:

Au + m (1 -p)∆t u m-1 n u = αv + m (1 -p)∆t u m-p n u p Av + p (1 -p)∆t v p-1 n v = αu + p (1 -p)∆t v p .
So, the functions u and v are solutions of the system (3.1), (3.2). It remains to prove that any solution (u, v) satisfies: 0

≤ u ≤ u, 0 ≤ v ≤ v.
Let (u, v) a solution of system (3.1), (3.2), we have: 0

≤ u ≤ C 1 n , 0 ≤ v ≤ C 2 n ;
we have the equalities:

A(u -u n+1,j+1 ) + m (1 -p)∆t u m-1 n (u -u n+1,j+1 ) = α(v -v n+1,j ) + m (1 -p)∆t u m-p n (u p -u p n+1,j ) A(v -v n+1,j+1 ) + p (1 -p)∆t v p-1 n (v -v n+1,j+1 ) = α(u -u n+1,j ) + p (1 -p)∆t (v p -v p n+1,j ).
For j = 0, the second member of these inequalities is negative; then we get u ≤ u n+1,1 , v ≤ v n+1,1 and recurrently, we obtain u ≤ u n+1,j , v ≤ v n+1,j for any j ≥ 0. It results: Proof: From the previous lemmas, we know that the system admits at least one positive solution and that any solution (u, v) satisfies 0

u ≤ u, v ≤ v.
≤ u ≤ u, 0 ≤ v ≤ v.
We get:

Ω (Au u -Au u)dx = 0 = m (1 -p)∆t Ω u m-p n u u(u p-1 -u p-1 )dx + α Ω (vu -vu)dx.
Similarly, we have:

p (1 -p)∆t Ω v v (v p-1 -v p-1 )dx + α Ω (uv -uv)dx = 0
We deduce from these equalities that Ω (uvvu)dx = 0 and then u = u, v = v.

Theorem 3.5. The numerical solution exists at least until the time

T 1 = min m α(1 -p) λ m-1 0 , p α(1 -p) λ p-1 0 with λ 0 = max ( u 0 ∞ , v 0 ∞ ).
Proof: We prove recurently that the solution (u n , v n) satisfy the inequality:

u n ∞ , v n ∞ ≤ φ n
where φ n is defined by

φ 0 = max α(1 -p) m λ m-1 0 , α(1 -p) p λ p-1 0 , φ n = λ 0 (1 -t n φ 0 ) 1/(1-p) .
If this inequality is satisfied at the time level t n = n∆t, if t n+1 φ 0 ≤ 1, the inequality (3.3) is verified and the solution exists at the time level t n+1 .

The quantity φ n+1 will be a supersolution of the system (3.1), (3.2), if we have the two inequalities:

- m (1 -p)∆t φ p n+1 u m-p n + m (1 -p)∆t φ n+1 u m-1 n ≥ αφ n+1 , - p (1 -p)∆t φ p n+1 + p (1 -p)∆t φ n+1 v p-1 n ≥ αφ n+1 .
This may be written:

φ 1-p n+1 ≥ max     u n 1-p ∞ 1 -α (1 -p) m ∆t u n 1-m ∞ , v n 1-p ∞ 1 -α (1 -p) p ∆t v n 1-p ∞     .
But, from the recurrence hypothese, we get

u n 1-p ∞ 1 -α (1 -p) m ∆t u n 1-m ∞ ≤ λ 1-p 0 (1 -t n φ 0 ) 1 -α 1 -p m ∆t λ 1-m 0 (1 -t n φ 0 ) (1-m)/(1-p)
and it is easy to see that this quantitiy is bounded by φ n+1 .

In an analogous manner, we obtain that

v n 1-p ∞ 1 -α 1 -p p ∆t v n 1-p ∞ is bounded by φ n+1 .
So, the solution at the time level t n+1 satisfies: u n+1 ∞ , v n+1 ∞ ≤ φ n+1 and the numerical solution exists exists during a positive time interval.

Properties of the numerical scheme

In this section, we prove that if α > λ 1 , the numerical solution blows up in finite time.

We define the functional ψ n and F n by:

ψ n (u, v) = Ω (mu m-p n u p+1 + pv p+1 )dx 1/(p+1)
and

F n (u, v) = J(u, v) (ψ n (u, v)) 2 . Lemma 4.1. The sequence (F n (u n , v n )) n≥0 is nonincreasing. Proof: Since u n+1 = γ û and v n+1 = γv, (û, v) ∈ K, we get ψ n (u n+1 , v n+1 ) = γ and F n (u n+1 , v n+1 ) = J(û, v). Besides from (3.4), we have J(û, v) = J n (û, v) - 1 (1 -p)∆t Ω (mu m-1 n û2 + pv p-1 n v2 )dx.
Hence, we get :

J(û, v) ≤ J n (u n , v n ) ψ 2 n (u n , v n ) - 1 (1 -p)∆t Ω (mu m-1 n u 2 n+1 + pv p-1 n v 2 n+1 )dx ψ 2 n (u n+1 , v n+1 )
.

In addition, we have the equality:

J n (u n , v n ) = J(u n , v n ) + 1 (1 -p)∆t (ψ n (u n , v n )) p+1 .
We deduce:

J(û, v) ≤ J(u n , v n ) ψ 2 n (u n , v n ) + 1 (1 -p)∆t     (ψ n (u n , v n )) p-1 -Ω (mu m-1 n u 2 n+1 + pv p-1 n v 2 n+1 )dx ψ 2 n (u n+1 , v n+1 )     .
By the Hölder inequality, we have at once:

Ω u m-p n u p+1 n+1 dx ≤ Ω u 2 n+1 u m-1 n dx (p+1)/2 Ω u m+1 n dx (1-p)/2 , Ω v p+1 n+1 dx ≤ Ω v 2 n+1 v p-1 n dx (p+1)/2 Ω v p+1 n dx (1-p)/2
.

Hence, we get:

ψ p+1 n (u n+1 , v n+1 ) ≤ m Ω u 2 n+1 u m-1 n dx (p+1)/2 Ω u m+1 n dx (1-p)/2 +p Ω v 2 n+1 v p-1 n dx (p+1)/2 Ω v p+1 n dx (1-p)/2 and (4.1) 
ψ 2 n (u n+1 , v n+1 ) ≤ m Ω u 2 n+1 u m-1 n dx + p Ω v 2 n+1 v p-1 n dx ψ 1-p n (u n , v n ).
We deduce:

J(û, v) ≤ J(u n , v n ) ψ 2 n (u n , v n ) , that is F n (u n+1 , v n+1 ) ≤ F n (u n , v n ).
Lemma 4.2. For n ≥ 0, we have the estimate:

(4.2) (1 -p)∆tF n (u n+1 , v n+1 ) ≤ ψ p-1 n (u n+1 , v n+1 ) -ψ p-1 n (u n , v n ) ≤ (1 -p)∆tF n (u n , v n ).
Proof: ι) We prove first the right inequality. We have: ψ(u n+1 , v n+1 ) = γ; from (3.6), we obtain

ψ n (u n+1 , v n+1 ) = ((1 -p)∆tJ n (û, v)) 1/(p-1)
and

ψ p-1 n (u n+1 , v n+1 ) ≤ (1 -p)∆t J n (u n , v n ) ψ 2 n (u n , v n ) , that is ψ p-1 n (u n+1 , v n+1 ) ≤ (1 -p)∆t F n (u n , v n ) + 1 (1-p)∆t ψ p-1 n (u n , v n ) .
ιι)Multiplying (3.1) by u n+1 and (3.2) by v n+1 and integrating on Ω, we get:

m (1 -p)∆t Ω u 2 n+1 u m-1 n dx - m (1 -p)∆t Ω u p+1 n+1 u m-p n dx + Ω |∇u n+1 | 2 -αu n+1 v n+1 dx = 0, p (1 -p)∆t Ω v 2 n+1 v p-1 n dx - p (1 -p)∆t Ω v p+1 n+1 dx + Ω |∇v n+1 | 2 -αu n+1 v n+1 dx = 0.
Hence , we get :

1 (1 -p)∆t Ω (mu 2 n+1 u m-1 n + pv 2 n+1 v p-1 n )dx - 1 (1 -p)∆t ψ p+1 n (u n+1 , v n+1 ) + J(u n+1 , v n+1 ) = 0.
By using (4.1), we deduce:

ψ p-1 n (u n , v n ) -ψ p-1 n (u n+1 , v n+1 ) + F (u n+1 , v n+1 ) ≤ 0.
This concludes the proof.

Lemma 4.3. The sequence (J(u n , v n )) n≥0 is nonincreasing Proof: In [START_REF] Le Roux | Semidiscretization in time of nonlinear parabolic equations with blowup of the solutions[END_REF] , we have proved the inequality: 1) .

∀a, b ∈ R + , a p-1 (b -a) 2 ≤ a p+1 -b p+1 - 1 + p 1 -p b 2 (b p-1 -a p-
We deduce from this inequality:

Ω (u n+1 -u n ) 2 u m-1 n dx ≤ Ω u m+1 n dx - Ω u p+1 n+1 u m-p n dx - 1 + p 1 -p Ω u 2 n+1 (u p-1 n+1 -u p-1 n )u m-p n dx
and

Ω (v n+1 -v n ) 2 v p-1 n dx ≤ Ω v p+1 n dx - Ω v p+1 n+1 dx - 1 + p 1 -p Ω v 2 n+1 (v p-1 n+1 -v p-1 n )dx.
Since u n+1 and v n+1 are solutions of (3.1), (3.2), we get:

Ω u 2 n+1 (u p-1 n+1 -u p-1 n )u m-p n dx = (1 -p)∆t m Ω (|∇u n+1 | 2 -αu n+1 v n+1 )dx and Ω v 2 n+1 (v p-1 n+1 -v p-1 n )dx = (1 -p)∆t p Ω (|∇v n+1 | 2 -αu n+1 v n+1 )dx.
Lemma 4.5. If J(u 0 , v 0 ) < 0, for n ≥ 0, we have the inequality:

(4.6) Φ 2/(p+1) n Φ (p-1)/(p+1) n+1 -Φ (p-1)/(p+1) n ≤ 1 m + 1 ψ 2 n (u n , v n ) ψ p-1 n (u n+1 , v n+1 ) -ψ p-1 n (u n , v n ) .
Proof: This inequality may be written:

ψ p+1 n (u n , v n ) + (m + 1)Φ 2/(p+1) n Φ (p-1)/(p+1) n+1 ≤ ψ 2 n (u n , v n )ψ p-1 n (u n+1 , v n+1 ) + (m + 1)Φ n .
By using (4.4) and (4.5), we obtain that a sufficient condition to satify this inequality is:

(p + 1)Φ n + (m -p)µ n + (m + 1)Φ 2/(p+1) n Φ (p-1)/(p+1) n+1 ≤ ((p + 1)Φ n + (m -p)µ n ) 2/(p+1) ((p + 1)Φ n+1 + (m -p)µ n ) (p-1)/(p+1) + (m + 1)Φ n with µ n = m m + 1 Ω u m+1 n dx.
If J(u 0 , v 0 ) < 0, the sequence (Φ n ) n≥0 is increasing, so we get:

(p + 1)Φ n + (m -p)µ n (p + 1)Φ n+1 + (m -p)µ n ≥ Φ n Φ n+1 .
Hence, it is sufficient to prove:

(p + 1)Φ n + (m -p)µ n + (m + 1)Φ 2/(p+1) n Φ (p-1)/(p+1) n+1 ≤ ((p + 1)Φ n + (m -p)µ n )) Φ (p-1)/(p+1) n+1 Φ (1-p)/(1+p) n + (m + 1)Φ n that is µ n (Φ (1-p)/(1+p) n+1 -Φ (1-p)/(1+p) n ) ≤ Φ n (Φ (1-p)/(1+p) n+1 -Φ (1-p)/(1+p) n
) and this inequality is satisfied since µ n ≤ Φ n .

Lemma 4.6. If J(u 0 , v 0 ) < 0, we have the estimate:

(4.7) Φ 2/(p+1) n Φ (p-1)/(p+1) n+1 -Φ (p-1)/(p+1) n ≤ 1 -p 1 + m ∆tJ(u n , v n ) Proof:
We deduce the estimate immediately from (4.2) and (4.6)

Theorem 4.7. If J(u 0 , v 0 ) < 0, the numerical solution blows up in a finite time T * such that

T * < 1 + m 1 -p Ω m m+1 u m+1 0 + p p+1 v p+1 0 dx -J(u 0 , v 0 ) . 
Proof: From (4.7), we get Φ

(p-1)/(p+1) n+1 ≤ Φ (p-1)/(p+1) n + 1-p 1+m ∆tΦ -2/(p+1) n
J(u n , v n ) and since the sequence (J(u n , v n )) n≥0 is decreasing and the sequence (Φ n ) increasing, we get :

Φ (p-1)/(p+1) n+1 ≤ Φ (p-1)/(p+1) 0 1 + 1 -p 1 + m t n Φ -1 0 J(u 0 , v 0 )
and we deduce the estimate.

Remark 4.8. In the case p = m, we obtain the same bound for the numerical blow-up time and for the blow-up time of the exact solution. In the case p < m, the bound obtained for the numerical blow-up time is inferior to the estimate obtained for the blow-up time of the exact solution

The case p = m

In the case p = m, the functionals ψ n and F n are independent of n. We shall note them respectively ψ and F :

ψ(u, v) = Ω m(u m+1 + v m+1 )dx 1 m+1 and F (u, v) = J(u, v) ψ 2 (u, v) .
Besides, we get:

ψ m+1 (u n , v n ) = (m + 1)Φ n , n ≥ 0.
The estimate of the numerical blow-up is in that case the same as the estimate of the exact blow-up.

5.1. Properties of the scheme.

Proposition 5.1. If α > λ 1 and T * is the numerical blow-up time, we get the estimate:

Φ 1 m+1 n ≤ T * T * -t 1 1-m Φ 1 m+1
0 Proof: The estimate (4.2) may be written in this case:

(1 -m)∆tF (u n+1 , v n+1 ) ≤ ψ m-1 (u n+1 , v n+1 ) -ψ m-1 (u n , v n ) ≤ (1 -m)∆tF (u n , v n ).
We deduce, since (F (u n , v n )) n≥0 is a nonincreasing sequence:

ψ m-1 n (u n+j , v n+j ) -ψ m-1 n (u n , v n ) ≤ (1 -m)j∆tF (u n , v n ), ∀j ≥ 0, ψ m-1 n (u n-i , v n-i ) -ψ m-1 n (u n , v n ) ≤ -(1 -m)i∆tF (u n , v n ), ∀i ≥ 0.
So, we obtain:

iψ m-1 n (u n+j , v n+j ) + jψ m-1 n (u n-i , v n-i ) ≤ (i + j)ψ m-1 n (u n , v n ).
If T * = N∆t is the numerical blow-up time, by choosing i = n, j = Nn, we get :

(N -n)ψ m-1 (u 0 , v 0 ) ≤ Nψ 1-m (u n , v n ) or, ψ 1-m (u n , v n ) ≤ T * T * -t ψ 1-m (u n , v n ).
This is the same estimate as for the exact solution.

Proposition 5.2. If α < λ 1 , the numerical solution tends to 0 when t-→ + ∞.

Proof: In that case, we get: J(u, v) ≥ (λ 1α) Ω (u 2 + v 2 )dx ≥ 0.

Besides, since m < 1, for any φ ∈ L 2 (Ω), we have: Ω φ 2 dx ≥ C(Ω) Ω φ m+1 dx 2 m+1

and by using Young inequality, we get

2 - 1 -m m + 1 Ω (u m+1 + v m+1 )dx 2 m + 1 ≤ Ω u m+1 dx 2 m + 1 + Ω v m+1 dx 2 m + 1 ≤ 1 C(Ω) Ω (u 2 + v 2 )dx .
So, we get : F (u, v) ≥ λ 1α C(Ω) .

Besides, from (4.2), we obtain ψ m-1 (u n+1 , v n+1 ) ≥ ψ m-1 (u n , v n ) ≥ λ 1α C(Ω) ∆t and

ψ m-1 (u n , v n ) ≥ ψ m-1 (u 0 , v 0 ) + λ 1 -α C(Ω t n .
We deduce: lim n-→+∞ Ω (u m+1 + v m+1 )dx = 0. In the same manner as in proposition (2.5), we deduce that lim We now obtain an estimate for θ : By multiplying the equations (3.1), (3.2) by ρ 1 and integrating on Ω, we get:

m 1 -m Ω u n+1 u m-1 n ρ 1 dx - m 1 -m Ω u m n+1 ρ 1 dx + λ 1 ∆t Ω (u n+1 -v n+1 )ρ 1 dx = 0, m 1 -m Ω v n+1 v m-1 n ρ 1 dx - m 1 -m Ω v m n+1 ρ 1 dx + λ 1 ∆t Ω (v n+1 -u n+1 )dx = 0.
By using the inequality: u m n+1 ≤ (1m)u m n + mu n+1 u m-1 n and the same inequality applied to the function v, we get

Ω u m n+1 ρ 1 dx ≤ Ω u m n ρ 1 dx + ∆t λ 1 m Ω (v n+1 -u n+1 )ρ 1 dx, Ω v m n+1 ρ 1 dx ≤ Ω v m n ρ 1 dx + ∆t λ 1 m Ω (u n+1 -v n+1 )ρ 1 dx,

Theorem 3 . 4 .

 34 If the functions u n and v n are positive, continuous in Ω and satisfy the condition (3.3), then system (3.1), (3.3) has a unique positive solution.

Proposition 5 . 3 .

 53 If α = λ 1 , then lim n-→+∞ u n = lim n-→+∞ v n = θρ 1 where θ is depending on the initial conditions. Proof: We have the equality: Φ n+1 -Φ n = 1 m+1 (ψ m+1 (u n+1 , v n+1 )ψ m+1 (u n , v n )) and from the inequality ∀a, b ∈ R + , a m+1b m+1 ≤ 1 + m 1m a 2 b m-1a m-1 ,we obtain:Φ n+1 -Φ n ≤ 1 1m ψ 2 (u n+1 , v n+1 ) ψ m-1 (u n , v n )ψ m-1 (u n+1 , v n+1 ) ≤ -∆tJ(u n+1 , v n+1 ).

  v n = θρ 1 .

So, we obtain:

From the inequality [START_REF] Le Roux | Semidiscretization in time of nonlinear parabolic equations with blowup of the solutions[END_REF] :∀a, b ∈ R + , a p+1b p+1 ≤ 1+p 1-p a 2 (b p-1a p-1 ), we deduce:

and by using (4.2), we get:

So, we get

We deduce:

We note

Proof: We have the equality :

Besides, we get:

and we deduce:

By using (4.3) , we obtain Φ n -Φ n+1 ≤ ∆tJ(u n , v n ).

If J(u 0 , v 0 ) < 0, since the sequence (J(u n , v n )) n≥0 is nonincreasing, we deduce that the sequence (Φ n ) n≥0 is increasing.

and then:

We deduce:

Convergence of the scheme.

In this section, we obtain estimates on the numerical solution so we can extract by compactness a convergent subsequence. In order to prove that the limit is solution of the system (1.1), we need an hypothesis on the initial condition, (this is due to the fact that we have a negative power in the scheme and we may not use a Holdër inequality). If the initial condition does not satisfy the hypothesis, we observe numerically that this hypothesis is satisfied after a few times steps and the scheme again converges.

Let us denote by

We denote u ∆t and v ∆t the approximation of u and v defined by:

Theorem 5.4. The sequences (u ∆t ) and (v ∆t ) are uniformly bounded in C(0, T ; H 1 0 (Ω)) and H 1 (0, T ; L 2 (Ω))

Proof: Since T < T * 1 , the functions (u n ) n≥0 and (v n ) n≥0 are uniformly bounded in C(0, T ; Ω) and since J(u n , v n ) is nonincreasing, we get: J(u n , v n ) ≤ J(u 0 , v 0 ). We deduce that the sequences (∇u n ) n≥0 and (∇v n ) n≥0 are uniformly bounded in L 2 (Ω).

We prove now that the sequences ( du ∆t dt ) and ( dv ∆t dt ) are uniformly bounded in L 2 (0, T ; L 2 (Ω)). We have:

From the following inequalities,

and we obtain analogous inequality for v ∆t . Hence, we get:

dx and this quantity is bounded from below; we deduce that the sequences are uniformly bounded in L 2 (0, T ; L 2 (Ω)).

Since the sequences (u ∆t ) and (v ∆t ) are uniformly bounded in C(0, T ; H 1 0 (Ω)) ∩ H 1 (0, T ; L 2 (Ω)), we can extract subsequences which converge to functions u and v in C(0, T ; Ω) if d = 1 and in ( Simon [6]). In order to prove that the limits u, v are solutions of the system (1.1), we use the same proof as in [START_REF] Le Roux | Semidiscretization in time of nonlinear parabolic equations with blowup of the solutions[END_REF]; so we need to estimate the quantities (u

. This is the object of the two next lemmas. Lemma 5.5. For n ≥ 0, we have the inequalities:

Proof: These inequalities are proved recurrently; it is true for n = 0. Assume it is true at the order n -1, that is :

v n will be subsolutions of (1.1) if :

But u n , v n are the solutions at the time level t n , so we get:

From the recurrence hypotheses, the second members of these two inequalities are non positive and the inequalities (5.1) are satisfied at the order n.

Lemma 5.6. Assume that the initial conditions u 0 , v 0 satisfy: There exists a constant C 0 such that

Then, we have the estimates:

.

By using the recurrence hypothesis, we obtain the estimates (5.3).

Remark 5.7. If Au 0αv 0 ≥ 0 and Av 0αu 0 ≥ 0, then T 2 = +∞ and we obtain:

From these two lemmas, we obtain the inequalities

and analogous inequalities for v n . Then, we obtain the convergence of the scheme as in [START_REF] Le Roux | Semidiscretization in time of nonlinear parabolic equations with blowup of the solutions[END_REF].