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Abstract

The tracking of surgical instruments offers interesting possibilities for
the development of high level commands for robotic camera holders in
laparoscopic surgery. We have developed a new method to detect instru-
ments in laparoscopic images which uses information on the 3D position
of the insertion point of an instrument in the abdominal cavity. This
information strongly constrains the search for the instrument in each en-
doscopic image. Hence, the instrument can be detected in near real-time
using shape considerations. Early results on laparoscopic images show
that the method is rapid and robust in the presence of partial occlusion
and smoke. Our first experiment on a cadaver validates our approach and
shows encouraging results.
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1 Introduction

Laparoscopic interventions are minimally invasive procedures of the abdominal
cavity which are performed with the assistance of a camera and long, thin
instruments. Small incisions (usually lem) are made, and the abdominal cavity
is insuflated with gas in order to create enough space to move the camera and
instruments. Tubes called trocars are placed through the incisions to seal the
opening and insert the endoscopic camera and the instruments. The surgeon
performs the surgical procedure while an assistant holds the endoscopic camera.

This type of minimally invasive intervention is less traumatizing for the pa-
tient than open surgery: less blood loss, less transfusions, a smaller consumption
of anagelsia and a shorter hospitalization time [1]. However, laparoscopic proce-
dures are more complex to perform for the surgeon and require experience: the
surgeon must use 2D images to perform the procedure, which implies a loss of



depth information. He uses specific instruments which are more difficult to ma-
nipulate than conventional instruments. Moreover, a second surgeon is needed
for the manipulation of the camera; the coordination between the surgeon and
the assistant can be difficult and the images from the endoscopic camera are
not stable.

Several medical robots have been developed for the manipulation of the
camera. The most popular are Aesop® (Computer Motion) and EndoAssist®
(Armstrong Healthcare) [2]. They enhance the quality of the images [3], reduce
the staining of the endoscope, and enable solo surgery since they can be con-
trolled by the surgeon by means such as a vocal command or head movement
[4], [5]. The main obstacles to the diffusion of such systems in hospitals are
their cost, their bulkiness, and the installation time. Moreover, the interaction
between the surgeon and the camera holder remains limited (e. g.: left, right,
up, down, zoom in and zoom out). The system Aesop ® offers the possibility
to save positions of the robotic arm in order to automatically reposition the
endoscope, but due to the passive wrist architecture of the robot, the reposi-
tionning is not accurate [6]. To address this problem, Munoz et al. developed
an adaptative motion control scheme to compensate the positionning errors of
a passive-wrist camera holder [7]. These limits also led to the development of
robotic camera holders more adapted to the surgical environment such as the
body-mounted robot LER (see section 2).

The development of high level commands for robotic endoscopic holders
based on the visual of instruments would be of major clinical added value, since
it would allow the surgeon to concentrate on the surgical procedure rather than
the control of the robot. A few examples of possible tracking strategies are
shown in Fig. 1:
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* in [12] Casals et al. present two strategies when two instruments are in the image : if the two instruments

are “active”, the tracked point is the middle of the segment defined by the two instruments’ tips. If one
instrument is steady, the tracked point also lies on the segment defined by the two tips, but is closer to the
moving instrument.

Figure 1: Examples of possible tracking strategies.



On the contrary to visual-servoing systems, for which the objective is to
automatically move a surgical instrument [10], we do not need to localize and
track very precisely the surgical instruments, in order to develop the strategies
presented in Fig. 1. The main challenge is to retrieve information about each
instrument in the laparoscopic image, with as few modifications as possible of
surgical protocol or surgical instruments.

Several approaches have been proposed in the literature to deal with this
problem. Krupa et al. [10] have designed an instrument holder equipped with
a laser beam which projects a pattern on the surface of the organs, allowing
the system to safely bring the instrument to a desired location. This approach
allows the use of simple, robust, and quick image analysis routines but raises
cost issues and adds to the complexity of the laparoscopic set-up. [16] also
worked with an instrument holder (a DaVinci® system [17]) and used kine-
matic information and template images of the instruments to detect them in
stereo images. This approach requires a robotic instrument holder and implies
the use of a limited set of instruments. Wei et al. [11] have designed a color
mark fixed on the instrument and use color information to track it with a stereo-
scopic laparoscope. Their method is robust in the presence of partial occlusion
and blood projection, but it requires to equip all the instruments with marks
and raises sterilization issues. Rather than using color information, Casals et
al. [12] and Tonet et al. [9] localized a color mark in 3D fixed on an instru-
ment with a monoscopic laparoscope using line detection algorithms. The main
drawbacks of the approaches based on the use of artificial marks are that they
add constraints and complexity to the laparoscopic procedure; each instrument
has to be equipped with a mark, raising the question of sterilization. Moreover,
when color information is used to detect the marks, the segmentation of the
markers has to be robust to variations in illumination. Wang et al. [13] used
color classification to detect the instruments among organs but the computation
time has not been indicated although it is an issue for a smooth tracking. More
recently, Doignon et al. [14] defined a new color purity component that was used
to robustly detect instruments in laparoscopic images. Their approach works at
half the video rate, but is adapted to gray or metallic instruments only, although
some standard laparoscopic instruments have colored shafts. Finally, [15] pro-
posed an approach based on the detection of the lines in the image which did
not require a color mark, but some parameters have to be tuned manually by
the user, which can hardly be envisioned in the context of laparoscopic surgery.
It must also be noted that amongst these approaches, the only one that enables
the surgeon to identify the instrument he wishes to track is the use of a color
mark with a different color for each instrument.

In this article, we present a method to detect the instruments which requires
no artificial marker. It uses information on the 3D position of the insertion point
of an instrument in the abdominal cavity to detect the latter using shape con-
siderations. With an approach based on the shape of the instruments rather
than their color, any standard laparoscopic instrument can be detected, what-
ever its color. The originality of this method is that knowing the position of the
insertion point of an instrument strongly reduces the possible location of the
instrument in the endoscopic images. Thus, it can be searched using only image
processing in near real time. Moreover, selecting an insertion point allows the
user to choose the instrument to track.



Our primary objective is to detect the axis of the instrument; as stated
in Fig. 1, when several instruments are visible in the image, the intersection
of their axes gives information about the area of interest in the image. This
information is sufficient to move the endoscope such that the area of interest
is roughly centered in the image. Our secondary objective is to detect the tip
of the instrument. This information allows us to keep the tip of an instrument
roughly in the center of the image, or to develop tracking strategies for the
tracking of several instruments (Fig. 1). For this purpose, we do not require
subpixel precision but rather need to roughly determine the position of the
tip. A last objective is to detect the edges of the instrument in order obtain
information about the distance between the tip of an instrument and the camera,
as described in [9]. This allows us to control the zoom of the camera as well as
its orientation.

Early results on laparoscopic images show that our detection method is quick
and robust in the presence of partial occlusion and smoke, with sufficient preci-
sion for the objective of controlling the movements of a robotic camera holder.
Our first cadaver test, during which we tracked the tip on one instrument,
further proves the feasibility of the approach and allowed us to determine the
improvements that are required to comply with real clinical conditions.

2 Material

We work with a three degrees of freedom camera holder prototype (the Light
Endoscopic Robot, LER) developed by Berkelman et al. [18]. The LER is a
lightweight robot (625 grs. without the camera and the endoscope) which can
be directly positioned on the abdomen of the patient, as illustrated by Fig. 2.

Figure 2: a) the LER mounted on a cadaver, b) degrees of freedom of the LER.

The robot is controlled by a mini-joystick (Fig. 2) or a vocal command
which can be activated or stopped with a dead-man switch. When the surgeon
releases his foot from the switch, the microphone is muted and the movement
of the robot is interrupted. Simple commands (move left, right, etc.) have been
integrated to a control application. New commands can easily be added to the
application.



The LER and the endoscopic camera were calibrated using OpenCV library
[20] in order to use the robotic system to measure the 3D positions of the inser-
tion points of the instruments (see section 3.1). The intrinsic calibration of the
camera was performed using a standard calibration method with a calibration
grid [21]. It provided the transformation C linking the 3D coordinates of a point
expressed in the camera frame R¢ to its 2D coordinates in the image frame Rj
(see Fig. 3) :

p/r; = CPR.

Since the position of the camera frame varies with time, an extrinsic cali-
bration was performed in order to obtain a rough estimation of the rigid trans-
formation T between the camera frame Ro and a fixed frame linked to the
robot, for a position of reference of the robot. We defined the origin of the
fixed frame Ry as the intersection of the two rotation axes of the robot. One of
the axes of Ry is normal to the base plane of the LER and the two other axes
belong to the base plane of the LER. We defined the end-effector frame as the
spherical-coordinates frame centered on the tip of the endoscope, and assumed
that the camera frame R¢o and the end-effector frame were superposed (see Fig.
3). With this approximation, we only needed to estimate roughly the distance
p0 of the tip of the endoscope to the origin of Ry for the reference position of
the LER, in order to compute the rigid transformation T(6, ¢, p, p0) between
R¢ and Ry, for any position of the endoscope. The measurement of p0 was done
once, with an optical localizer. This is of course a rough approximation, but as
explained in section 1, we do not require a sub-pixel precision for our objectives.
We will also explain further on how the instrument detection method deals with
calibration uncertainties.

Once the system is calibrated, the 2D coordinates of a point in the endoscopic
image can be computed using its 3D coordinates in the fixed frame linked to
the robot :

P/r; = CPRC = CT(67 ¢7 P PO)PRO

Rn fixed frame

Image plane

Figure 3: Calibrated system: if the coordinates of P are known in Ry, its pro-
jection on the image plane can be computed thanks to the calibration matrices
T (geometric model of the robot) and C' (pinhole model of the camera).



3 Method

In this section, we first present how the 3D positions of the insertion points of
the instruments are computed. Then we describe our simple shape model of a
laparoscopic instrument. Finally, we explain how, using this information, we
find the axis of an instrument, its tip, and its edges. The general framework of
the algorithm is presented in 4. In an initialization phase, the surgeon measures
the 3D positions of the insertion points with the LER (see section 3.1). In order
to track an instrument, the surgeon selects it using its insertion point. The 3D
position of the insertion point is projected on the image plane to constrain the
search for the instrument in the image (sections 3.2 to 3.6).

Selection of the
.~ instrument to track

Initialization :
computation of the positions 3D positions of
of the insertion points insertion points

of the instruments

projection of the
insertion point

—  ofthe instrument

to track on the
image plane A

Cumrent LER
position LER
T
controllers

Segmentation

I

Search of the axis
of the instrument

I

Search for the tip
of the instrument ————»
along the axis

l

Search for the edges Zoom
& .
of the instrument visual servoing

Orientation
visual servoing

Candidate edge points

Figure 4: Diagram of the different steps of the tracking framework. In this
article we focused on the presentation of the instrument detection method (gray
block).

3.1 Measurement of the 3D positions of the insertion points
of the instruments

The 3D positions of the insertion points of the instrument are measured at the
beginning of the intervention. Since the surgeon gives orders to the robot with
a vocal command, we have developed a ‘vocal mouse’ which allows the user
to move a cursor on the endoscopic image. For two different positions of the
camera in which the insertion point is visible, the surgeon selects the position
of the insertion point in the image with the vocal mouse. Using the calibration
phase (section 2), we can compute for each position of the camera the projective



line which passes through the insertion point. By calculating the intersection of
the two projective lines (or the point in space for which the distance between
the two lines is minimal), we obtain the 3D coordinates of the insertion point
in the robot frame.

This initialization step could be easily integrated into the surgical protocol
since the surgeon creates the insertion points at the beginning of the interven-
tion under visual control: for security reasons, when the surgeon makes the
incisions on the abdominal wall, he must position the camera so that he sees his
instrument entering the abdominal cavity. Recently, Doignon et al. presented
an alternative method in which they used a sequence of instrument motions
observed by a stationnary camera to find the insertion point of an instrument
[22].

We show in section 4 our measurements of the 3D position of an insertion
point. The hypothesis that the insertion points are relatively fixed during an
intervention is validated.

3.2 Simple shape model of an instrument in laparoscopic
images

The shaft of a laparoscopic instrument has a cylindrical shape, and if we define
P = proj(T) as the projection of an insertion point 7" in the image plane of the
camera, an instrument can be represented in an image by the following elements
(Fig. 5):

e three lines: a symmetry axis A, and two edges which are symmetrical
compared to A. The positions of these three lines are constrained by
the position of P: C is a circle centered on P of radius R such that the
symmetry axis and the two edges intersect C ;

e a point S, which represents the tip of the instrument. S must belong to

A.

C2, Center P2=proj(T2)
Radius RZ

C1, Center P1=proj(T1)
Radius R1

Image plane

Figure 5: Representation of the instruments in a laparoscopic image. The po-
sition of each instrument in the image is constrained by the position of the
projection of its insertion point in the abdominal cavity.



It must be noted that since we use a pinhole model [23] for the camera,
we perform a central projection, which does not conserve distances. Thus,
the symmetry axis A is not the projection of the symmetry axis of the tool.
Moreover, a precise computation of the distance between each edge and P =
proj(T') would require us to project the cylinder representing the instrument on
the image for all its (unknown) possible orientations.

Rather than performing these computations, we decided to constrain the
position of symmetry axis and the edges using the circle C centered on P of
radius R. Since the diameter d of a laparoscopic instrument is known (usually
6 mm), we bounded the value of R from above by the diameter dy (in pixels)
that the tool would have in the image if it was parallel to the image plane. To
validate this choice, we performed a simulation with the Scilab software [24]. We
modelled the abdominal cavity as a half sphere, the instrument as a cylinder,
and we used the calibration parameters of the camera to model the camera.
The insertion point of the endoscope was fixed on the top of the half sphere.
We positioned the insertion point of the instrument on the surface of the half-
sphere, and the camera inside the half-sphere (Fig. 6). For each position of
the insertion point, for each position of the camera, and for each orientation of
the instrument, we computed the projections P of the insertion point and of
the two edges of the instrument on the image plane (two lines). This allowed
us to compute the distance between each edge and P, and thus check that our
majoration was correct (Fig. 7).

In order to take into account the uncertainties in the calibration parameters
and small movements of the insertion point, it is possible to increase the value
of R.

Endoscope
atud camera

};‘ — L apatoscopic

instnament insertedin
Cirde C, the abdominal cavity

certer P=proj(T)
racius R

Figure 6: Model of the abdominal cavity, camera and instrument.

B R==d02
E d02<R==2d073
O 2d0/3<R<=5d0/6

5o 8 B EEYE

E=30cm

Figure 7: Results of the simulation. Color-scale representation of R depending
on the position of the instrument on the abdominal wall.



3.3 Step 1 - Search for points belonging to the instrument

In this step, we search for points that are likely to belong to the lines (I1 and
[2) representing the edges of the instrument. These points are edges, and the
orientation of their gradients is constrained by the position of P (see Fig. 8).

To extract the edges, we use a gradient method where we compute the
gradient for each point of the image on each color plane. We keep the maximum
of the three gradients, which gives importance to the discontinuities in the image,
and store the norm and orientation of the maximum. Points where the gradient
is maximum are defined as edges.

We then exploit information about the orientation of the gradient to remove
several edge points that cannot correspond to the instrument; an edge point
I can belong to the lines representing the edges of the instrument only if its
gradient meets the constraints of section III. A: I lies in a zone characterised
by the position of P = proj(T) as illustrated by Fig. 8:

\
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Figure 8: edge detection constrained by the position of the insertion point. In
the top figure, the orientation of the gradient is such that the edge point might
correspond to the edge of the instrument. In the bottom figure, the orientation
is such that the edge point cannot correspond to the instrument.

In other terms, an edge point I of gradient G(x,y) can belong to I1 or [2
only if:

cot(Pmin) <= g—; <= cot(Pmaz), Where Omaz = —Pmin = arccos(ﬁ)

After this process, we obtain a list of points, many of which correspond to the
tool. We refine this segmentation process by keeping only the points whose
gradient norm is above a threshold (mean norm of the candidate points). We
also remove isolated points (simple mask) (see Fig. 9):



C)

Figure 9: a) Original image, b) segmentation without refinement, ¢) segmenta-
tion with threshold d) threshold and removal of isolated points.

In this step, we have extracted, among all the edge points, those which
respect our constraints (later called candidate points). In the next steps, these
points are processed in order to find the axis, the tip, and the edges of the
instrument.

3.4 Step 2 - Search for the orientation of the instrument

We use the candidate points provided by the previous section to detect the axis
using a Hough method [25] that we adapted to our problem to accelerate the
computation time.

In 2D, a line can either be described by its cartesian equation y = ax + b or
by a point (p, 0) in Hough Space, with the relationship p = x cos(6) + ysin 6.
p is the distance of the line to the origin O and 6 is the angle of the line (Fig.
10):

L 4

O

Figure 10: Parametrization of a line in Hough space.
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To implement this method for the search of straight lines in an image, a
preliminary step consists of finding the edge points in the image. Each edge
point in the image votes for a set of parameters (p, #). After this process, the
couples (p, #) with the highest votes correspond to lines in the image.

One of the limitations of this method is its computational time. With the
conventional Hough method, the origin O of the Hough method (Fig. 10) is
usually the center of the image. Thus, if no assumption is made about the
orientation of the lines in the image, the parameter 6 varies in the interval
[0,27] and the parameter p varies in the interval [0, image_diagonal/2].

In order to achieve reasonable computation time, we have shifted the origin
to P, the projection of the insertion point (Fig. 11), so that we can reduce the
interval of variation of the parameter p of the Hough method to [0, R]. The
choice of P as the center of the Hough method also makes it possible to reject
lines that correspond to instruments in the endoscopic image other than the one
inserted through T.

We use the candidate points of the previous step to find a set of points
that correspond to a symmetry axis: if two candidate points I1 and I2 have
gradients of opposite directions (negative scalar product), I'1 can belong to one
edge of the instrument, and 12 to the other. For each couple (11,12) of candidate
points respecting this constraint, we compute the right bisector, characterized
by one point (the middle of [I1,12]) and a direction (the normal of [11,12]). If the
direction doesn’t meet the orientation constraints of step 1, it cannot correspond
to the symmetry axis of the instrument in the image. Otherwise, we characterize
the right bisector in Hough space (Fig. 11). Once all the candidate points have
been processed, the couple (p,f) which obtains most votes corresponds to the
axis of the instrument (Fig. 12).

Endoscopic image

9

‘/raclius: R
center P=proj(T)

Figure 11: Hough method centered on the projection of the insertion point of an
instrument in the image plane. In this figure, the two edge points I; and Is of
gradients G; and G provide the candidate axis d. This axis is characterized by
the two parameters # and p of a Hough method centered on P, the projection
of the insertion point.
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Figure 12: a) Original image, b) Result of the detection of the axis of the
instrument. The yellow dots correspond to the candidate points which voted
for the axis.

Knowing the orientation of an instrument is useful, but not sufficient to
achieve its tracking. We also need to know the position of its tip to position
the camera in the right direction. If we want to include the zoom in the visual
servoing of the camera, we can also detect the edges of the instrument to obtain
depth information.

3.5 Step 3 - Search for the tip of the instrument

The tip of the instrument is detected using color information: an Otsu threshold
([26]) is applied to the points of the symmetry axis and separates the points of
the line into two classes (A and B), one corresponding to the instrument, the
other to the background (Fig. 13). The Otsu threshold separates the points of
the axis in order to create two classes of points with the maximum variance.
Since we have color images, we used the color norm instead of the gray level to
compute the Otsu threshold. The pixels belonging to the axis are then studied,
starting with the point in the image which is the closest to the insertion point;
adjacent points of the same class are grouped in a zone characterized by its
starting pixel, its ending pixel, its average color norm, its length, and its class.

Figure 13: Result of the Otsu threshold applied to the points of the axis
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Next, we determine which class (A or B) corresponds to the instrument.
Our first approach was to find the longest zone of class A and the longest zone
of class B and to assume that the zone which is the closest to P = proj(T)
corresponded to the instrument. In Fig. 14, only the longest zone of each class
is drawn on the image. Since the insertion point of the instrument is on the
right side of the image, the green zone corresponds to the instrument whereas
the blue zone corresponds to the background. However, if the instrument is
partially occluded, or if there are specular reflections on the instrument, this
method can fail.

Figure 14: Longest zone corresponding to the instrument (green) and longest
zone corresponding to the background (blue).

We thus decided to use this approach only on the first image (if the de-
tection fails, the surgeon can easily interrupt the tracking). The average color
norm of the zone corresponding to the instrument (toolColor), and the average
color norm of the zone corresponding to the background (backgroundColor) are
memorized for the next images. In the next images, we also find the longest
zone of class A and the longest zone of class B, but this time, the class of the
zone whose color norm is closest to toolColor corresponds to the instrument.
We define instrumentZone as the longest zone corresponding to the instrument,
and backgroundZone as the one corresponding to the background.

Since the zone corresponding to the instrument might not cover the whole
length of the instrument (again because of specularities or occlusions), we con-
catenate adjacent zones of the same class according to color information. While
a zone corresponding to the class of the instrument which is between instrument-
Zone and backgroundZone has an average color norm which is closer to toolColor
than backgroundColor, we increase the length of the instrument. Finally, the
ending pixel of instrumentZone corresponds to the tip of the instrument. Fig.
15 shows the detected tip after this process.
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Figure 15: a) Original image, b) Tip of the instrument found by the method
after the complete process.

3.6 Step 4 - Search for the two edge lines of the instrument

To include the zoom in a visual servoing loop, we can estimate the distance
between the camera and the tip of the instrument by analyzing the edges of the
instrument in the image (the candidate points obtained in step 1), as suggested
by Tonet et al. in [9]. In 3D, since the shaft of the instrument is a cylinder,
the angle between the two edges in the image provides information about the
depth of the tip (if the angle is null, the tool is parallel to the image plane; if
it is positive, the tip is closer to the image plane than the insertion point; if it
is negative, the insertion point is closer). More complex techniques such as [19]
could also be investigated to find the depth of the tip of the instrument.

The candidate points are separated into two classes: those above the sym-
metry axis found in the previous section, and those below. We compute the
symmetric of one of the group of points with respect to the symmetry axis to
obtain a larger group of points. The line that best fits the points corresponds
to one of the edges, and its symmetric with respect to the symmetry axis cor-
responds to the other edge.

Figure 16: a) Original image, b) Edges of the instrument found by the method
after the complete process. The yellow dots correspond to the points which
voted for the two edges (after the symmetry computation).
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4 Results

This method was implemented with OpenCV library [OpenCV] on a Pentium
IV (2.6 GHz, 512 MO RAM) computer. It was first tested on endoscopic images
(size 200x100) taken from numerized videos of laparoscopic interventions and
cadaver tests to validate the image processing. Then, a visual servoing of our
robotic camera holder was developed. At this time, only the orientation of
the camera is controlled. The images displayed on the monitor are acquired
at a resolution of 720x576 pixels, but the resolution of the input images for
the method was reduced to 200x100 to enhance the speed. Since we are not
looking for subpixel precision to control the camera (see section 1), a 200x100
resolution is enough for the tracking of a laparoscopic instrument. When we
tracked an instrument with the LER, we considered that as long as the distance
in the 200x100 image between the tool and the center of the image was greater
than 11 pixels, the tool was not centered. Once it was centered, as long as the
distance between the tip in the image and the center of the image did not exceed
21 pixels, the tracking was paused. Our objective is to find the tip of a tool in
the image with a precision of 11 pixels.

4.1 Results on endoscopic images

This section presents the results we obtained when we tested the method on
images taken from numerized videos of laparoscopic procedure. It allowed us to
validate our image processing, before developing the complete system with the
LER.

For each endoscopic image, we selected with the mouse cursor the entry
point P (and the radius R of the circle C) for each instrument we wished to
detect. The value of the radius R of the circle C' was chosen so it satisfies our
tool model (see Fig. 5). As Fig. 17 illustrates, the entry point can be selected
in the image plane, and not in the endoscopic image itself (the entry point of
an instrument is rarely visible in the image). The computation time is around
100 ms.

Figure 17: Illustration of the selection of the insertion point of an instrument.

In the following figure, we applied the method to different images with in-
struments of different colors:
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Figure 18: Detection of instruments of different colors: the blue instrument was
detected in 93 ms and the black instrument was detected in 94 ms. This shows
that the method can apply for instruments of different colors.

If we compare the 2D position of the tip given by the method to the 2D
position of the tip manually identified in the image, we obtain an error of 10
pixels for the blue tool and 7 pixels for the black tool, which is sufficient for
the visual servoing of the camera, which is enough considering our precision
objectives. The detection of the edges is also visually satisfying, but we need to
implement a visual servoing of the zoom to determine the precision needed to
control the depth of the camera.

We also tested the method on images which contained several instruments
(Fig. 19). The instrument to be tracked is selected by choosing an insertion
point.

Figure 19: Detection the instruments when several instruments are in the image
(first tool detected in 94 ms and second tool in 109 ms).
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To a certain extent, the method is also robust to smoke (Fig. 20). In both
cases, the axis and edges of the tool are detected correctly; however, the tip of
the tool is wrong in the second image because the smoke is too dominant (the
Otsu threshold detects the smoke, not the background).

Figure 20: Detection of tools with smoke in the image (125 and 94 ms).

We were also able to identify the problematic cases that must still be solved:
in Fig. 21, the tools are nearly aligned, so the method fails in detecting the gray
one and the axis found by the method is an average of the axes of both tools.

Figure 21: a) Original image, b) detection of the black tool (109 ms), ¢) the
detection of the metallic tool fails (the two tools are nearly aligned).
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In Fig. 22 b), the blue tool is detected correctly although its axis intersects
the axis of the metallic tool. The specular reflections on the metallic tool cause
the failure of the detection of the tip, because the non-shiny parts of the tool
have a color closer to the background than to the shiny parts of the tool (Fig.
22. ¢)). However, if we suppose that in a first image, the tool and background
were detected correctly (section 3.5, detection of the tip of the instrument), the
results are improved (Fig. 22. d)). In both cases, we can see that the detection
of the edges of the metallic tool is not very satisfactory because the specular
areas are detected rather than the tip.

Figure 22: a) Original image, b) detection of the blue tool (125 ms) ¢) detection
of the metallic tool if the image is the first of the sequence (109 ms), d) improved
detection if the image is not the first of the sequence (the average color of the
tool and background are known).

Finally, Fig. 23 illustrates the most difficult cases still to be solved. For the
three instruments, the axes are detected correctly. Again, the difficulty is to
detect the tip; for the blue tool (Fig. 23 ¢)), the metallic tip intersects the tip of
another tool, which is also metallic. The metallic tool (Fig. 23 d)) is partially
occluded and intersects a black tool. The detection of the tip fails because the
color of the tool is assumed to be black.
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Figure 23: a) Original image, b) detection of the black tool ¢) detection of
the blue tool, d) detection of the metallic tool. When the axes intersect, the
detection of the tip is difficult.

4.2 Results on anatomical pieces

After this preliminary validation of the feasibility of the method, we imple-
mented a visual servoing of the LER (the control of the zoom is not yet included)
and tested the full system on a cadaver to simulate clinical conditions.

First, we tested our hypothesis that the insertion points are fixed during the
intervention. The results are presented in 4.2.1. We do not take the breathing
motion into account, but since the abdominal cavity of the patient is insuflated
with gas during the intervention, we can assume that the motion of the insertion
point due to breathing is very limited.

We then studied the results of the tracking of an instrument. We observed
that the specular reflections needed to be limited for the detection of an instru-
ment to be successful and we explain in the discussion how we plan on dealing
with this problem. The result of a successful tracking are presented in section
4.2.2.

Finally, we analysed the images for which the detection failed in order to
estimate the difficult situations. This error analysis is presented in section 4.2.3

4.2.1 Can the insertion points be considered as fixed?

We measured the position of the insertion point through time using the method
presented in subsection 3.1. To check that our first computation was correct,
we reprojected the insertion point in an image where the trocart is visible (Fig.
24).

The distance between the measured points and the reference was inferior to
5mm except for measure n ° 3, but this was due to leak in of gas in the abdominal
cavity. As soon as the leak was stopped the results were satisfying.
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n®  time (min) X (mm) Y (mm) Z (mm) distance (mm)
1 0 78.9 148.4 -39.3 reference

2 11 79.2 152.3 -42.3 1.53

3 14 91.6 207 -39.8 57.3

4 25 71.3 143.5 -52.3 4.0

) 43 71 148 -52 1.2

6 205 73.4 147 -53 1.3

7 234 77.14 152.2 -47.6 4.6

Figure 24: Variation of the position of the insertion point along time. On the
bottom image, the insertion point n° 1 was projected on the image plane.

4.2.2 Tracking of an instrument

We were able to perform the tracking of an instrument when the specular re-
flections were limited. The computation time is around 100 ms for a 200x100
image. It allows for smooth tracking when the instrument is moved at a usual
speed. The computation time could still be reduced by optimizing the code, al-
lowing us to take into account abrupt and large movements. As we said earlier,
a resolution of 200x100 pixels is enough for the tracking of a laparoscopic in-
strument, since we are not looking for subpixel precision to control the camera.
We considered that the tool was centered as long as the distance between the
detected tip and the previous tip was less than 11 pixels. Fig. 25 shows the
distance in pixels between the tip found by the method and the tip manually
selected. In 70% of the images, the error is inferior to 5 pixels, and in 87 % the
error is less than 11 pixels.
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Figure 25: Error in pixels between the tip found by the method and the tip
selected manually and an example of correct detection (yellow dots: candidate
points, red points: points corresponding to the axis, blue dot on the axis: tip
of the instrument).

4.2.3 Error analysis

We analyzed the images which gave important errors in order to understand the
reasons that could cause the method to fail. Fig. 26 shows some examples of
false detection in the sequence.

Figure 26: a) Wrong detection due to a lack of contrast, b) wrong detection due
to specular reflections, ¢) wrong detection of the axis.

Fig. 26 a) corresponds to the first error peak (frame 9). The detection
of the axis is correct, but the tip is wrongly positioned. The red segments
correspond to the pixels labelled as pixels belonging to the instrument, and the
yellow segments as pixels labelled as the background. Since the background in
the area of the tip is very dark, it is wrongly labelled by the Otsu threshold
as a region belonging to the instrument. This is also the cause of the error for
frames 35, 36, 61, 63 and 64.

Fig 26 b) corresponds to the second error peak (frame 21). Again, the axis
is correctly detected, but not the tip. This time, the error is due to specular
reflections, which are labelled as background. This also causes errors for frames
67 and 69. The important error for frame 37 is caused by a false detection of the
axis of the tool (Fig. 26 c): the edges of the instrument are barely visible in the
image because of the lack of contrast, and the organ on the far hand side of the
image provides a lot of edges, which deteriorates the axis detection. However,
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if we replace frame 37 with an image of better resolution (410x410 pixels), the
axis is detected correctly (27).

Figure 27: The detection of the instrument axis, which failed for frame 37 with
a resolution of 200x100 pixels (see Fig. 26 c) ) is successful with a resolution of
410x410 pixels: a) original image, b) result of the detection.

While the specular reflecions are important, they do not deteriorate the
detection of the axis, since they are along the axis of the instrument. However,
they cause failure in tip detection, because the wrong classes are attributed to
the instrument and background.

5 Discussion

In this paper, we proposed a new method for the tracking of instruments in
laparoscopic surgery, based on the measurement of the position of their insertion
points in the abdominal cavity. It is based on the assumption that the insertion
points are relatively fixed during the surgical procedure. We validated this
assumption by measuring the position of an insertion point through time during
a cadaver experiment. During a real intervention with a living patient, the
movement of the abdominal wall caused by breathing can be considered as
null or very limited, since the abdominal cavity is insuflated with gas. The
movements of the instruments could cause the insertion point to move slightly,
but these potential movements are partly considered by increasing the radius of
the circle C (section 3.2).

This experiment also allowed us to test our approach in conditions that
are close to a real intervention. We were able to perform the tracking of an
instrument when it is moved at a usual speed and when the specular reflections
are limited. The speed of the method could be improved by optimization of
the code and by using a region of interest (ROI) around the tip detected in the
previous image. However, this ROI must be carefully selected because of the
important magnification of an endoscope, and because the instrument can have
large and quick movements (for instance when the surgeon is cutting tissues).

We were also able to identify the reasons that could cause the failure of
the detection. One of the most important problems to solve is the problem of
specular reflections, which is mostly problematic for the detection of the tip of
the instrument. A first lead could be to work in a color space less sensitive to
specular reflections such as HSI. Groger et al. have addressed the problem of
specular reflection removal on images of the heart surface in [27], but the real-
time constraint is hard to meet. Since the detection of the axis is quite robust
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to specular reflections, we could perhaps only remove the specular reflections
in a ROI around the instrument. A simple solution to detect the specular
reflections would be to analyse an image of a white object at the beginning of
the intervention. This could be easily integrated into the surgical procedure,
since the surgeon performs this step to tune the light source.

Although very quick, the Otsu threshold might not be the best classification
method to separate the points corresponding to the instrument from the points
corresponding to the background. Two pixels with a different color but the
same color level are treated identically, and since the Otsu threshold separates
the points in only two classes, the classification might fail if there are a lot of
specular reflections or if the contrast varies too much in the background. We
should investigate more complex segmentation algorithms dedicated to color
images to improve this step.

In the images where several instruments were visible, we explained that we
could have difficulties in determining the position of the tip. However, the
detection of the tip might not be necessary. The intersection points of the
symmetry axis of the instruments roughly indicate the area of interest in the
image.

It must also be noted that if the portion of the instrument in the image is too
small, the amount of points obtained at the segmentation phase is not sufficient
to detect the axis. Also, if the instrument is only partly in the image (one edge
is not visible), the axis cannot be found. If the instrument is very close to the
camera, or the zoom factor is very high, only the tip of the instrument is visible,
and for some instruments such as pliers, our shape model (section 3.2) might
not be accurate, but we will consider defining more complex shape models in
the future.

Finally, we must avoid false detections as much as possible. Our method
deals with them in part; If the amount of edge points which voted for the axis
is too low, or if the length of the instrument is too small, an error is raised. If
the tool was correctly detected in the first image, its color and the background
color are stored for the next images. Thus, if the detection algorithm finds a
tool with a color very close to the color of the background, an error is raised. If
an error is raised although an instrument was visible in the image (false nega-
tive), the robot doesn’t move and the next image is processed. However, if the
method finds a tip although no instrument is visible in the image (false posi-
tive), the robot will move towards an undesired position. Although the surgeon
can interrupt the tracking at any time with the dead man switch (see section
2), these unwanted movements must occur as rarely as possible. One solution
to address this problem could be to gather a few images of the abdominal cavity
without an instrument at the beginning of the intervention in order to obtain
information about the color of the background.

6 Conclusion - Future work

We developed a novel method to detect an instrument in laparoscopic images.
This method is automatic, almost real-time, and robust to artefacts such as
smoke or small partial occlusion. Our first cadaver test allowed us to validate
our approach, especially concerning the approach of using the insertion points of
the instruments, and allowed us to gain some insight on the principal difficulties
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we still need to solve. We plan on using this method to develop and compare
different tracking strategies (see Fig. 1). The exploitation of the insertion points
has a potential interest for more complex systems than a camera holder.

Acknowledgements: This project was partially funded by the French Ministry
of Research and Technology under a CIT (Center for Innovation and Technol-

ogy) grant.

The authors would like to thank Bruno Thibaut from the anatomy laboratory
of the Medical University of Grenoble for his help during our experiments.

References

1]

B. Makhoul, A. De La Taille, D. Vordos, L. Salomon, P. Sebe et al., La-
paroscopic radical nephrectomy for T1 renal cancer: the gold standard? A
comparison of laparoscopic vs open nephrectomy. BJU International 2004,
Vol. 93, pp. 67-70, 2004.

P. Ballester, Y. Jain, K. R. Haylett and R. F. McCloy: Comparison of task
performance of robotic camera holders EndoAssist and Aesop. International
Congress Series, Vol. 1230, pp. 1100-1103, June 2001.

L. R. Kavoussi, R. G. Moore, J. B. Adams et al., Comparison of robotic
versus human laparoscopic camera control, J Urol, 154:2134, 1995

P. A. Finlay, Clinical Experience With a Goniometric Head-Controlled La-
paroscope Manipulator. www.amstrong-healthcare.com/

A. Nishikawa, T. Hosoi, K. Koara, D. Negoro, A. Hikita et al., Real-Time
Visual Tracking of the Surgeon’s Face for Laparoscopic Surgery. MICCAI
2001, Vol. 2208, pp. 9-16, 2001.

P. Ballester, Y. Jain, K.R. Haylett, and R.F. McCloy, Comparison of task
performance of robotic camera holders EndoAssist and AESOP. proc. of
the 15th Intl. congress and exhibition of Computer Assisted Radiology and
Surgery, Elsevier science, p. 1071-1074, 2001.

V.F. Munoz, I. Garcia-Morales, C. Perez del Pulgar, J.M. Gomez-DeGabriel,
J. Fernandez-Lozano et al., Control movement scheme based on manipu-
lability concept for a surgical robotic assistant. Proceedings of the IEEE
International Conference on Robotics and Automation, 2006.

S.-Y. Ko, J. Kim, D.S. Kwon, and W.-J. Lee, Intelligent Interaction be-
tween Surgeon and Laparoscopic Assistant Robot System. IEEE Interna-

tional Workshop on Robots and Human Interactive Communication, pp. 60-
65, 2005.

O. Tonet, T.U. Ramesh, G. Megali, P. Dario, Image analysis-based approach
for localization of endoscopic tools. Proceedings of Surgetica’05, pp. 221-228,
2005.

24



[10] A. Krupa, J. Gangloff, C. Doignon, M. de Mathelin, G. Morel et al., Au-
tonomous 3-D positioning of surgical instruments in robotic laparoscopic
surgery using visual servoing. IEEE Trans. on Robotics and Automation,
vol. 19(5), pp. 842-53, 2003.

[11] G. Wei, K. Arbter, G. Hirzinger, Real-Time Visual Servoing for Laparo-
scopic Surgery. Controlling Robot Motion with Color Image Segmentation.
IEEE Eng. in Med. and Biol., pp. 40-45, 1997.

[12] A. Casals, J. Amat and E. Laporte, Automatic Guidance of an Assistant
Robot in Laparoscopic Surgery. Proceedings of the IEEE International Con-
ference on Robotics and Automation, pp. 895-900, 1996.

[13] Yuang Wang, D. R. Uecker and Yulun Wang, A new framework for vision
enabled and robotically assisted minimally invasive surgery. Computerized
Med. Imaging and Graphics, Vol. 22, pp. 429-37, 1998.

[14] C. Doignon, F. Nageotte and M. de Mathelin, Detection of grey regions in
color images: application to segmentation of a surgical instrument in robo-
tized laparoscopy. Proceedings of 2004 IEEE/RSJ International Conference
on Intelligent Robots and Systems, pp. 3394-3399, 2004.

[15] J. Climent and P. Mars, Automatic instrument localization in laparoscopic
surgery. Electronic Letters on Computer Vision and Image Analysis, 4(1),
pp. 21-31, 2004.

[16] D. Burschka, J. Corso, M. Dewan, W. Lau, M. Li et al., Navigating In-
ner Space: 3-D Assistance for Minimally Invasive Surgery, Robotics and
Autonomous Systems, 52(1), pp. 5-26, 2005.

[17] www.intuitivesurgical.com

[18] P. J. Berkelman, Ph. Cinquin, J. Troccaz, J-M. Ayoubi, C. Létoublon,
Development of a Compact Cable-Driven Laparoscopic Endoscope Manipu-
lator. MICCAT 2002, Vol. 2488, pp. 17-24, 2002.

[19] E. Malis, F.Chaumette and S. Boudet, 2-1/2-D Visual Servoing, IEEE
Transactions on Robotics and Automation, Vol. 15, NO. 2, pp. 238-250,
April 1999.

[20] http://www.intel.com/technology/computing/opencv/index.htm

[21] Z. Zhang, A Flexible New Technique for Camera Calibration. IEEE Trans.
on PAMI, 22(11) pp. 1330-34, 2000.

[22] C. Doignon, F. Nageotte and M. de Mathelin, Segmentation and Guidance
of Multiple Rigid Objects for Intra-Operative Endoscopic Vision. Proceed-
ings of the Workshop on Dynamical Vision of ECCV 2006.

[23] O. Faugeras, Three Dimensional Computer Vision. A Geometric Viewpoint.
The MIT press, 1993.

[24] www.scilab.org

25



[25] Richard O. Duda and Peter E. Hart, Use of the Hough Transformation
To Detect Lines and Curves in Pictures. Communications of the ACM, Vol.
15(1), pp. 11-15, 1972.

[26] N. Otsu, A threshold selection method from gray level histograms. IEEE
Trans. Systems, Man and Cybernetics, Vol. 9, pp. 62-66, 1979.

[27) M. Groger, W. Sepp, T. Ortmaier and G. Hirzinger, Reconstruction of
Image Structure in Presence of Specular Reflections, DAGM 2001, LNCS
2191, pp. 5360, 2001.

26



