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In this paper, we study a parabolic system of three equations which permits to solve an optimal replication problem in incomplete markets. We obtain existence and uniqueness of the solution in suitable Sobolev spaces and propose a numerical method to compute the optimal strategy.

Introduction

We study here a parabolic system arising in the resolution of an optimal replication problem in incomplete markets. Given a European derivative security with an arbitrary payoff function, the optimal replication problem is to find a dynamic portfolio strategy, that is self-financing and comes as close as possible to the payoff at maturity date T . In complet markets, such a dynamic-hedging strategy exists: the payoff of a European option can be replicated exactly; it is the Black-Scholes model (1973) [START_REF] Black | Pricing of options and corporate liabilities[END_REF].In [START_REF] Bertsimas | Hedging derivative securities and incomplete markets: An ǫ-arbitrage approach[END_REF] , Bertsimas, Kogan and Lo propose a solution approach for this problem in incomplete markets.. At time τ = 0, consider a portfolio of stocks and riskless bonds at a cost V 0 and denote by θ(τ ), B(τ ), V (τ ) the number of shares of the stock held, the value of bonds held and the market value of the portfolio at time τ . Hence, V (τ ) = θ(τ )P (τ ) + B(τ ), 0 ≤ τ ≤ T . If we note σ the volatility and F the payoff function, the value function J is defined by: J(τ, V, P, σ) = min θ(s), s≥τ E(((V (T ) -F (P (t), σ(T ))) 2 /(V (τ ), P (τ ), σ(τ ))).

The replication error ǫ(V 0 ) is (J(0, V, P, σ)) 1/2 and it can be minimized with respect to the initial wealth V 0 to yield the least-cost optimal-replication strategy and the minimum replication error ǫ * is ǫ * =min

V 0 ǫ(V 0 )
In [START_REF] Bertsimas | Hedging derivative securities and incomplete markets: An ǫ-arbitrage approach[END_REF], it has been proved the the value function J is quadratic in V : J = a(V -b) 2 + c and the coefficients a, b, c satisfy the following system of partial differential equations:

(1.1) ∂a ∂τ = - k 2 σ 2 2 ∂ 2 a ∂σ 2 -g 1 (σ) ∂a ∂σ + ρ 2 k 2 σ 2 a ∂a ∂σ 2 + af 2 (σ), ∂b ∂τ = - k 2 σ 2 2 ∂ 2 b ∂σ 2 - σ 2 P 2 2 (1.2) -(1 -ρ 2 )k 2 σ 2 a ∂a ∂σ ∂b ∂σ , ∂c ∂τ = - k 2 σ 2 2 ∂ 2 c ∂σ 2 - σ 2 P 2 2 ∂ 2 c ∂P 2 -ρkσ 2 P ∂ 2 c ∂σ∂P -g(σ) ∂c ∂σ -σf (σ)P ∂c ∂P (1.3) -(1 -ρ 2 )k 2 σ 2 a ∂b ∂σ 2 ,
where k > 0, ρ ∈ [-1, +1], ( ρ is a correlation coefficient) g(σ) = -δσ(σ -σ 1 ) ( δ > 0 and σ 1 ∈]0, 1[)

g 1 (σ) = g(σ) -2ρkσf (σ), g 2 (σ) = g(σ) -ρkσf (σ)
and

f (σ) =    µ σ 0 if σ ≤ σ 0 µ σ if σ ≥ σ 0
, µ > 0, (µ is the drift).

Remark 1.1. The function f has been modified near 0 in order to be bounded and assure the existence of a solution.

The conditions at the time expiry T are given by: a(T ) = 1, b(T ) = F (P, σ), c(T ) = 0. Under the optimal replication strategy θ * , the minimum replication error as a function of the initial wealth V 0 is (J(0))

1 2 = (a(0)(V 0 -b(0)) 2 + c(0)) 1 2
, hence the initial wealth that minimizes the replication error is V * 0 = b(0) the minimal replication error over all V 0 is ǫ * = c(0) and the least-cost optimal strategy at τ = 0 is θ * (0) = ∂b ∂P (0) + ρk P ∂b ∂σ (0).

Remark 1.2. Exact replication is possible when k 2 (1-ρ 2 ) = 0 and this corresponds to the following cases:

-Volatility is a deterministic function of time.

-The Brownian motions driving stocks prices and volatility are perfectly correlated.

In this paper, we propose a numerical method to compute the solution of equations (1.1), (1.2), (1.3) and then obtain the minimal replication error and the least-cost optimal replication strategy.

To obtain a forward problem, we change the sense of time; we note t = T -τ . In order to avoid the function a at the denominator, we make the change of unknown u 1 = ln(a). We also replace σ by x, P by y, b by u 2 and c by u 3 . The preceding system becomes:

(1.4) ∂u 1 ∂t - k 2 x 2 2 ∂ 2 u 1 ∂x 2 -g 1 (x) ∂u 1 ∂x + k 2 (ρ 2 - 1 2 )x 2 ∂u 1 ∂x 2 + f 2 (x) = 0, ∂u 2 ∂t - k 2 x 2 2 ∂ 2 u 2 ∂x 2 - x 2 y 2 2 ∂ 2 u 2 ∂y 2 -ρkx 2 y ∂ 2 u 2 ∂x∂y -g 2 (x) ∂u 2 ∂x (1.5) -(1 -ρ 2 )k 2 x 2 ∂u 1 ∂x ∂u 2 ∂x = 0, ∂u 3 ∂t - k 2 x 2 2 ∂ 2 u 3 ∂x 2 - x 2 y 2 2 ∂ 2 u 3 ∂y 2 -ρkx 2 y ∂ 2 u 3 ∂x∂y -g(x) ∂u 3 ∂x -xf (x)y ∂u 3 ∂y (1.6) -(1 -ρ 2 )k 2 x 2 exp(u 1 ) ∂u 2 ∂x 2 = 0,
with the initial conditions:

u 1 (0) = 0; u 2 (0) = F (x, y); u 3 (0) = 0.( F is the payoff function).
The outline of the paper is as follows:

In section 2, we solve (1.4). The different derivative terms will be treated separately in order to obtain the L ∞ -stability of the scheme. We prove the convergence of the numerical solution towards a weak solution of the problem. Besides the uniqueness of this weak solution is obtained.

In sections 3 and 4, we study (1.5), (1.6). We use a change of unknown which lead to a variationnel formulation and obtain the existence of a unique solution in suitable weighted Sobolev spaces. These equations are discretized by using a backward Euler method in time and a finite element method in space. Numerical results are presented.

Computation of u 1

2.1. Definition of the numerical solution. In order to solve (1.4), we use suitable weighted Sobolev spaces, such that no boundary condition is needed in 0 and the function u 1 has the correct behaviour at infinity. To simplify notation, we denote:

F 1 (x) = f 2 (x), x > 0, λ = k 2 (ρ 2 - 1 2 ),
this coefficient may be positive or negative since ρ is a correlation factor and then ρ lies in [-1, +1]. The equation (1.4) becomes:

(2.1)

∂u 1 ∂t - 1 2 k 2 x 2 ∂ 2 u 1 ∂x 2 -g 1 (x) ∂u 1 ∂x + λx 2 ∂u 1 ∂x 2 + F 1 (x) = 0.
We will make the following assumptions on the functions f and g 1 :

-f ∈ W 1,∞ (R + ), xf ′ ∈ L ∞ (R + ).
-F 1 is a nonincreasing function, F ′ 1 is a bounded variation function; if we denote F the function defined by F (x) = xF ′ 1 (x), x > 0,we get F ∈ L ∞ (R + ). -g 1 may be written g 1 (x) = xφ(x) with φ(x) = -δ(x -σ 1 ) -2ρkf (x), δ > 0; so, there exists σ 2 > 0 such that φ is negative and nonincreasing on [σ 2 , +∞[ and bounded on [0, σ 2 ].

We define the two constants c 1 and c 2 by

(2.2) c 1 = sup x ∈ [0, σ 2 ] |g ′ 1 (x)| , c 2 = sup x ∈ [0, σ 2 ] |φ(x)|
We denote by ∆t n the time increment between the levels t n and t n+1 , n ≥ 0 and by u n 1h the approximate solution at the time level t n . This solution will be in a finite-dimensional space V 1h which will be defined below. The solution u n+1

1h at the time level t n+1 is computed in two steps: knowing u n 1h , we compute u

n+ 1 2 1h , approximate solution of (2.3) ∂u 1 ∂t + λx 2 ∂u 1 ∂x 2 = 0
obtained by using an explicit upwind scheme. Then starting with this intermediate value, we use a backward Euler method in time to compute u n+1 1h ; the second order term in (2.1) is discretized by using a P 1 -finite element method [START_REF] Ciarlet | The Finite Element Method for Elliptic Problems[END_REF] and the linear first order term by an implicit upwind scheme [START_REF] Ritchmyer | Difference Methods for Initial-Value Problems[END_REF] in order to get the L ∞ -stability of the scheme.

In order to define the finite-dimensional space V 1h , we first study the parabolic problem:

(2.4) ∂u 1 ∂t - 1 2 k 2 x 2 ∂ 2 u 1 ∂x 2 + F 1 (x) = 0
to obtain a variational formulation in weighted Sobolev spaces.

Variational formulation of (2.4).

Let us consider the two spaces:

H 1 = v ∈ D ′ (R + )/ v 1 + x ∈ L 2 (R + ) and V 1 = v ∈ D ′ (R + )/ v 1 + x ∈ L 2 (R + ), xv ′ 1 + x ∈ L 2 (R + ) .
The space H 1 is equipped with the following scalar product:

∀v, w ∈ H 1 , (v, w) 1 = +∞ 0 v(x)w(x) (1 + x) 2 dx and the associated norm. The space V 1 with the norm v V 1 = ∞ 0 v 2 (x) (1 + x) 2 + x 2 (1 + x) 2 dv dx 2 dx 1 2 is a Hilbert space and D(R + ) is dense in V 1 [3]. We define on V 1 × V 1 the bilinear form: ∀v, w ∈ V 1 , a(v, w) = 1 2 k 2 +∞ 0 dv dx d dx w x 2 (1 + x) 2 dx or a(v, w) = 1 2 k 2 +∞ 0 x 2 (1 + x) 2 dv dx dw dx dx + k 2 +∞ 0 x (1 + x) 3 dv dx wdx.
This bilinear form is continue on V 1 × V 1 and we have the equality

a(v, v) = k 2 2 +∞ 0 x 2 (1 + x) 2 dv dx 2 dx - k 2 2 +∞ 0 1 -2x (1 + x) 4 v 2 dx, then we get: ∀v ∈ V 1 , a(v, v) ≥ k 2 2 v 2 V 1 -k 2 v 2 H 1 .
Since the function F 1 is in H 1 , the following variational problem: Find u 1 ∈ L 2 (0, T ; V 1 ) ∩ C(0, T ; H 1 ) such that:

(2.5)

   ∂u 1 ∂t , v 1 + a(u 1 , v) = -(F 1 , v) 1 , ∀v ∈ V 1 u 1 (0) = 0 .
has a unique solution [START_REF] Lions | Problemes aux limites non homognes et applications[END_REF].

Approximation of (2.5).

The finite-dimensional space V 1h will be a subspace of V 1 defined in the following way: Let (x i ) 0≤i≤N an increasing sequence (x 0 = 0). We denote

h i = x i -x i-1 , I i = (x i-1 , x i ), 1 ≤ i ≤ N, I N +1 = (x N , +∞) V 1h = v h ∈ C 0 (R + )/ v h|I i ∈ P 1 , 1 ≤ i ≤ N, v h|I N+1 ∈ P 0 .
The variable x is the volatility which lies, in practice, in ]0, 1[, so, we may use a constant space step h on (0, 1) and an increasing sequence (h i ) for x ≥ 1 in order that the number of nodes is not too important.

If v h ∈ V 1h , we denote v i = v h (x i ).
We define on V 1h an approximate scalar product:

(v h , w h ) h = h 1 2 v 0 w 0 + N -1 i=1 h i + h i+1 2 1 (1 + x i ) 2 v i w i + v N w N h N 2(1 + x N ) 2 + 1 1 + x N
obtained by using the trapezoid method on each interval I i , 1 ≤ i ≤ N ; the last integral being computed exactly. We also define the Lagrange interpolate π h F 1 of F 1 by:

π h F 1 ∈ V 1h and π h F 1 (x i ) = F 1 (x i ) = F 1i , 1 ≤ i ≤ N.
The approximate solution of (2.5) at the time level t n+1 is the solution of :

(u n+1 1h , v h ) h + ∆t n a(u n+1 1h , v h ) = (u n 1h , v h ) h -∆t n (π h F 1 , v h ) h , ∀v h ∈ V 1h , u 0 1h = 0.
This may be written:

u n+1 10 = u n 10 -∆t n F 10 , u n+1 1i + ∆t n α i 1 h i + 1 h i+1 u n+1 1i - 1 h i u n+1 1,i-1 - 1 h i+1 u n+1 1,i+1 = u n 1i -∆t n F 1i , u n+1 1N + ∆t n h N α N u n+1 1N -u n+1 1,N -1 = u n 1N -∆t n F 1N , with α i = k 2 x 2 i h i + h i+1 , 1 ≤ i ≤ N -1, α N = k 2 x 2 N h N + 2(1 + x N ) .
2.1.3. Approximation of the first order terms. We compute now an approximate solution of (2.3) by using an explicit upwind scheme. Let us denote by v n h the derivative of

u n 1h v n h | I i = v n i = u n 1i -u n 1,i-1 h i , 1 ≤ i ≤ N, v n h | I N +1 = v n N +1 = 0.
We set v n 0 = 0. We shall prove below that the function v n h is positive and the function u n 1h is negative; we define u

n+ 1 2 1h ∈ V 1h by: (2.6) u n+ 1 2 1i = u n 1i -λ∆t n x 2 i (v n i ) 2 if λ > 0, (2.7) u n+ 1 2 1i = u n 1i -λ∆t n x 2 i+1 (v n i+1 ) 2 if λ < 0, 0 ≤ i ≤ N.
For the linear first order term, since the function g 1 is not bounded, we use an implicit scheme, which will be decentered in order to get a monotone matrix.

Finally, the solution u n+1 1h ∈ V 1h of (2.1) is defined by:

u n+1 10 = u n+ 1 2 10 -∆t n F 10 , u n+1 1i + ∆t n α i 1 h i + 1 h i+1 + γ i 1 -δ i h i+1 - δ i h i u n+1 1i - ∆t n h i (α i -γ i δi) u n+1 1,i-1 - ∆t n h i+1 (α i + γ i (1 -δ i )) u n+1 1,i+1 (2.8) = u n+ 1 2 1i -∆t n F 1i , u n+1 1N + ∆t n h N (α N -γ N ) (u n+1 1N -u n+1 1,N -1 ) = u n+ 1 2 1N -∆t n F 1N , with γ i = g 1 (x i ), 1 ≤ i ≤ N, δ i = 0 if γ i ≥ 0, 1 if γ i < 0.
Since g 1 is negative for x ≥ σ 2 , we get δ i = 1 if i is large enough.

The preceding equations may be written by using the derivative v n h :

u n+1 1i + ∆t n (α i -δ i γ i ) v n+1 i -(α i + (1 -δ i )γ i ) v n+1 i+1 = u n+ 1 2 1i -∆t n F 1i , 0 ≤ i ≤ N 2.
2. Properties of the scheme. We prove that under a stability condition, the approximate solution u n 1h is negative and its derivative

v n h is positive. Let us denote U n 1h the vector of R N +1 of components (u n 1i ), 0 ≤ i ≤ N and F 1h the vector of components (F 1i ), 0 ≤ i ≤ N.
The numerical scheme (2.8) may be written:

(2.9) (I + ∆t n A h )U n+1 1h = U n+ 1 2 1h -∆t n F 1h
where the matrix A h is tridiagonal and monotone.

From (2.6), (2.7) and (2.8), we get immediately the equations satisfied by

v n h : If v n+ 1 2 h denotes the derivative of u n+ 1 2 h , we obtain for 1 ≤ i ≤ N (2.10) v n+ 1 2 i = v n i -λ ∆t n h i x 2 i (v n i ) 2 -x 2 i-1 (v n i-1 ) 2 if λ > 0, (2.11) v n+ 1 2 i = v n i -λ ∆t n h i x 2 i+1 (v n i+1 ) 2 -x 2 i (v n i ) 2 if λ < 0,
and v n+1 h satisfies:

v n+1 i + ∆t n h i (α i + α i-1 -δ i γ i + (1 -δ i-1 )γ i-1 ) v n+1 i - ∆t n h i (α i-1 -δ i-1 γ i-1 ) v n+1 i-1 - ∆t n h i (α i + (1 -δ i )γ i ) v n+1 i+1 (2.12) = v n+ 1 2 i - ∆t n h i (F 1i -F 1 , i-1 )
for 1 ≤ i ≤ N which may be written:

(2.13) (I + ∆t n B h )V n+1 h = V n+ 1 2 h -∆t n G 1h ,
where

V n h is the vector of R N of components (v n i ), 1 ≤ i ≤ N, B h is a tridiagonal matrix (N × N), G 1h is the vector of R N of components F 1i -F 1,i-1 h i , 1 ≤ i ≤ N.
Proposition 2.1. If the following stability condition

(2.14) sup i ≥ 1 λ ∆t n h i x 2 i v n i ≤ 1
is satisfied and

(2.15) ∆t n c 1 < 1, then the function v n h is nonnegative for n ≥ 0.
Proof: We can rewrite (2.10) as:

(2.16) v

n+ 1 2 i = v n i 1 -λ ∆t n h i x 2 i v n i + λ ∆t n h i x 2 i-1 (v n i-1 ) 2 si λ > 0
and we have an analogous formula for λ < 0.

If (2.14) is satisfied, we get immediately that v n h ≥ 0 implies v n+ 1 2 h ≥ 0.Since F 1 is decreasing, the vector V n+ 1 2 h
-∆t n G 1h is nonnegative and the vector V n+1 h will be nonnegative if I + ∆t n B h is a monotone matrix; this will be true if 1

-∆tn h i (γ i -γ i-1 ) > 0, for 1 ≤ i ≤ N. Since g 1 is a decreasing function for x ≥ σ 2 , this condition is satisfied for i large enough and if x ≤ σ 2 ,, we get 1 -∆tn h i (γ i -γ i-1 ) ≥ 1 -c 1 ∆t n > 0 from (2.15).
We deduce immediately the following results:

Proposition 2.2. Under the hypotheses of proposition 2.1, the numerical solution u n 1h satisfies:

u n 1h ≤ 0 for n ≥ 0.
Proof: We can rewrite (2.6) as

(2.17) u

n+ 1 2 1i = u n 1i 1 -λ ∆t n h i x 2 i v n i + λ ∆t n h i x 2 i v n i u n 1,i-1 if λ > 0
and we have an analogous equality for λ < 0. From proposition (2.1), the function

v n h is nonnegative, hence if u n 1h ≤ 0, we get u n+ 1 2 1h
≤ 0. Since I + ∆t n A h is a monotone matrix and F 1 ≥ 0, we deduce that u n+1 1h ≤ 0.

Proposition 2.3. Under the hypotheses of proposition 2.1, the numerical solution satisfies

u n 1h L ∞ (R + ) ≤ t n F 1 (0) for n ≥ 0.
Proof: We get immediately from (2.17): u

n+ 1 2 1h L ∞ (R + ) ≤ u n 1h L ∞ (R + )
and since A h is a monotone matrix, it follows from (2.9) that

u n+1 1h L ∞ (R + ) ≤ u n+ 1 2 1h L ∞ (R + )
+ ∆t n F 1 (0) which completes the proof.

Proposition 2.4. Under the hypotheses of proposition 2.1, the function v n h satisfies:

v n h L 1 (R + ) ≤ t n F 1 (0)
for n ≥ 0.

Proof: From (2.16), we get if λ > 0 N i=1 h i v n+ 1 2 i = N i=1 h i v n i 1 -λ ∆t n h i x 2 i v n i + λ∆t n N i=1 x 2 i-1 (v n i-1 ) 2 , hence v n+ 1 2 h L 1 (R + ) ≤ v n h L 1 (R +
) . For λ < 0, we obtain the same inequality.

Besides from (2.12), we get:

v n+1 h L 1 (R + ) ≤ v n+ 1 2 h L 1 (R + ) -∆t n F 1N + ∆t n F 10 .
and we deduce the result.

We prove now that under some hypothesis on the sequence (h i ), the function xv n h is bounded in L ∞ (R + ) and it is possible to choose the nodes (x i ) 1≤i≤N such that the stability condition is not too restrictive.

We define the function vn

h by: vn

h | I i = vn i = x i v n i , 1 ≤ i ≤ N, vn h | I N +1 = vn N +1 = 0.
Proposition 2.5. If the following stability condition

(2.18) sup i ≥ 1 λ ∆t n h i x i (v n i + vn i-1 ) ≤ 1 if λ > 0 and sup i ≥ 1 |λ| ∆t n h i x i (v n i + vn i+1 ) ≤ 1 if λ < 0
is satisfied and if the sequence (h i ) 1≤i≤N satisfy: There exists a positive constant c such that

(2.19) x i x i+1 h i+1 h i + h i+1 - x i-1 x i h i h i + h i-1 ≥ -c h i x i , 1 ≤ i ≤ N -1 and (2.20) x N h N + 2(1 + x N ) - x N -1 x N h N h N + h N -1 ≥ -c h N x N ,
then if ∆t ≤ ∆t 0 , ∆t 0 depending on c, c 1 , c 2 , the following estimate holds:

(2.21) vn h L ∞ (R + ) ≤ e Ct n F L ∞ (R + )
for n ≥ 0 and C is a constant depending on c, c 1 , c 2 .

Proof: We get immediately from (2.10)

vn+ 1 2 i = vn i -λ ∆t n h i x i (v n i ) 2 -(v n i-1
) 2 if λ > 0 which may be written:

vn+ 1 2 i = vn i 1 -λ ∆t n h i x i (v n i + vn i-1 ) + λ ∆t n h i x i (v n i + vn i-1 )v n i-1
and if (2.18) is satisfied, we obtain:

(2.22) vn+ 1 2 h L ∞ (R + ) ≤ vn h L ∞ (R + ) .
If λ < 0, we get from (2.11)

vn+ 1 2 i = vn i 1 + λ ∆t n h i x i (v n i+1 + vn i ) -λ ∆t n h i x i (v n i+1 + vn i )v n i+1
and the estimate (2.22) holds if (2.18) is satisfied.

Further the following equality results of (2.12) for 1 ≤ i ≤ N

vn+1 i + ∆t n h i (α i + α i-1 -δ i γ i + (1 -δ i-1 )γ i-1 ) vn+1 i (2.23) - ∆t n h i (α i-1 -δ i-1 γ i-1 ) x i x i-1 vn+1 i-1 - ∆t n h i (α i + (1 -δ i )γ i ) x i x i+1 vn+1 i+1 = vn+ 1 2 i - ∆t n h i x i (F 1i -F 1 , i-1 )
which may be written

(I + ∆t n C h ) V n+1 h = V n+ 1 2 h -∆t n Fh
where Fh is the vector of components :

Fi = x i F 1i -F 1 , i-1 h i , 1 ≤ i ≤ N. C h is a tridiagonal matrix (N × N). Besides, we have c ii > 0, c ij ≤ 0 f or i =j, 1 ≤ i ≤ N.
We prove that if (2.19) and (2.20) are satisfied, there exists a positive constant ĉ depending on c 1 , c 2 , c such that:

N j=1 c ij ≥ -ĉ, 1 ≤ i ≤ N.
We deduce from (2.2):

N j=1 c ij = 1 h i α i h i+1 x i+1 -α i-1 h i x i-1 -γ i + γ i-1 + γ i (1 -δ i ) h i+1 x i+1 + γ i-1 δ i-1 h i x i-1 , 1 ≤ i ≤ N -1 N j=1 c N j = 1 h N α N -α N -1 h N x N -1 -γ N + γ N -1 x N x N -1 . Let us denote A 1 i = 1 h i α i h i+1 x i+1 -α i-1 h i x i-1 = k 2 x i h i x i x i+1 h i+1 h i + h i+1 - x i-1 x i h i h i-1 + h i , 1 ≤ i ≤ N -1, A 1 N = 1 h N α N -α N -1 h N x N -1 = k 2 x N h N x N h N + 2(1 + x N ) - x N -1 x N h N h N + h N -1 ;
and

A 2 i = 1 h i -γ i + γ i-1 + γ i (1 -δ i ) h i+1 x i+1 + γ i-1 δ i-1 h i x i-1 2 ≤ i ≤ N, A 2 1 = 1 h -δ 1 - 1 -δ 1 2 γ 1 .
We get

N j=1 c ij = A 1 i + A 2 i .
From (2.19) and (2.20), it follows that

A 1 i ≥ -ck 2 , 1 ≤ i ≤ N.
Further , we have :

A 2 1 = -φ(x 1 )(δ 1 + 1 -δ 1 2 )
and for i ≥ 2, A 2 i = -

g 1 (x i ) -g 1 (x i-1 ) x i -x i-1 + (1 -δ i ) x i h i+1 x i+1 h i φ(x i ) + δ i-1 φ(x i-1 ),
We deduce from (2.2)

A 2 i ≥ -(c 1 + c 2 ) f or x i ≤ σ 2 .
For x ≥ σ 2 , the function g 1 is negative, so

δ i = 1, A 2 i = -x i (φ(x i ) -φ(x i-1 )) h i and A 2 i ≥ 0, since φ is decreasing.
Finally, we obtain

N j=1 c ij ≥ -ĉ, 1 ≤ i ≤ N, with ĉ = ck 2 + c 1 + c 2 .
and vn+1

h L ∞ (R + ) ≤ 1 1 -ĉ∆t n vn h L ∞ (R + ) + ∆t n F L ∞ (R + ) .
The estimate (2.21) follows.

Let us define now a sequence (x i ), satisfying (2.19) and (2.20):

We set: x i = ih, 0 ≤ i ≤ n 0 with n 0 h = 1, then x i = e θh x i-1 for i ≥ n 0 + 1 and θ ≥ 1

We get:

x i x i+1 h i+1 h i+1 + h i - x i-1 x i h i h i + h i-1 > 0, i ≤ n 0 + 1, x i x i+1 h i+1 h i+1 + h i - x i-1 x i h i h i + h i-1 = 0, i > n 0 + 1 x N h N + 2(1 + x N ) - x N -1 x N h N h N + h N -1 ≥ - 1 2x N ; then (2.20) will be satisfied if h N ≥ c 2 , that is N = O |ln h| h or x N = O 1 h .
Besides we have

x i h i = O 1 h 1 ≤ i ≤ N
, and the stability condition may be written ∆t n h ≤ C, that is the classical stability condition for hyperbolic problems.

Proposition 2.6. Under the hypotheses of proposition 2.5, there exists a positive constant C depending on T, f, g 1 such that for t n ≤ T , the following estimate holds:

v n h L ∞ (R + ) ≤ C.
Proof: For λ > 0, we get from (2.10):

v n+ 1 2 i = v n i 1 -λ ∆t n h i x i (v n i + vn i-1 ) + λ ∆t n h i x i-1 (v n i + vn i-1 )v n i-1
and by using (2.18), we obtain: v

n+ 1 2 h L ∞ (R + ) ≤ v n h L ∞ (R + ) .
For λ < 0, we get:

v n+ 1 2 i = v n i 1 + λ ∆t n h i x i (v n i + vn i+1 ) -λ ∆t n h i x i+1 (v n i + vn i+1 )v n i+1
and by using (2.18) , we obtain:

v n+ 1 2 h L ∞ (R + ) ≤ v n h L ∞ (R + ) 1 + 2 |λ| ∆t n vn h L ∞ (R + ) .
Besides, it follows from (2.13) that

(1 -c 1 ∆t n ) v n+1 h L ∞ (R + ) ≤ v n+ 1 2 h L ∞ (R + ) + ∆t n F ′ 1 L ∞ (R + )
. This concludes the proof. Proposition 2.7. Under the hypotheses of proposition 2.5, there a positive constant C depending on T, f, g 1 such that for t n ≤ T , the following estimate holds:

V ar(v n h ; R + ) ≤ C.
Proof: For λ > 0, we have the equality:

v n+ 1 2 i+1 -v n+ 1 2 i = v n i+1 -v n i -λ ∆t n h i+1 x 2 i+1 (v n i+1 ) 2 -x 2 i (v n i ) 2 + λ ∆t n h i x 2 i (v n i ) 2 -x 2 i-1 (v n i-1 ) 2 for 1 ≤ i ≤ N -1, and v n+ 1 2 N +1 -v n+ 1 2 N = v n N +1 -v n N + λ ∆t n h N x 2 N (v n N ) 2 -x N -1 (v n N -1 ) 2 .
It follows that:

v n+ 1 2 i+1 -v n+ 1 2 i = (v n i+1 -v n i )(1 -µ n i ) + µ n i-1 (v n i -v n i-1 ) -2λ∆t n x i (v n i+1 + v n i )(v n i+1 -v n i ) -λ∆t n h i+1 (v n i+1 ) 2 -λ∆t n h i (v n i ) 2 with µ n i = λ ∆t n h i+1 x 2 i (v n i+1 + v n i ), 1 ≤ i ≤ N -1, µ n N = 0.
From the stability condition (2.18), we get 0 ≤ µ n i ≤ 1 and we deduce V ar (v

n+ 1 2 h ; R + ) ≤ V ar(v n h ; R + ) (1 + 4λ∆t n vn h L ∞ (R + ) ) + 2λ∆t n v n h L ∞ (R + ) v n h L 1 (R + ) .
We have an analogous estimate for λ < 0.

Furthermore, from (2.12), we obtain the following equalities:

v n+1 i+1 -v n+1 i + ∆t n α i + (1 -δ i )γ i h i + α i -δ i γ i h i+1 - γ i+1 -γ i h i+1 v n+1 i+1 -v n+1 i -∆t n α i+1 + (1 -δ i+1 )γ i+1 h i+1 v n+1 i+2 -v n+1 i+1 -∆t n α i-1 -δ i-1 γ i-1 h i v n+1 i -v n+1 i-1 = v n+ 1 2 i+1 -v n+ 1 2 i + ∆t n γ i+1 -γ i h i+1 - γ i -γ i-1 h i v n+1 i -∆t n F 1 , i+1 -F 1i h i+1 - F 1i -F 1, i-1 h i , for 1 ≤ i ≤ N -1. v n+1 N +1 -v n+1 N + ∆t n α N h N (v n+1 N +1 -v n+1 N ) - α N -1 -γ N -1 h N (v n+1 N -v n+1 N -1 ) = v n+ 1 2 N +1 -v n+ 1 2 N -∆t n γ N -γ N -1 h N + ∆t n F 1N -F 1N -1 h N .
It follows that:

N -1 i=1 1 -∆t n γ i+1 -γ i h i+1 v n+1 i+1 -v n+1 i + v n+1 N ≤ V ar(v n+ 1 2 h ; R + ) +∆t n N -1 i=1 γ i+1 -γ i h i+1 - γ i -γ i-1 h i v n+1 i +∆t n N -1 i=1 F 1i -F 1 , i-1 h i+1 - F 1i -F 1 , i-1 h i + ∆t n F 1N -F 1 , N -1 h N . It results from (2.2): 1 -∆t n γ i+1 -γ i h i+1 ≥ 1 -c 1 ∆t n .
Besides, we have:

N -1 i=1 γ i+1 -γ i h i+1 - γ i -γ i-1 h i v n+1 i ≤ V ar(g ′ 1 ; R + ) v n+1 h L ∞ (R + )
and

N -1 i=1 F 1,i+1 -F 1i h i+1 - F 1i -F 1,i-1 h i ≤ V ar(F ′ 1 ; R + ).
It follows that:

(1 -c 1 ∆t n ) V ar(v n+1 h ; R + ) ≤ V ar(v n+ 1 2 h ; R + ) + C∆t n v n+1 h L 1 (R + ) + ∆t n V ar(F ′ 1 , R + )
and with (2.2), we get:

(1 -c 1 ∆t n )V ar(v n+1 h ; R + ) ≤ V ar(v n h ; R + )(1 + 4λ∆t n vn h L ∞ (R + ) ) +2λ∆t n v n h L ∞ (R + ) v n h L 1 (R + ) + C∆t n v n+1 h L 1 (R + ) +∆t n V ar(F ′ 1 ; R + ).
This concludes the proof.

Convergence of the scheme and uniqueness of the solution.

From all these estimates, we can deduce the convergence of the numerical solution to a weak solution and we prove that this solution is unique.

A function u 1 is called a weak solution of (2.1) if u 1 ∈ C([0, T ]); W 1,∞ (R + )), x ∂u 1 ∂x ∈ C(0, T ; L ∞ (R+)
), and

T 0 R + u 1 ∂φ ∂t dxdt - R + u 1 (T )φ(T )dx - k 2 2 T 0 R + ∂u 1 ∂x ∂ ∂x (x 2 φ)dxdx + T 0 R + g 1 ∂u 1 ∂x φdxdt -λ T 0 R + x 2 ∂u 1 ∂x 2 φdxdt = T 0 R + F 1 φdxdt
for any function φ with a compact support in [0, T ] × R + , φ ∈ C 1 (0, T × R + ).

Theorem 2.8. Problem (2.1) admits at most one weak solution.

Proof: Let u 1 and û1 two weak solutions of (2.1). We denote w = u 1 -û1 .The function w satisfies:

(2.24) ∂w ∂t - 1 2 k 2 x 2 ∂ 2 w ∂x 2 -g 1 (x) ∂w ∂x + λx 2 ∂w ∂x ∂u 1 ∂x + ∂ û1 ∂x = 0.
Let us denote by ψ a function in

C 1 (R + ) satisfying: 0 ≤ ψ(x) ≤ 1, ψ(x) = 1 if 0 ≤ x ≤ 1, ψ(x) = 0 if x ≥ 2 and ψ decreasing on (1, 2)
and we define ψ ν (x) = ψ( x ν ), x ≥ 0, ν > 0. By multiplying (2.24) by ψ ν w (1 + x) 2 , and integrating on R + , we get:

1 2 d dt +∞ 0 w 2 ψ ν (1 + x) 2 dx + 1 2 k 2 +∞ 0 ∂w ∂x 2 x 2 (1 + x) 2 ψ ν dx + 1 2 +∞ 0 w 2 g 1 (x) (1 + x) 2 dψ ν dx dx = - k 2 2 +∞ 0 ∂w ∂x w x 2 (1 + x) 2 dψ ν dx dx -k 2 +∞ 0 ∂w ∂x w x (1 + x) 3 ψ ν dx (2.25) - 1 2 +∞ 0 w 2 ψ ν d dx g 1 (x) (1 + x) 2 dx -λ +∞ 0 ∂w ∂x w ∂u 1 ∂x + ∂ û1 ∂x x 2 (1 + x) 2 ψ ν dx.
We estimate now each term of this equality.

We have:

+∞ 0 w 2 g 1 (x) (1 + x) 2 dψ ν dx dx ≥ 0 if ν ≥ σ 2 since g 1 (x) ≤ 0 and ψ ′ ν (x) ≤ 0.
Besides, we have:

ψ ′ ν (x) = 1 ν ψ ′ ( x ν
) and since

x ∂w ∂x ∈ C(0, T ; L ∞ (R + )), w ∈ C(0, T ; L ∞ (R + ))
, we obtain:

k 2 2 +∞ 0 ∂w ∂x w x 2 (1 + x) 2 dψ ν dx dx ≤ C ν (C depending on x ∂w ∂x L ∞ (R + ) and w L ∞ (R + ) ).
We estimate the second term of the second member of (2.25) and we get:

k 2 +∞ 0 ∂w ∂x w x (1 + x) 3 ψ ν dx ≤ k 2 +∞ 0 w 2 (1 + x) 2 ψ ν dx 1 2 +∞ 0 ∂w ∂x 2 x 2 (1 + x) 4 ψ ν dx 1 2 ≤ αk 2 +∞ 0 ∂w ∂x 2 x 2 (1 + x) 2 ψ ν dx + k 2 4α +∞ 0 w 2 ψ ν (1 + x) 2 dx, α > 0.
Further, we have:

+∞ 0 w 2 ψ ν d dx g 1 (x) (1 + x) 2 dx ≤ +∞ 0 w 2 ψ ν (1 + x) 2 g ′ 1 (x)(1 + x) -2g 1 (x) 1 + x dx.
From the hypotheses on the function g 1 , we get

g ′ 1 (x)(1 + x) -2g 1 (x) 1 + x ≤ φ(x) + xφ ′ (x) 1 + x + |φ(x) -xφ ′ (x)|
and this quantity is bounded.Then , we obtain:

+∞ 0 w 2 ψ ν d dx g 1 (x) (1 + x) 2 dx ≤ C +∞ 0 w 2 ψ ν (1 + x) 2 dx.
It remains to study the last term of (2.25):

Since x ∂u 1 ∂x and x ∂ û1 ∂x ∈ C(0, T ; L ∞ (R + )), we get: +∞ 0 ∂w ∂x w ∂u 1 ∂x + ∂ û1 ∂x x 2 (1 + x) 2 ψ ν dx ≤ C +∞ 0 ∂w ∂x |w| x (1 + x) 2 ψ ν dx ≤ αk 2 +∞ 0 ∂w ∂x 2 x 2 (1 + x) 2 ψ ν dx + C 2 4αk 2 +∞ 0 w 2 ψ ν (1 + x) 2 dx.
We deduce from all these estimates:

1 2 d dt +∞ 0 w 2 ψ ν (1 + x) 2 dx + k 2 ( 1 2 -2α) +∞ 0 ∂w ∂x 2 x 2 (1 + x) 2 ψ ν dx ≤ C ν + C 1 +∞ 0 w 2 ψ ν (1 + x) 2 dx.
If we choose α < 1 4 , we obtain by using the Gronwall's lemma:

+∞ 0 w 2 ψ ν (1 + x) 2 dx ≤ 2CT ν e 2C 1 t , 0 ≤ t ≤ T and if ν-→ + ∞, we get +∞ 0 w 2 (1 + x) 2 dx = 0
and we deduce w = 0 and the problem admits at most one solution.

We prove now the convergence of the numerical solution to this weak solution and thus, we obtain the existence of a solution. We define the functions u 1h∆t and v 1h∆t by

u 1h∆t = u n h + t -t n ∆t n (u n+1 1h -u n 1h ), v h∆t = v n h + t -t n ∆t n (v n+1 h -v n h ), t n ≤ t ≤ t n+1 .
Theorem 2.9. Assume that the hypotheses of proposition 2.5 are satisfied. The sequence u 1h∆t converges uniformly to the weak solution of (2.1) on any compact of [0, T ] × R + .

Proof: The functions (u 1h∆t ) are uniformly bounded in C(0, T ; W 1,∞ (R + )). Further, for R > 0, we get the estimate:

u n+1 1h -u n 1h ∆t n L 1 (0, R) ≤ k 2 R 2 2 V ar(v n+1 h ; R + ) + C(g 1 , R) v n+1 h L 1 (R + ) + |λ| R vn h L ∞ (R + ) v n h L 1 (R + ) + F 1 L 1 (R + ) with C(g 1 , R) = sup x ≤ R |g 1 (x)|.
Thus, the time derivatives of u h∆t are uniformly bounded in L ∞ (0, T ; L 1 (0, R)) for any R > 0. So, we can extract from the sequence (u h∆t ) a subsequence, again labeled u h∆t which converges uniformly on any compact subset of [0, T ] × R + to a function u 1 [START_REF] Simon | Compact sets in the space L p (0, T ; B)[END_REF].

The functions v h∆t are uniformly bounded in C(0, T ; BV (R + )); besides, we have:

(2.26) v n+1 h -v n h H -2 (0, R) = sup φ ∈ H 2 0 (0, R) < v n+1 h -v n h , φ > φ H 2 0 (0, R) = sup φ ∈ H 2 0 (0, R) < u n+1 h -u n h , φ x > φ H 2 0 (0, R) and v n+1 h -v n h ∆t n H -2 (0, R) ≤ C u n+1 h -u n h ∆t n L 1 (0, R) ≤ C(R).
Then, we can extract from (v h∆t ) a subsequence, again labeled v h∆t which converges to a function

v = ∂u 1 ∂x in C(0, T ; L 1 (Q)) for any compact Q ⊂ R + [7].
We get easily that u 1 is a weak solution. Since this solution is unique, all the sequence is converging to u 1 .

So, we have obtained the following result:

Theorem 2.10. Problem (2.1) admits a unique weak solution.

The following figure represents a(0) with a time maturity [START_REF] Bolley | Quelques résultats sur les espaces de Sobolev avec poids[END_REF] equal to 1 for different values of ρ• the values of the other parameters are those proposed in [START_REF] Bertsimas | Hedging derivative securities and incomplete markets: An ǫ-arbitrage approach[END_REF]: k = 0.4, δ = 2, σ 1 = 0.153, µ = 0.7, σ 0 = 0.01. 

∂u 2 ∂t - k 2 x 2 2 ∂ 2 u 2 ∂x 2 - x 2 y 2 2 ∂ 2 u 2 ∂y 2 -ρkx 2 y ∂ 2 u 2 ∂x∂y -g 2 (x) ∂u 2 ∂x -(1 -ρ 2 )k 2 x 2 ∂u 1 ∂x ∂u 2 ∂x = 0.
The initial condition is the payoff function. If the European option is a put, the payoff function is given by:F (y) = Max(E -y, 0) if E is the exercise price.

Existence and uniqueness of the solution.

In order to obtain a bilinear form satisfying Garding's inequality, we make a change of unknown.

We denote: û2 = e -αx u 2 , α > 0.

The function û2 is solution of:

∂ û2 ∂t - k 2 2 x 2 ∂ 2 û2 ∂x 2 - x 2 y 2 2 ∂ 2 û2 ∂y 2 -ρkx 2 y ∂ 2 û2 ∂x∂y - ∂ û2 ∂x αk 2 x 2 + g 2 (x) + (1 -ρ 2 )k 2 x 2 ∂u 1 ∂x -ραkx 2 y ∂ û2 ∂y - α 2 k 2 2 x 2 + αg 2 (x) + (1 -ρ 2 )αk 2 x 2 ∂u 1 ∂x û2 = 0,
with the initial condition: û2 (0) = e -αx F (y).

We define a variational formulation of this problem.

Let us consider the following space V2 defined by: V2

= v ∈ D ′ (Ω)/ v ∈ L 2 (Ω), xv ∈ L 2 (Ω), xv x ∈ L 2 (Ω), xyv y ∈ L 2 (Ω) with Ω = R + × R + .
This space with the norm:

v = Ω v 2 + x 2 v 2 + x 2 ∂v ∂x 2 + x 2 y 2 ∂v ∂y 2 1 2
is a Hilbert space and D(Ω) is dense in V2 [START_REF] Bolley | Quelques résultats sur les espaces de Sobolev avec poids[END_REF] . Besides, we have the estimates:

xv L 2 (Ω) ≤ 2 xy ∂v ∂y L 2 (Ω) , v L 2 (Ω) ≤ 2 x ∂v ∂x L 2
(Ω) and the semi-norm:

v 2 = x ∂v ∂x 2 L 2 (Ω) + xy ∂v ∂y 2 L 2 (Ω)
2 is a norm in V2 equivalent to the norm . V2 [START_REF] Bolley | Quelques résultats sur les espaces de Sobolev avec poids[END_REF] .

We define on V2 × V2 the bilinear form b by : We have proved in the preceding section that the function x ∂u 1 ∂x is in C(0, T ; L ∞ (R + )).

∀u, v ∈ V2 , b(u, v) = k 2 2 Ω ∂u ∂x ∂ ∂x (x 2 v)
Besides, we have g 2 (x) = -δx(x -σ 1 ) -ρkxf (x). We denote f 1 (x) = xf (x) and we assume that

f 1 , f ′ 1 ∈ L ∞ (R + ).
It is clear that the the bilinear form b is continue on V2 × V2 .

We prove now that it is possible to choose α > 0 such that this bilinear form satisfies Garding's inequality. 

δ, σ 1 , k, ρ such that ∀v ∈ V2 , b(v, v) ≥ C v 2 2 -c v 2 L 2 (Ω)
.

Proof: We have the equality: 

b(v, v) = 6 i=1 B i with B 1 = k 2 2 Ω ∂v ∂x ∂ ∂x (x 2 v
B 6 = - Ω α 2 k 2 2 x 2 + αg 2 (x) + (1 -ρ 2 )αk 2 x 2 ∂u 1 ∂x v 2 dxdy.
It is easily seen, for ǫ i > 0, 1 ≤ i ≤ 4

B 1 = k 2 2 x ∂v ∂x 2 L 2 (Ω) - k 2 2 v 2 L 2 (Ω) , B 2 = 1 2 xy ∂v ∂y 2 L 2 (Ω) - 1 2 xv 2 L 2 (Ω) , B 3 = ρk Ω (x 2 y ∂v ∂x ∂v ∂y -xv 2 )
dxdy and this term is bounded from below:

|B 3 | ≥ - |ρ| 2 xy ∂v ∂y 2 L 2 (Ω) + k 2 x ∂v ∂x 2 L 2 (Ω) -|ρ| ǫ 1 xv 2 L 2 (Ω) + k 2 4ǫ 1 v 2 L 2 (Ω) , ǫ 1 > 0, B 4 = 1 2 Ω v 2 2αk 2 x + g ′ 2 (x) dx + (1 -ρ 2 )k 2 Ω ∂u 1 ∂x x 2 v ∂v ∂x dxdy.
This term is bounded from below:

B 4 ≥ Ω αk 2 -δ xv 2 dxdy - 1 2 |ρ| k f ′ 1 L ∞ (R + ) v 2 L 2 (Ω) -(1 -ρ 2 ) ǫ 3 x ∂v ∂x 2 L 2 (Ω) + k 4 4ǫ 3 x ∂u 1 ∂x 2 L ∞ (Ω) v 2 L 2 (Ω)
and we obtain

B 4 ≥ -ǫ 2 xv 2 L 2 (Ω) -(1 -ρ 2 )ǫ 3 x ∂v ∂x 2 L 2 (Ω) - (αk 2 -δ) 2 4ǫ 2 - 1 2 |ρ| k f ′ 1 L ∞ (R + ) + k 4 4ǫ 3 x ∂u 1 ∂x 2 L ∞ (Ω) v 2 L 2 (Ω) . B 5 ≥ - |ρ| 2 αk xv 2 L 2 (Ω) . B 6 ≥ α δ - αk 2 2 xv 2 L 2 (Ω) - Ω α(δσ 1 + (1 -ρ 2 )k 2 x ∂u 1 ∂x 2 L ∞ (Ω) )xv 2 dxdy -α |ρ| k f 1 L ∞ (R + ) v 2 L 2 (Ω) .
and we deduce :

B 6 ≥ α δ - αk 2 2 -ǫ 4 xv 2 - α 2 4ǫ 4 (δσ 1 + (1 -ρ 2 )k 2 x ∂u 1 ∂x 2 L ∞ (Ω) ) 2 + α |ρ| k f 1 L ∞ (R + ) v 2 L 2 (Ω) .
From all these estimates, we get:

b(v, v) ≥ (1 -|ρ|) k 2 2 (1 -(1 + |ρ|)ǫ 3 ) x ∂v ∂x 2 L 2 (Ω) + 1 2 (1 -|ρ|) xy ∂v ∂y 2 L 2 (Ω) + α δ - αk 2 2 - 1 2 -|ρ| αk 2 -ǫ xv 2 L 2 (Ω) -c v 2 L 2 (Ω)
with ǫ = ǫ 1 + ǫ 2 + ǫ 3 + ǫ 4 and c is a positive constant depending on the different parameters.

Let us denote

P (α) = α δ - αk 2 2 - 1 2 -|ρ| αk 2 -ǫ.
This polynomial admits two positive real roots if k < 2 3 δ and ǫ small enough. This last condition is generally satisfied in practice (k = 0.4, δ = 2). So we can choose α > 0 such that P (α) > 0. Therefore by choosing ǫ i , 1 ≤ i ≤ 4 small enough, α such that P (α) > 0 and if |ρ| < 1, we obtain:

b(v, v) ≥ C v 2 2 -c v 2 L 2 (Ω) .
We may write problem (3.1) in variational form:

(3.1) For the computation of u 2 ,, we shall use a backward Euler method in time and a finite element method in space [START_REF] Ciarlet | The Finite Element Method for Elliptic Problems[END_REF].

     F ind û2 ∈ C(0, T ; L 2 (Ω)) ∩ L 2 (0, T ; V2 ) ( ∂ û2 ∂t , v) + b(û 2 , v) = 0, ∀v ∈ V 2 û2 ( 
We define a triangulation T h of Ω in the following way: -(x i ), 0 ≤ i ≤ N is the sequence defined in section (2.1.2).

-Let (y j ), 0 ≤ j ≤ M ( y 0 = 0) another increasing sequence. We denote k j = y j -y j-1 and we assume that the sequence (k j ), 1 ≤ j ≤ M is increasing.

The domain [0, x N ) × [0, y M ] is divided in rectangles (x i-1 , x i ) × (y j-1 , y j ), 1 ≤ i ≤ N, 1 ≤ j ≤ M and each rectangle is divided in two triangles by the first diagonal. We denote T 1 h the set of these triangles. We define T 2 h , T 3 h , K N M by: T

2 h = { K j /K j = (x N , +∞[×(y j-1 , y j ), j = 1, M} T 3 h = { K i /K i = (x i-1 , x i ) × (y M , +∞), i = 1, N} K N M = (x N , +∞) × (y M , +∞)
The triangulation is then defined by: T

h = T 1 h ∪ T 2 h ∪ T 3 h ∪ K N M .
We associate to this triangulation the finite-dimensional space V 2h defined by:

V 2h = v h ∈ C 0 (Ω)/∀K ∈ T 1 h , v h | K ∈ P 1 , ∀K ∈ T 2 h , v h | K ∈ P y1 ∀K ∈ T 3 h , yv h | K ∈ P x1 , yv h | K N M ∈ P 0
P 1 is the space of polynomials of degree ≤ 1 in x, y ; P y1 is the space of polynomials of degree ≤ 1 in y ; P x1 is the space of polynomials of degree ≤ 1 in x ; P 0 is the space of constants.

Let α > 0 such that P (α) > 0.

If v h ∈ V 2h , it is easily seen that vh = e -αx v h ∈ V2 . The approximate value of u 2 at the time level t n will be in V 2h .

If v h ∈ V 2h , we denote ṽh = e -2αx v h and we define the bilinear form b on V 2h ×V 2h by: ∀u

h , v h ∈ V 2h , b(u h , v h ) = k 2 2 Ω ∂u h ∂x ∂ ∂x (x 2 ṽh )dxdy + 1 2 Ω x 2 ∂u h ∂y ∂ ∂y (y 2 ṽh )dxdy +ρk Ω x 2 ∂u h ∂x ∂ ∂y (yṽ h )dxdy - Ω xg 2 (x) ∂u h ∂x ṽh dxdy -(1 -ρ 2 )k 2 Ω x 2 ∂u 1 ∂x ∂u h ∂x ṽh dxdy.
We have the equality: b(u h , v h ) = b(û h , vh ), ∀u h , v h ∈ V 2h and we define the approximate value u n+1 2h of u 2 (t n+1 ) as the solution of the following problem:

(u n+1 2h -u n 2h , ṽh ) h + b h (u n+1 2h , v h ) = 0, ∀v h ∈ V 2h , u 0 2h = F h ,
where F h is the Lagrange interpolate of F in V 2h ; (u h , v h ) h is an approximate scalar product in L 2 (Ω) and b h an approximation of b, obtained by using numerical integration.

In It is clear that this bilinear form is continue on V2 × V2 and under the same hypotheses as for b, it satisfies:

∂ û3 ∂t - k 2 x 2 2 ∂ 2 û3 ∂x 2 - x 2 y 2 2 ∂ 2 û3
∀v ∈ V2 , ĉ(v, v) ≥ C v 2 V2 -c v 2 L 2 (Ω) .
We denote G(x) = (1 -ρ 2 )k 2 x 2 e u 1 ∂u 2 ∂x 2 , x > 0 .

Problem (4.1) may be written in variational form: If we assume that ∂u 2 ∂x ∈ C(0, T ; L ∞ (Ω)), the second member is continue on V2 and we get the following theorem: If v h ∈ V 2h , we denote ṽh = e -2αx v h and define the bilinear form on V 2h × V 2h by: where c h is an approximation of c obtained by using numerical integration.

c(u h , v h ) = k 2 2 Ω ∂u h ∂x ∂(
Fig4 represents the variation of u 3 (T ) in y (or c(0) in P ) for different values of σ. The parameter ρ is equal to 0. (In the case ρ = 1 or ρ = -1, u 3 is null). The replication error ǫ * is given by: ǫ * = c(0). 
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 2 we present the variation of u 2 (T ) in y (or b(0) in P ) for different values of the volatility; the parameter ρ is null; the exercise price E is equal to 1; the others parameters have the same values as in Fig1.
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  ind û3 ∈ C 2 (0, T ; L 2 (Ω) ∩ L 2 (0, T ; V2 ) ∂ û3 ∂t , v + ĉ(û 3 , v) = (Ge -αx , v) û3 (0) = 0.

Theorem 4 . 1 .

 41 If |ρ| < 1, k < 2 3δ and α such that ĉ satisfies Garding inequality, problem (4.2) admits a unique solution.
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 2 Numerical solution. To compute u 3 , we use the same method as for the computation of u 2 .
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 55 Fig 5 represents the variation of θ * in P for different values of σ; the parameter ρ is equal to 0.
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	+ρk -ραk	Ω	x 2 ∂u ∂x Ω x 2 y	∂ ∂y ∂u ∂y	(yv)dxdy -vdxdy -Ω	α 2 k 2 2	dxdy + x 2 + αg 2 (x) + (1 -ρ 2 )αk 2 x 2 ∂u 1 1 2 Ω x 2 ∂u ∂y ∂ (y 2 v)dxdy ∂y ∂x ) ∂u vdxdy ∂x ∂x uvdxdy.

Ω

  ∂y 2 -ρkx 2 y

	∀u, v ∈ V2 , ĉ(u, v) = +ρk Ω x 2 ∂u ∂x ∂ ∂y (yv)dxdy -k 2 2 Ω -Ω (ραkx 2 + xf (x))y ∂u ∂y vdxdy -∂u ∂x ∂ ∂x (x 2 v)dxdy + Ω (αk 2 x 2 + g(x)) Ω ( α 2 k 2 x 2 ∂u 1 2 Ω vdxdy x 2 ∂u ∂y ∂x 2 + αg(x))uvdxdy. ∂ (y 2 v)dxdy ∂y
				∂ 2 û3 ∂x∂y	-	∂ û3 ∂x	αk 2 x 2 + g(x) -	∂ û3 ∂y	ρkαx 2 y + xf (x)y
	(4.1)	-û3	α 2 k 2 x 2 2	+ αg(x) = (1 -ρ 2 )k 2 x 2 exp(u 1 -αx)	∂u 2 ∂x	2	.
	We define the bilinear form c on V2 × V2 by:		

  the equality:∀u h , v h ∈ V 2h , c(u h , v h ) = ĉ(û h , vh ). ṽh ) h + ∆t n c h (u n+1 3h , vh) = (G, ṽh ) h , ∀v h ∈ V 2h , u 0 3h = 0.

	-	Ω	g(x)	∂u h ∂x	ṽh dxdy -	x 2 ṽh ) ∂x Ω xf (x)y dxdy + ∂u h ∂x	1 2 Ω ṽh dxdy x 2 ∂u h ∂y	∂(y 2 ṽh ) ∂y	dxdy + ρk	Ω	x 2 ∂u h ∂x	∂(yṽ h ) ∂y	dxdy
	and we have The approximate solution u n+1 3h	at the time level t n+1 satisfies:			
	(u n+1 3h -u n 3h ,