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Avalanche polynomials

Robert Cori∗, Anne Micheli and Dominique Rossin†

May 18, 2009

Abstract

The avalanche polynomial on a graph, introduced in [5], capture
the distribution of avalanches in the abelian sandpile model. Studied
on trees, this polynomial could be defined by simply considering the
size of the subtrees of the original tree. In this article, we study some
properties of this polynomial on plane trees. In [5], they show that two
different trees could have the same avalanche polynomial. We show
here that the problem of finding a tree with a prescribed polynomial is
NP-complete. In a second part, we study the average and the variance
of the avalanche distribution on trees and give a closed formula.

1 Introduction

Self-organized criticality is a concept introduced by Bak, Tang and Wiesen-
feld [1] to describe the behavior of natural systems like earthquakes [4, 16],
forest fires. A simple model that verifies this paradigm is the Abelian Sand-
pile Model on the 2-dimensional lattice [11, 7, 10]. This model is based on
a cellular automaton where each cell has a number of sand grains on it and
one cell topples whenever the number of grains is greater or equal to four.
In this toppling, the cell gives one grain to each of its neighbor. Thus, some
other cells may topple and the sequence of toppling is called an avalanche.

This model was also considered by combinatorists [2, 3, 6, 14] but on
general graphs. In [5], a polynomial was introduced to encode the distribu-
tion of avalanches that was previously studied from another point of view
[1, 9, 8, 13, 15]. In this paper, we study the inverse problem. Given the dis-
tribution D of avalanches, can we find a tree whose avalanche distribution
is D ? Moreover we study the average and the variance of this distribution
on plane trees.

∗LABRI, Domaine Universitaire, 351 cours de la Libération, 33405 Talence Cedex
†LIAFA, Université Paris Diderot - Paris 7, Case 7014, 75205 Paris Cedex 13
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2 Avalanche polynomial on a plane tree

2.1 Definition and main result

The avalanche polynomial [5] encodes the size of avalanches in the abelian
sandpile model. Let T = (V,E, r) be a tree rooted at r ∈ V whose vertex-
set is V = {v1, . . . , vn+1}, and edge-set E. Without loss of generality we
can take r = vn+1. Let v ∈ V be a vertex. A subtree T ′ rooted at v is a
tree whose vertices are descendants of v in T . The maximal subtree is the
subtree containing all descendants of v. The size of a tree is its number of
vertices.

We label the vertices vi according to the following algorithm [5] (see
Figure 1):

1. Label the root 0

2. The label of a child v of a vertex labeled µ is µ+|maximal subtree rooted at v|.
In [5], the authors show that the avalanche polynomial is also defined by
AvT (q) =

∑

i≥1 piq
i, where pi is the number of vertices labeled i in T . In

the sequel we will either speak of the polynomial or its sequence of labels.
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AvT (q) = q5 + 2q6 + 3q7 + 3q8 + 2q9 + 4q10 + 4q11

Figure 1: Example of an avalanche polynomial of a tree

In [5], they show that the avalanche polynomial is not a tree invariant
by exhibiting two different trees with the same avalanche polynomial. In
the sequel, we study the problem of finding a tree for a given polyonomial.

Theorem 1 Given a polynomial P (q), finding whether there exists a tree T
whose avalanche polynomial is P (q) is NP-complete.
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2.2 Proof of theorem 1

We show that the 3-PARTITION problem can be reduced to our problem.

Definition 1 The 3-PARTITION problem In,C is the following:

• INPUT : C ∈ N, (a1, a2, . . . , a3n) be non-negative integers such that
C
4 < ai < C

2 .

• OUTPUT :

1. A partition of the integers into n parts of equal sum C.

2. NO if there is no such partition.

This is a well-known example of NP-complete problem ([12]). Our proof
has several steps:

1. We associate a polynomial P to each instance of 3-PARTITION problem
(see Definition 2).

2. We show that P is an avalanche polynomial by exhibiting a tree TP

with AvTP
(q) = P . Furthermore, the structure of TP gives a solution

to 3-PARTITION. (see Lemma 1)

3. Then, we prove that TP is the unique tree whose avalanche polynomial
is P (see Lemma 2, 3, 4, 5).

Definition 2 Let In,C be an instance of the 3-PARTITION problem on a1, . . . , a3n.
P (q) is the polynomial associated to In,C :

P (q) = nqC+1 +
3n
∑

i=1

qC+1+ai +
3n
∑

i=1

(ai − 1)qC+ai+2

Lemma 1 The polynomial P (q) associated to an instance In,C of the 3-PARTITION
problem is an avalanche polynomial. Moreover, the tree given in Figure 2
yields a solution to the 3-PARTITION problem.

Proof 1 Let Πk = (α(k), β(k), γ(k)) be a partition of {1, . . . , 3n} in n parts
such that

aα(k) + aβ(k) + aγ(k) = C

Note that P (q) is the avalanche polynomial of the tree TP in Figure 2.
The nodes at height 1 in TP have 3 children, whose labels are a part of

Πk. Hence, there exists at least a solution to the Avalanche Polynomial

Problem which yields a solution to the 3-PARTITION problem.
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aβ(n) − 1

aγ(n) − 1

Figure 2: A solution to the 3-PARTITION problem

Nevertheless, many solutions (different non-isomorphic trees) to the Ava-
lanche Polynomial Problem might exist.

To prove Theorem 1, we ensure the unicity thanks to the following re-
mark: each value ai (and C) can be multiplied by a polynomial integer factor
λ = λ(n). The avalanche polynomial becomes:

Pλ(q) = nqλC+1 +

3n
∑

i=1

qλC+1+λai +

3n
∑

i=1

(λai − 1)qλC+λai+2

Note that λ is polynomial ensures that our transformation is a polynomial-
time reduction. With the following substitutions (ai → λai and C → λC),
the tree of Figure 2 is a solution of Pλ. We are going to prove that, taking
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λ large enough, every tree such that AvT (q) = Pλ(q) yields a solution to the
3-PARTITION problem.

Lemma 2 The root has n children, each one labeled λC + 1.

Proof 2 By definition, the smallest value is the label of a child of the root.
Hence the n vertices labeled λC+1 are children of the root. But n(λC+1) =
(
∑

λai)+ n, the number of vertices. Hence all other vertices are children of
one of the vertices labeled λC + 1.

Let I be the set of all vertices labeled λC + 1 + λai and L the set of
those labeled λC + λai + 2, λ ≥ 2. Note that if λ > 1 then |I| = 3n,
|L| = n(λC − 3) and I

⋂

L = ∅.

Lemma 3 If λ > 2 then the leaves of every solution tree are in L.

Proof 3 Let v be a leaf of a solution tree labeled lv. Then its parent p is
labeled lv − 1. If lv = λC + 1 + λav there does not exist any vertex labeled
λC + λav. Otherwise λC + λav = λC + λap + 1 + δ (δ ∈ {0, 1}). Hence,
λ(av −ap) = 1+ δ which contradicts λ > 2. p cannot be labeled λC +1 since
λav 6= 1.

Lemma 4 If λ > 3n then all vertices of L are leaves.

Proof 4 Suppose that there exists an internal vertex in L. Take v as the
one with the greatest label lv = λC + λav + 2. Let ν be a child of v. If ν is a
leaf, then its label is lv +1 = λC +λav +3. But there is no such vertex since
λ > 3. Hence ν is an internal node. But v is the greatest internal node of
L and the label of ν is greater than lv, hence ν ∈ I.

Then v is either a child of the node labeled λC +1 or not. The two cases
are shown in Figure 3.

Suppose that the parent p of v is labeled λC + 1 + λap + δ, δ = 0, 1. The
size σ of the subtree rooted at v is given:

1. either by the difference between its label and the label of its parent,

σ = λC + λav + 2 − (λC + 1 + λap + δ) = λ(av − ap) + (1 − δ),

2. or by the sum of the size of the t child-trees of v plus 1 (to take v into
account):

σ = 1+
t
∑

i=1

((λC + λasi
+ 1) − (λC + λav + 2)) = 1−t+

t
∑

i=1

λ(asi
−av)
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?
λC + 1 +
λap + δ

λC +
λav + 2

λC + 1 +
λas1

λC + 1 +
λast

λ(as1
− av)

λ(ast
− av)

0 λC + 1
λC +
λav + 2

λC + 1 +
λas1

λC + 1 +
λast

λ(as1
− av)

λ(ast
− av)

Figure 3: Two different shapes of trees that appear in Lemma 4.

Hence λ(av − ap) + (1 − δ) = 1 − t +
∑t

i=1 λ(asi
− av), and

λ
(
∑t

i=1 asi
− (t + 1)av + ap

)

= t − δ.
But t ≤ |I| = 3n (the number of values ai). Hence t − δ < 3n. Taking
λ > 3n concludes whenever p is labeled λC + λap + 1 + δ, δ = 0, 1.

Note that when p is labeled λC + 1, taking ap = 0 and δ = 0 in the
preceding proof concludes.

Lemma 5 If λ > 3n, then the nodes of I are children of one of the vertices
labeled λC + 1.

Proof 5 Let v ∈ I be a vertex labeled λC + λav + 1. By Lemmas 3 and 4,
the λav − 1 vertices labeled λC + λav + 2 are leaves, hence children of v.
Note that if k vertices v1, . . . , vk have the same label than v then there are
k(λav − 1) vertices labeled λC + λav + 2. These vertices are children of the
vi, 1 ≤ i ≤ k. The size of each maximal subtree rooted at vi is less or equal
than λav since the size of the subtree is the label of v minus the label of its
parent p, and the label of p is at least λC + 1. Hence each vi has exactly
λav − 1 children labeled λC + λav + 2.

Suppose that the parent p of v is labeled λC + 1 + λap then the size of
the subtree rooted at v is λ(av − ap) < λav.

Thus the parent of v is labeled λC + 1.
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2.3 Avalanche polynomial on plane tree of height at most 2.

We showed in the last section that finding a tree whose avalanche polynomial
is given is NP-complete. In this part, we show that considering only trees of
height at most 2, then the problem becomes poynomial. Moreover we give
a linear time and space algorithm to solve it.

A tree of height 2 and its labeling is given in Figure 4 and its associated
polynomial is P (q) =

∑n
i=1

(

qai + (ai − 1)qai+1
)

. Note that if one of the ai

is equal to 1 then it is a leaf rooted at the vertex labeled 0.
The following algorithm takes as input a polynomial P (q) =

∑n
i=1 aiq

i

and output either:

• A tree T of height at most 2 whose avalanche polynomial is P .

• NO if no such tree exists.

1. Create the root with label 0.

2. Find a child of the root by taking the first non-nul coefficient aj. If
j = 1 we have found aj leaves of the root. If j > 1 we have aj nodes.
Each of these nodes must have j−1 children labeled j +1. Hence aj+1

must be greater than aj(j − 1). If not, output NO and exit.

3. Subtract ajq
j + aj(j − 1)qj+1 from the polynomial; we take this new

polynomial as P

4. If P = 0 output the tree and exit.

5. Goto 2.

0

a1

a1 + 1 a1 + 1

a2

a2 + 1 a2 + 1

an

an + 1 an + 1
a1 − 1 a2 − 1 an − 1

Figure 4: Labeled tree of height 2
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3 Avalanche polynomial on plane trees

In this section, we study the avalanche polynomial on plane trees. The aim of
this section is to find the average distribution of avalanches on a random tree.
We first give the closed expression for the number of avalanches of a given
size in plane trees. Unfortunately, this formula does not help to retrieve
informations on the distribution, thus we give a recursive formula for the
distribution and deduce the mean and the variance of this distribution.

3.1 Definition

Let us note Ck = 1
k+1

(2k
k

)

the k-th Catalan number. Let Tn be the set of
rooted plane trees with n edges. |Tn| = Cn. We extend the definition of
avalanche polynomial to the set of plane trees (see Figure 5):

A(t, q) =
∑

i≥0

∑

T∈Ti

AvT (q)ti =
∑

p≥0

Ap(q)t
p (1)

Size Trees Polynomial

1 0 0

2 0

1

qt

3 0

1 1

0

2

3

(2q + q2 + q3)t2

4 0

1 1 1

0

1 2

3

0

2

3

1

0

3

4 4

0

3

5

6

(5q + 2q2 + 4q3

+2q4 + q5 + q6)t3

Figure 5: First terms of A(t, q)

Remark 1 Note that :

A(t, 1) =
∑

p≥0

Ap(1)t
p =

∑

p≥0

pCpt
p
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In fact, the coefficient of tp in A(t, 1) is the number of rooted plane trees
of size p + 1 times the number of vertices (excepting the roots). Hence it is
pCp.

3.2 Closed formula

In this section, we exhibit a decomposition of the rooted plane trees which
yields a closed formula for the avalanche polynomial.

Theorem 2 The coefficients of the polynomials An(q) are given by:

[qv]An(q) =

j

−1+
√

1+8v
2

k

∑

k=1

∑

p∈Πn,v,k

Cp1−1

(

k
∏

i=2

Cpi−pi−1

)

Cn−pk+1 (2)

where

Πn,v,k = {(p1, . . . , pk); pi < pi+1, pk ≤ n,

k
∑

i=1

pi = v}

Proof 6 The coefficient [qv]An(q) represents the number of vertices labeled
v in every plane trees of size n + 1.

Let x be such a vertex labeled v in a tree T and y0 = x, y1, . . . , yk = xn+1

be the path joining the root xn+1 labeled 0 to the vertex x in T . Let lab be the
function which maps any vertex y of T onto lab(y), the label of y in T . The
proof is based on the study of rooted plane trees which have a given path.

• Note that k ≤
⌊

−1+
√

1+8v
2

⌋

because the labels of the vertices of the path

from the root to x take minimal values when the maximal subtree of T
rooted at yk−1 is reduced to the path y0, . . . , yk−1.

Then the labels of the vertices on this path are k, k + (k − 1),k + (k −
1) + (k − 2), ..., k(k+1)

2 and if k >
⌊

−1+
√

1+8v
2

⌋

then the last label is

stricly greater than v.

• The sequence of labels of the vertices yl is stricly decreasing by defini-
tion.

• The sequence of the differences (lab(yl) − lab(yl+1)) is stricly increas-
ing. This relies on the fact that each difference is the size of the maxi-
mal subtree rooted at yl+1 and that the subtrees are nested. Moreover,
lab(yk−1)− lab(yk) ≤ n as this is the size of the maximal subtree rooted
at yk−1. Finally,

∑k
i=1 lab(yi−1) − lab(yi) = lab(y0) − lab(yk) = v.

9



Let k be an integer such that k ≤
⌊

−1+
√

1+8v
2

⌋

and let (p1, . . . , pk) be

a stricly increasing sequence such that pk ≤ n and
∑k

i=1 pi = v. Let P
be a path of vertices {y0, . . . , yk} labeled lab(y0) = v, lab(y1) = lab(y0) −
p1, lab(y2) = lab(y1) − p2, . . . , lab(yk) = lab(yk−1) − pk = 0 (see Figure 6).
Denote by Fi,1 (resp. Fi,2) the forest hanging on yi at the left (resp. right)
of the edge (yi, yi−1).

Lemma 6 The number of plane trees of size n + 1 having P as subpath is

Cp1−1

(

∏k
i=2 Cpi−pi−1

)

Cn−pk+1.

Proof 7 Note first that the size of the maximal subtree hanging on yi is
yi − yi+1 = pi+1. Then the number of vertices of the forest Fi,1 ∪ Fi,2 is
pi+1 − pi − 1 for i ∈ {1, . . . , k − 1}. The number of such pair of forests
{Fi,1, Fi,2} is Cpi+1−pi

.
The size of the maximal subtree rooted at y0 is y0 − y1 = p1. There are

Cp1−1 such trees.
The remaining nodes are in the forests Fk,1 and Fk,2 which union has

n − pk vertices. So that the number of such forests is Cn−pk+1.

0 yk−1 yk−2 y1 y0 = v

Fk,1

Fk,2

Fk−1,1

Fk−1,2

Fk−2,1

Fk−2,2

F1,1

F1,2

F0

Figure 6: A tree with its subpath P

Remark 2 The coefficient of tnq in A(t, q) is Cn and the coefficient of tnq2

is Cn−1.

Proof 8 There are two different proofs of these results, the first one consists
in taking v = 1 or v = 2 in Equation (2).

The second one relies on the following property:

Lemma 7 Let T ′ be a tree. Let ST ′ be the set of trees T of size n+1 where
T ′ is a subtree of T rooted at the root of T . Then |ST ′ | = Cn−|T ′|+2.
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0

T1 T ′ T2

0

T1

T2

Figure 7: Bijection between ST ′ and plane trees

Proof 9 The bijection between the trees of ST ′ and plane trees of size n −
|T ′| + 1 is given in Figure 7.

For v = 1 take T ′ as a single edge. For v = 2 take T ′ as a path of length
2.

3.3 Functional equation

Lemma 8 The polynomial Ap(q), p ≥ 0 - the distribution of avalanches on
plane trees of size p + 1- is defined by the following recurrence:

Ap+1(q) =

p
∑

k=0

CkCp−kq
k+1 + Cp−kq

k+1Ak(q) + CkAp−k(q) (3)

This yields a functionnal equation for A(t, q):

A(t, q) =
(1 −

√
1 − 4t)(1 −√

1 − 4qt)

4t

+q
1 −

√
1 − 4t

2
A(qt, q) +

1 −
√

1 − 4t

2
A(t, q) (4)

Proof 10 The proof relies on the following decomposition of rooted plane
trees (see Figure 8). A tree Tp+1 of size p + 2 can be decomposed into a
tree Tk of size k + 1 and a tree Tp−k of size p + 1 − k as shown in Figure
8. Hence, the root of the tree Tk is the leftmost child of the root of Tp−k in
Tp+1. Furthermore, the root of Tk is labeled k + 1 the number of vertices of
Tk. This vertex contributes to the term CkCp−kq

k+1 in Ap+1(q).
The avalanche polynomial of Tk is Ak(q). In Tp+1 the label of a ver-

tex of the subtree Tk is increased by k + 1. They contribute to the term
Cp−kq

k+1Ak(q) in Ap+1(q). The last term takes into account the labels of
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the vertices of Tp−k which stay unchanged since the root of Tp−k is the root
of Tp+1.

0

k + 1

Tk

Tp−k

Figure 8: Decomposition of a plane tree

Substituting Equation (3) in Equation (1) yields a functionnal equation
for A(t, q):

A(t, q) =
(1 −

√
1 − 4t)(1 −√

1 − 4qt)

4t

+
∑

p≥0

p
∑

k=0

(Cp−kq
k+1Ak(q)t

p+1 + CkAp−k(q)t
p+1)

=
(1 −

√
1 − 4t)(1 −√

1 − 4qt)

4t

+q
1 −

√
1 − 4t

2
A(qt, q) +

1 −
√

1 − 4t

2
A(t, q)

3.4 Average of the distribution of avalanches

Proposition 1 The average size of an avalanche on a plane tree of size n

is asymptotically equal to
√

π
4 n3/2.

Proof 11

A(t, q) =
∑

n

∑

m

am,nqmtn

The mean size of avalanches on all plane trees of size n is given by

Mn =

∑

m mam,n
∑

m am,n
=

[

∂A
∂q (t, 1)

]

n

[A(t, 1)]n
=

[

∂A
∂q (t, 1)

]

n

nCn
(5)
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Equation (4) yields:

∂A

∂q
(t, 1) =

1 −
√

1 − 4t

2
√

1 − 4t
+

1 −
√

1 − 4t

2

(

A(t, 1) +
∂A

∂q
(t, 1) + t

∂A

∂t
(t, 1) +

∂A

∂q
(t, 1)

)

Factorization of ∂A
∂q (t, 1) and substitution of A(t, 1) and ∂A

∂t (t, 1) with
their values of Remark 1 yield:

∂A

∂q
(t, 1) =

(
√

1 − 4t − 1)(2t − 1)

2(4t − 1)2

Since

(
√

1 − 4t − 1)(2t − 1)

2
= t +

∑

i≥0

(Ci+1 − 2Ci)t
i+2,

∂A

∂q
(t, 1) = t

∑

i≥0

4i(i + 1)ti +
∑

i,j≥0

(Ci+1 − 2Ci)4
j(j + 1)ti+j+2

= t
∑

i≥0

4i(i + 1)ti +
∑

k≥1

4ktk+1
k−1
∑

i=0

(Ci+1 − 2Ci)
k − i

4i+1

Since

k−1
∑

i=0

Ci+1 − 2Ci

4i+1
= −kCk

4k
,

k−1
∑

i=0

i(Ci+1 − 2Ci)

4i+1
=

(2 + 5k + k2)Ck

4k
− 2,

∂A

∂q
(t, 1) =

∑

i≥1

(

4i−1(i + 2) − (−1 + i + 2i2)Ci−1

)

ti

Substitution of ∂A
∂q (t, 1) in Equation (5) yields:

Mn =
4n−1(n + 2)

nCn
− (n + 1)2

2n

Since Cn ∼ 4n√
πn3

, Mn ∼
√

π
4 n3/2.
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3.5 Variance

The variance of the distribution is given by

h

∂2A

∂q2
(t,1)

i

n

nCn
+ Mn − M2

n where
Mn denotes the mean size (computed in the last section).

Hence we only need the expression of
[

∂2A
∂q2 (t, 1)

]

n
.

∂2A

∂q2
(t, 1) =

t(1 −
√

1 − 4t)

(1 − 4t)3/2
+

1 −
√

1 − 4t

2

(

2t
∂A

∂t
(t, 1) + 2

∂A

∂q
(t, 1)

+t2
∂2A

∂t2
(t, 1) + 2

∂2A

∂q2
(t, 1) + 2t

∂2A

∂t∂q
(t, 1)

)

Thus we need the other derivatives ∂A
∂t (t, q),∂A

∂q (t, q), ∂2A
∂t2 (t, 1) and ∂2A

∂t∂q (t, 1).

Substituting their expression in ∂2A
∂q2 (t, 1) yields:

∂2A

∂q2
(t, 1) = −1/2

(

−1 +
√

1 − 4 t
) (

10 t +
√

1 − 4 t − 1 − 32 t2 + 32 t3
)

(−1 + 4 t)4

Since :

(1 − 4t)−4 =
∑

n≥0

4n

6
(n + 1)(n + 2)(n + 3)tn

(1 − 4t)−7/2 =
∑

n≥0

(n + 1)(2n + 1)(2n + 3)(2n + 5)4nCn

1522n
tn

We obtain:

Vn =
4

15
n3 +

73

60
n2 +

26

15
n +

8

15
− 1

2n
− 1

2n
− 1

4n2

− 16n−1

n2(n + 1)2C2
n

(n4 + 6n3 + 13n2 + 12n + 4)

+
4n−1

n2(n + 1)Cn
(n3 + 4n2 + 5n + 2)

The leading term is:

4

15
n3 − 16n−1

n2(n + 1)2C2
n

n4 ∼
(

4

15
− π

16

)

n3

In fact the distribution show strange peaks and after a renormalization
(scaling in x by a factor 1/n for the distribution on trees of size n and rescal-
ing the ordinate between 0 and 1) it gives the curves in Figure 9 and 9. In the

14



following figures, we draw a curve for A10(q), A20(q),... Moreover for such
a polynomial An(q) =

∑

i≥0 piq
i we put points at coordinates (i/n, pi/p1)

since p1 is the maximum. Let’s recall from Remark 2 that p1 = Cn. The
grey scale goes from white (for the first polynomial) to black (for the last
one).
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Figure 9: Distribution for the first 500 and 1000 polynomials

4 Conclusion

The Figures (9) and (9) point out some convergence of the renormalized
distribution. A question arises naturally:

• Is it possible to retrieve the asymptotic of the coefficients from their
closed form ?

Note first that the peaks that appear at integer abscissa x, x ≪ √
n do not

converge to 0. In fact consider the trees made of a path π0 = 0, π1, . . . , πx

of length x and a plane tree of size n − x rooted in πx. The label of πx is
n+(n−1)+(n−2)+. . .+(n−x+1) thus tends to x after the renormalization
by n. Moreover there are Cn−x−1 such trees. Since p1 = Cn the peak is
higher than Cn−x−1/Cn ∼ (1/4)x−1.
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