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NUMERICAL SOLUTION OF A NONLINEAR REACTION-DIFFUSION PROBLEM IN THE CASE OF HS-REGIME

In this paper, the author propose a numerical method to compute the solution of the Cauchy problem: w t -(w m w x ) x = w p , the initial condition is a nonnegative function with compact support, m > 0, 1 < p < m + 1. The problem is split in two parts: A hyperbolic term solved by using the Hopf and Lax formula and a parabolic term solved by a backward linearized Euler method in time and a finite element method in space. Estimates of the numerical solution are obtained and it is proved that any numerical solution is unbounded.

Introduction

In this paper, we study a numerical method to compute the solution of the Cauchy problem :

(1.1) w t -(w m w x ) x = w p , t > 0, x ∈ R w(x, 0) = w 0 (x) ≥ 0, x ∈ R w 0 is a function with compact support, m > 0 , 1 < p < m + 1. Samarskii et al [START_REF] Samarskii | Blow-up in Quasilinear Parabolic Equations[END_REF], see also [START_REF] Bandle | Blowup in diffusion equations:A survey[END_REF], [START_REF] Bebernes | On classification of blow-up patterns for a quasilinear heat equation[END_REF], [START_REF] Galaktionov | On localization conditions for unbounded solutions of quasilinear parabolic equations[END_REF], [START_REF] Galiaktonov | Asymptotic behaviour of unbounded solutions of the nonlinear parabolic equation u t = (u σ u x ) x + u β u. Differential Equations[END_REF], [START_REF] Galaktionov | On a blow-up set for the quasilinear heat equation u t = (u σ u x ) x + u σ+1[END_REF], [START_REF] Galaktionov | Best possible upper bounds for blowup solutions of the quasilinear heat conduction equation with source[END_REF] , [START_REF] Sacks | Global behavior for a class of nonlinear evolution equations[END_REF] have obtained theoretical results on this problem. In the case 1 < p < m + 1, the numerical solution blows up in finite time and there is no localization (HS-regime) that is u(t, x)-→∞ in R if t-→T 0 .

A numerical method to solve (1.1) has been proposed in the case of S-regime (p = m + 1) in [START_REF] Le Roux | Numerical solution of a nonlinear reaction diffusion equation[END_REF] and in the case of LS-regime (p > m + 1) [START_REF] Le Roux | Numerical solution of a cauchy problem for nonlinear reaction diffusion processes[END_REF]. If we denote ω L = x ∈ R/u(T - 0 , x) = ∞ , in the case of S-regime, L * = mes(ω L ) is positive while in the case of LS-regime , L * = 0. The problem is solved by using a splitting method; for that, it is more convenient to work with the function u = w m . Problem (1.1) may be written:

(1.2) u t -1 m u 2 x -uu xx = mu q+1 , t > 0, x ∈ R u(x, 0) = u 0 (x) = w m 0 (x), x ∈ R
with q = p-1 m , m > 0, q < 1. This problem is split in two parts: a hyperbolic problem which will be solved exactly at the nodes at each time step and allows the extension of the domain and a parabolic problem which will be solved by a backward linearized Euler method which allows the blow up of the solution. In [START_REF] Le Roux | Numerical solution of a nonlinear reaction diffusion equation[END_REF], [START_REF] Le Roux | Numerical solution of a cauchy problem for nonlinear reaction diffusion processes[END_REF], the convergence of the scheme has been proved in the cases q = 1 and q > 1. It has also been proved that for q = 1, the numerical solution blows up in finite time for any initial condition 1 and that its support remains bounded if the initial condition is smaller than a self-similar solution. In the case, 1 ≤ q < m+2 m , any numerical solution is unbounded while for q > m+2 m (p > m + 3) if the initial condition is sufficiently small, a global solution exists and if q ≥ m+2 m for large initial condition, the solution blows up in a finite time. We observe numerically that in any case, the unbounded solution is strictly localized and blows up in one point and that for q = m+2 m also, if the initial condition is sufficiently small, a global solution exists. Here, we generalize this method to the case q < 1.

An outline of the paper is as follows:

In Section 2, we present the numerical scheme. In Section 3, we obtain estimates of the approximate solution and of its derivative in space. In Section 4, we prove that if q < 1, (p < m + 1)) any numerical solution is unbounded

Definition of the numerical solution

In order to solve problem (1.2), we separate it in two parts: a hyperbolic problem

(2.1) u t - 1 m (u x ) 2 = 0, x ∈ R, t > 0 and a parabolic problem (2.2) u t -uu xx = mu q+1 , x ∈ R, t > 0
We denote by ∆t n the time increment between the time levels t n and t n+1 , n ≥ 0 and by u n h the approximate solution at the time level t n . This solution will be in a finite-dimensional space which will be defined below. Without loss of generality, we can assume that the initial condition is a continous function with a symmetric compact support [-s 0 , s 0 ]. Let N ∈ N, the space step h is defined by h = s 0 N ; we note x i = ih, i ∈ Z, I i = (x i-1 , x i ) and we define the finite dimensional space V 0 h by

(2.3) V 0 h = φ h ∈ C 0 (R)/φ h (x) = 0, x ∈] -s 0 , +s 0 [, φ h|I i ∈ P 1 , i = -N + 1, N For φ h ∈ V 0 h , we note φ i = φ h (x i ), i ∈ Z and for any function v ∈ C 0 (R) with compact support [-s 0 , +s 0 ], we define its interpolate by π 0 h v ∈ V 0 h and π 0 h v(x i ) = v(x i ), i ∈ Z.
The support of the solution u n h will be denoted [-s n -, s n + ] and will be computed at each time level by solving (2.1).

We denote

N n -= s n - h , N n + = s n + h , h n -= s n --(N n --1)h, h n + = s n + -(N n + -1)h (for x ∈ R, [x]
denotes the greatest integer less than x), so we get: h ≤ h n -, h n + < 2h.

We then define the finite-dimensional space V n h by: , the function u n+1 h is obtained by solving (2.2) with a backward linearized Euler method in time and a P 1 -finite element method with numerical integration in space. This function has the same support as u

V n h =    φ h ∈ C 0 (R)/φ h (x) = 0, x ∈] -s n -, s n + [, φ h|I i ∈ P 1 , i = -N n -+ 2, N n + -1 φ h|(-s n -,x -N n -+1 ) , φ h|(x N n + -1 ,s n + ) ∈ P 1   
n+ 1 2 h .

Computation of the solution of the hyperbolic problem.

The hyperbolic problem is independent of q; we use the same method as in [START_REF] Le Roux | Numerical solution of a nonlinear reaction diffusion equation[END_REF] for the case q = 1.It is not necessary in this case to use P 2 -interpolation on the last interval since there no localization. We use the Hopf and Lax formula which gives explicitely the solution to (2.1) with the starting data u n h at the time level t = t n . Here, we simply recall the results obtained in [START_REF] Le Roux | Numerical solution of a nonlinear reaction diffusion equation[END_REF] We define the piecewise constant functionv n h by

v n i = u n i -u n i-1 h on I i , -N n -+ 2 ≤ i ≤ N n + -1 v n N n + = - u n N n + -1 h n + on (x N n + -1 , s n + ) v n -N n -+1 = u n -N n -+1 h n - on (-s n -, x -N n -+1 ). Let us denote r n = ∆tn h , v s = v L s (R) , s > 0.
Proposition 2.1. If the following stability condition

(2.4) r n v n h ∞ ≤ m 2 is satisfied, then the solution u n+1 h of (2.1) is defined by u n+ 1 2 i = u n i + ∆t n m max(0, -v n i , v n i+1 ) 2 , -N n -+ 1 ≤ i ≤ N n + -1 s n+1 + = s n + - ∆t n m v n N n + s n+1 - = s n -+ ∆t n m v n -N n -+1 If N n+1 + = N n + + 1, we get u n+ 1 2 N n + = 1 - h h n + u n N n + -1 + ∆t n m v n N n + 2
and we get analogous formula at the other end of the support.

Computation of the parabolic problem.

The approximate solution at t n+1 is now obtained by solving problem (2.2). We introduce the approximate scalar product on

V n+1 h : ∀φ h , ψ h ∈ V n+1 h , (φ h , ψ h ) h = 1 2 (h n+1 - + h)φ -N n+1 - +1 ψ -N n+1 - +1 + h i=N n+1 + -2 i=-N n+1 - +2 φ i ψ i + 1 2 (h n+1 + + h)φ N n+1 + -1 ψ N n+1 + -1 .
We define u n+1 h as the solution of the following problem:

(2.5)

∀φ h ∈ V n+1 h ,            (u n+1 h , φ h ) h + ∆t n ((u n+1 h ) x , (u n+ 1 2 h φ h ) x = (u n+ 1 2 h , φ h ) h + mq∆t n π n+1 h u n+ 1 2 h q u n+1 h , φ h h +m(1 -q)∆t n π n+ 1 2 h u n+ 1 2 h q+1 , φ h h
The second member of (2.2) is splitted in two parts in order to obtain the L ∞ -estimate of u n+1 h . This equation may be written:

1 -mq∆t n u n+ 1 2 i q u n+1 i + ∆t n h 2 u n+ 1 2 i 2u n+1 i -u n+1 i-1 -u n+1 i+1 = u n+ 1 2 i + m(1 -q)∆t n u n+ 1 2 i q+1 , -N n+1 - + 2 ≤ i ≤ N n+1 + -2 1 -mq∆t n u n+ 1 2 N n+1 + -1 q u n+1 N n+1 + -1 + ∆t n h u n+ 1 2 N n+1 + -1 2 h n+1 + u n+1 N n+1 + -1 - 2 h + h n+1 + u N n+1 + -2 = u n+ 1 2 N n+1 + -1 + m(1 -q)∆t n u n+ 1 2 N n+1 + -1 q+1 1 -mq∆t n u n+ 1 2 -N n+1 - +1 q u n+1 -N n+1 - +1 + ∆t n h u n+ 1 2 -N n+1 - +1 2 h n+1 - u n+1 -N n+1 - +1 - 2 h n+1 - + h u n+1 -N n+1 - +2 = u n+ 1 2 -N n+1 - +1 + m(1 -q)∆t n u n+ 1 2 -N n+1 - +1 q+1 
We get immediately the result: 

(2.7) u n+1 h ∞ ≤ u n h ∞ (1 + m(1 -q)∆t n u n h q ∞ ) 1 -mq∆t n u n h q ∞
Proof: We get immediately from the Hopf and Lax formula that u

n+ 1 2 h ∞ ≤ u n h ∞ . If we denote i 0 the index such that u n+1 i 0 = u n+1 h ∞ , we get from (2.2), (2.2), (2.2) that u n+1 i 0 ≤ u n+ 1 2 i 0 1 + m(1 -q)∆t n u n+ 1 2 i 0 q 1 -mq∆t n u n h q ∞
which proves the lemma.

We deduce the following theorem:

Theorem 2.4. Under the hypotheses of proposition 2.2, the numerical solution exists at least until the time

(2.8) T 1 = 1 mq u 0 h q ∞
and the following estimate holds:

(2.9) u n h ∞ ≤ u 0 h ∞ 1 -mqt n u 0 h q ∞ 1 q
Proof: This result is proved recurently. It is true for n = 0. If we suppose that we have estimate (2.9) at the time level t n , we get from (2.7) , at the time t n+1:

u n+1 h ∞ ≤ u n h ∞ 1 + m(1 -q)∆t n u n h q ∞ 1 -mq∆t n u n h q ∞ or u n+1 h ∞ ≤ u 0 h ∞ 1 -mqt n u 0 h q ∞ + m(1 -q)∆t n u 0 h q ∞ 1 -mqt n+1 u 0 h q ∞ -1 -mqt n u 0 h q ∞ 1 q
The inequality (2.9) will be satisfied at the time t n+1 if :

1 -mqt n+1 u 0 h q ∞ + m∆t n u 0 h q ∞ ≤ 1 -mqt n u 0 h q ∞ 1 q 1 -mqt n+1 u 0 h q ∞ 1-1 q
By using the Taylor formula, we get:

1 -mqt n u 0 h q ∞ 1 q -1 -mqt n+1 u 0 h q ∞ 1 q ≥ m∆t n u 0 h q ∞ 1 -mqt n+1 u 0 h q ∞ 1 q -1
and the inequality (2.3) is satisfied:

Lemma 2.5. Under the hypothesis of Proposition( 2.2), we have the estimate:

v n h ∞ ≤ C
for t n ≤ T < T 1 where C is a constant depending on T and u 0 .

Proof: We have the inequality( [START_REF] Le Roux | Numerical solution of a nonlinear reaction diffusion equation[END_REF] ):

v n+ 1 2 h ∞ ≤ v n h ∞ . It remains to estimate v n+1 h ∞ . From (2.
2), we deduce the following equation satisfied by v n+1 h : 

1 -mq∆t n u n+ 1 2 i q v n+1 i + ∆t n h 2 v n+1 i u n+ 1 2 i + u n+ 1 2 i-1 -v n+1 i-1 u n+ 1 2 i-1 -v n+1 i+1 u n+ 1 2 i = v n+ 1 2 i + mq ∆t n h u n+ 1 2 i q -u n+ 1 2 i-1 q u n+1 i-1 + m(1 -q) ∆t n h u n+ 1 2 i q+1 -u n+ 1 2 i-1 q+1 -N n+1 - + 3 ≤ i ≤ N n+1 + - 2 
1 -mq∆t n u n+ 1 2 i q v n+1 i + ∆t n h 2    v n+1 i -v n+1 i+1 u n+ 1 2 i + v n+1 i -v n+1 i-1 u n+ 1 2 i 1 -mq∆t n u n+ 1 2 i q -u n+ 1 2 i-1 q 1 -mq∆t n u n+ 1 2 i q    = v n+ 1 2 i + mq ∆t n h u n+ 1 2 i q -u n+ 1 2 i-1 q u n+ 1 2 i 1 + m(1 -q)∆t n u n+ 1 2 i-1 q 1 -mq∆t n u n+ 1 2 i-1 q +m(1 -q) ∆t n h u n+ 1 2 i q+1 -u n+ 1 2 i-1 q+1 Let i 0 the index such that v n+1 i 0 = v n+1 h ∞ .
From the previous equality, we get:

(1 -mq∆t n u n h q ∞ ) v n+1 i 0 ≤ v n+ 1 2 i 0 + m(1 -q) ∆t n h u n+ 1 2 i 0 q+1 -u n+ 1 2 i 0 -1 q+1 +mq ∆t n h u n+ 1 2 i 0 q -u n+ 1 2 i 0 q u n+ 1 2 i 0 1 + m(1 -q)∆t n u n+1 h ∞ 1 -mq∆t n u n h ∞
We easily obtain:

1 h u n+ 1 2 i 0 q+1 -u n+ 1 2 i 0 -1 q+1 ≤ (q + 1) u n h q ∞ v n+ 1 2 i 0 and 1 h u n+ 1 2 i 0 q -u n+ 1 2 i 0 q u n+ 1 2 i 0 ≤ v n+ 1 2 i 0 u n h q ∞
and we get:

(1 -mq∆t n u n h q ∞ ) v n+1 h ∞ ≤ v n h ∞ 1 + m(1 -q 2 )∆t n u n h q ∞ + mq∆t n u n h q ∞ 1 + m(1 -q)∆t n u n+1 h q ∞ 1 -mq∆t n u n h q ∞
By (2.9), we get easily there exist a positive constant C depending on m, q, T, u 0 h ∞ such that

v n+1 h ∞ ≤ (1 + C∆t n ) v n h ∞ Hence for t n ≤ T < T 1 , we get v n h ∞ ≤ C.
Lemma 2.6. Under the hypotheses of Proposition (2.2), we have the estimate:

(2.10) v n h 1 ≤ C for t n < T < T 1
where C is a constant depending on T and u 0 .

Proof: From the properties of the semigroup operator S [START_REF] Le Roux | Numerical solution of a nonlinear reaction diffusion equation[END_REF], we get: v

n+ 1 2 h 1 ≤ v n h 1
, and by using the equations satisfied by v

n+ 1 2 i , -N n+1 - ≤ i ≤ N n+1
+ , we obtain:

1 -mq∆t n u n+ 1 2 h q ∞ v n+1 h 1 ≤ v n+ 1 2 h 1 1 + m∆t n u n+ 1 2 h q ∞ q 2 u n+1 h ∞ + (1 -q 2 ) u n+ 1 2 h ∞
and we immediately deduce the estimate (2.10).

In this case, since q < 1, the variation of v n h is not bounded.

Blow-up of the solution

In this part, we prove that for q < 1 the solution blows up in finite time.

Construction of unbounded solutions.

Define the function

θ(x) = 1 -x 2 a 2 , |x| ≤ a 0, |x| ≥ a We note θ h = π h θ. If the initial condition is u 0 h = λ T 1 q θ h (ξ 0 ) with ξ 0 = x T q-1 2q
, we prove that it is possible to choose λ and a in such a manner that

u n h (x) ≥ λ (T -tn) 1 q θ h (ξ n ), with ξ n = x (T -t n ))
1-q 2q and then the numerical solution blows up in finite time.

We denote

ζ n = (T -t n ) q -1 2q , ûn h (x) = λ (T -tn) 1 q θ h (ξ n ).
The support of ûn h is ] -aζ n , aζ n [; its lenth is increasing with the time.

If ûn h ≤ u n h , we get ûn+ 1 2 h ≤ u n+ 1 2 h . The support of ûn+ 1 2 h is [-ŝ n+1 -, ŝn+1 + ] with ŝn+1 + ≤ s n+1 , ŝn+1 - ≤ s n+1 -

Since ûn

h is a symmetric function, it is sufficient to study the case x ≥ 0,(i ≥ 0). We get for i ≥ 0,

ûn+ 1 2 i = ûn i + ∆t n m (v n i ) 2
for i such that x i ≤ aζ n since the function ûn h is decreasing for x ≥ 0 and we have:

vn i = ûn i -ûn i-1 h = λ (T -t n ) 1 q θ n i -θ n i-1 h with θ n i = θ(ξ n i )
. Hence, we obtain:

ûn+ 1 2 i = λ (T -t n ) 1 q θ n i + 4λ ma 2 ∆t n (T -t n ) 1 q 1 -θ n i-1 2 with θ n i-1 2 = θ(ξ n i-1 2 ), ξ n i-1 2 = 1 2 ξ n i + ξ n i-1 . Then ûn+1 h will be a subsolution of (2.2) if λ (T -t n+1 ) 1 q 1 -mq∆t n ûn+ 1 2 i q θ n+1 i + λ (T -t n+1 ) 1 q ∆t n h 2 ûn+ 1 2 i 2θ n+1 i -θ n+1 i-1 -θ n+1 i+1 ≤ ûn+ 1 2 i + m(1 -q)∆t n ûn+ 1 2 i q+1
By using the equality :

1 h 2 2θ n+1 i -θ n+1 i-1 -θ n+1 i+1 = 2 a 2 ζ 2 n+1
this inequality reduces after simplifications to

λ (T -t n+1 ) 1 q θ n+1 i ≤ ûn+ 1 2 i 1 - 2λ∆t n a 2 (T -t n+1 ) + λ (T -t n+1 ) 1 q mq∆t n ûn+ 1 2 i q θ n+1 i +m(1 -q)∆t n ûn+ 1 2 i q+1
Noting that θ n i-

1 2 = θ n i + h a 2 ζn ξ n i-1 2 = θ n i + η n i with |η n i | ≤ h aζ n
, we get:

ûn+ 1 2 i = λ (T -t n ) 1 q θ n i 1 - 4λ ma 2 ∆t n T -t n + 4λ ma 2 ∆t n T -t n (1 -η n i )
and the inequality (3.1) becomes:

θ n+1 i (T -t n+1 ) 1 q ≤ θ n i (T -t n ) 1 q 1 - 4λ ma 2 ∆t n T -t n - 2λ ma 2 ∆t n T -t n+1 1 - 4λ ma 2 ∆t n T -t n + 4λ ma 2 ∆t n (T -t n+1 ) q+1 q 1 - 2λ ma 2 ∆t n T -t n+1 (1 -η n i ) + mq ∆t n (T -t n+1 ) 1 q ûn+ 1 2 i q θ n+1 i +m(1 -q) ∆t n λ ûn+ 1 2 i q+1
By using the equality

θ n+1 i = θ n i ζ 2 n ζ 2 n+1 + 1 -ζ 2 n ζ 2 n+1
, this inequality reduces to:

θ n i 1 + 4λ ma 2 T -t n+1 T -t n + 2λ a 2 1 - 4λ ma 2 ∆t n T -t n ≤ 4λ ma 2 T -t n+1 T -t n 1 - 2λ a 2 ∆t n T -t n+1 (1 -η n i ) - ζ 2 n+1 ζ 2 n -1 T -t n ∆t n +mq (T -t n+1 ) 1-1 q (T -t n ) 1 q ûn+ 1 2 i q θ n+1 i + m(1 -q) T -t n+1 λ (T -t n ) 1 q ûn+ 1 2 i q+1 . If we denote µ n = 4λ ma 2 ∆t n T -t n since ûn+ 1 2 i ≥ λ (T -tn) 1 q
θ n i (1 -µ n ), the preceding inequality will be satisfied if:

θ n i 1 + 4λ ma 2 + 2λ a 2 -µ n 1 + 2λ a 2 ≤ 4λ ma 2 -µ n 1 + 2λ a 2 (1 -η n i ) - ζ 2 n+1 ζ 2 n -1 T -t n ∆t n +mqλ q ζ 2 n+1 ζ 2 n (θ n i ) q (1 -µ n ) q θ n i ζ 2 n ζ 2 n+1 + 1 - ζ 2 n ζ 2 n+1 (3.1) + m(1 -q)λ q T -t n+1 T -t n (θ n i ) q+1 (1 -µ n ) q+1
From the stability condition, we get:

µ n ≤ h aζ n ≤ h aζ 0 = δ
hence for h sufficiently small, we get: 4λ ma 2 -µ n 1 + 2λ a 2 > 0, and |η n i | ≤ δ So the inequality (3.1) will be satisfied if :

θ n i 1 + 4λ ma 2 + 2λ a 2 -µ n 1 + 2λ a 2 ≤ 4λ ma 2 -µ n 1 + 2λ a 2 (1 -δ) - ζ 2 n+1 ζ 2 n -1 T -t n ∆t n +mqλ q (1 -µ n ) q (θ n i ) q θ n i + ζ 2 n+1 ζ 2 n -1 + m(1 -q)λ q (1 -µ n ) q+1 (θ n i ) q+1 T -t n+1 T -t n
Since θ n i ∈ (0, 1), we introduce the function Φ n (y) defined on (0, 1) by :

Φ n (y) = mλ q (1 -µ n ) q y q+1 q + (1 -q)(1 -µ n ) T -t n+1 T -t n + 4λ ma 2 -µ n 1 + 2λ a 2 (1 -δ) - ζ 2 n+1 ζ 2 n -1 T -t n ∆t n -y 1 + 4λ ma 2 + 2λ a 2 -µ n 1 + 2λ a 2
or Φ n (y) = Aλ q y q+1 + C -By with

A = m (1 -µ n ) q q + (1 -q)(1 -µ n ) T -t n+1 T -t n B = 1 + 4λ ma 2 + 2λ a 2 -µ n 1 + 2λ a 2 C = 4λ ma 2 -µ n 1 + 2λ a 2 (1 -δ) - ζ 2 n+1 ζ 2 n -1 T -t n ∆t n
A sufficient condition to satisfy (3.1) is: Φ n (y) ≥ 0, y ∈ (0, 1). We have Φ n (0) = C, hence we get

Φ n (0) ≥ 4λ ma 2 -δ 1 + 2λ a 2 (1 -δ) - ζ 2 n+1 ζ 2 n -1 T -t n ∆t n But since 0 < q < 1, we get: 0 ≤ ζ 2 n+1 ζ 2 n -1 ≤ 1 -q q ∆t n T -t n+1 ζ 2 n ζ 2 n+1 and C ≥ 4λ ma 2 -δ 1 + 2λ a 2 (1 -δ) - 1 -q q .
So, if the quantity λ a 2 is such that 4λ ma 2 > 1 -q q , if h is sufficiently small, we get C > 0.

Let us define y 0 = C B , y 0 ∈ (0, 1) and if y ≤ y 0 , we obtain Φ n (y) ≥ 0; if y 0 ≤ y ≤ 1, we obtain:

Φ n (y) ≥ Aλ q y q+1 0 -B(1 -y 0 ) . This quantity will be positive if : λ q ≥ B-C Ay q+1 0 . Further, we have:

A ≥ m(1 -δ) q q + (1 -q)(1 -δ) 1 - ∆t n T -t n
The solution at the time level t n+1 exists if mq∆t n ûn h ∞ < 1, that is

∆t n T -t n < 1 mqλ q and if λ ≥ λ 0 > 1 (mq) 1 q
, we get: A ≥ mq(1 -δ) q and Φ n (y) will be positive if:

(3.2) λ q ≥ 1 mq(1 -δ) q 1 q + 2λ a 2 + 4λ ma 2 δ     1 + 4λ ma 2 + 2λ a 2 4λ ma 2 (1 -δ) -δ 1 + 2λ ma 2 - 1 -q q     q+1
The second member is a function of λ a 2 , hence if λ a 2 is fixed such that 4λ ma 2 > 1 -q q , the inequality (3.2) will be satisfied if λ is large enough and h sufficiently small. Hence if the initial condition satisfies u 0h (x) ≥ λ T 1 q θ h (ξ 0 ), λ and a satisfying (3.2), the solution blows up in finite time.

3.2. Blow-up of the solution.

Theorem 3.1. Let 0 < q < 1.The solution of problem (1.2) blows up in finite time.

Proof:Since u 0 (x) ≡ 0, there exists ρ > 0, ǫ > 0, x 0 such that u 0 (x) ≥ ǫ > 0 for x such that |x -x 0 | < ρ. So we can choose T large enough such that λ T 1 q < ǫ and a T 1-q 2q

< ρ.

We have u 0 (x) ≥ λ .

In Fig1, we present the evolution of an initial condition u 0 for m = 1, p = 1.5. The solution blows up in finite time. 

and we have analogous inequalities for i = N n+1 +- 1 ,-+ 2 , -N n+1 - + 1 .

 n+112n+11 N n+1 + , -N n+1 By using (2.2) for i -1, we can replace u n+1 i-1 in the second member by its expression in function of the values of u

  then the solution blows up at time T 0 ≤ T * where T *

Figure 1 .
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