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Avalanche polynomials

The avalanche polynomial on a graph, introduced in [5], capture the distribution of avalanches in the abelian sandpile model. Studied on trees, this polynomial could be defined by simply considering the size of the subtrees of the original tree. In this article, we study some properties of this polynomial on plane trees. In [5], they show that two different trees could have the same avalanche polynomial. We show here that the problem of finding a tree with a prescribed polynomial is NP-complete. In a second part, we study the average and the variance of the avalanche distribution on trees and give a closed formula.

Introduction

Self-organized criticality is a concept introduced by Bak, Tang and Wiesenfeld [START_REF] Bak | Self-organized criticality: an explanation of 1/f noise[END_REF] to describe the behavior of natural systems like earthquakes [START_REF] Chen | Self-organized criticality in a crackpropagation model of earthquakes[END_REF][START_REF] Sornette | Self-organized criticality and earthquakes[END_REF], forest fires. A simple model that verifies this paradigm is the Abelian Sandpile Model on the 2-dimensional lattice [START_REF] Dhar | Algebraic aspects of abelian sandpile models[END_REF][START_REF] Creutz | Abelian sandpiles[END_REF][START_REF] Dhar | Inverse avalanches in the abelian sandpile model[END_REF]. This model is based on a cellular automaton where each cell has a number of sand grains on it and one cell topples whenever the number of grains is greater or equal to four. In this toppling, the cell gives one grain to each of its neighbor. Thus, some other cells may topple and the sequence of toppling is called an avalanche.

This model was also considered by combinatorists [START_REF] Biggs | Chip firing and the critical group of a graph[END_REF][START_REF] Biggs | Chip-firing and the chromatic polynomial[END_REF][START_REF] Cori | On the sandpile group of dual graphs[END_REF][START_REF] Goles | Universality of the chip-firing game[END_REF] but on general graphs. In [START_REF] Cori | Avalanche polynomials on some families of graphs[END_REF], a polynomial was introduced to encode the distribution of avalanches that was previously studied from another point of view [START_REF] Bak | Self-organized criticality: an explanation of 1/f noise[END_REF][START_REF] Dhar | Abelian sandpile model on the bethe lattice[END_REF][START_REF] Daerden | Sandpiles on a sierpinski gasket[END_REF][START_REF] Goh | Cascading toppling dynamics on scale-free networks[END_REF][START_REF] Maes | The abelian sandpile model on an infinite tree[END_REF]. In this paper, we study the inverse problem. Given the distribution D of avalanches, can we find a tree whose avalanche distribution is D ? Moreover we study the average and the variance of this distribution on plane trees.

2 Avalanche polynomial on a plane tree

Definition and main result

The avalanche polynomial [START_REF] Cori | Avalanche polynomials on some families of graphs[END_REF] encodes the size of avalanches in the abelian sandpile model. Let T = (V, E, r) be a tree rooted at r ∈ V whose vertexset is V = {v 1 , . . . , v n+1 }, and edge-set E. Without loss of generality we can take r = v n+1 . Let v ∈ V be a vertex. A subtree T ′ rooted at v is a tree whose vertices are descendants of v in T . The maximal subtree is the subtree containing all descendants of v. The size of a tree is its number of vertices.

We label the vertices v i according to the following algorithm [START_REF] Cori | Avalanche polynomials on some families of graphs[END_REF] (see Figure 1):

1. Label the root 0 2. The label of a child v of a vertex labeled µ is µ+|maximal subtree rooted at v|.

In [START_REF] Cori | Avalanche polynomials on some families of graphs[END_REF], the authors show that the avalanche polynomial is also defined by Av T (q) = i≥1 p i q i , where p i is the number of vertices labeled i in T . In the sequel we will either speak of the polynomial or its sequence of labels. Av T (q) = q 5 + 2q 6 + 3q 7 + 3q 8 + 2q 9 + 4q 10 + 4q 11 In [START_REF] Cori | Avalanche polynomials on some families of graphs[END_REF], they show that the avalanche polynomial is not a tree invariant by exhibiting two different trees with the same avalanche polynomial. In the sequel, we study the problem of finding a tree for a given polyonomial.

Theorem 1 Given a polynomial P (q), finding whether there exists a tree T whose avalanche polynomial is P (q) is NP-complete.

Proof of theorem 1

We show that the 3-PARTITION problem can be reduced to our problem.

Definition 1 The 3-PARTITION problem I n,C is the following:

• INPUT : C ∈ N, (a 1 , a 2 , . . . , a 3n ) be non-negative integers such that C 4 < a i < C 2 . • OUTPUT :
1. A partition of the integers into n parts of equal sum C.

NO if there is no such partition.

This is a well-known example of NP-complete problem ( [START_REF] Garey | Complexity results for multiprocessor scheduling with resource constraints[END_REF]). Our proof has several steps:

1. We associate a polynomial P to each instance of 3-PARTITION problem (see Definition 2).

2. We show that P is an avalanche polynomial by exhibiting a tree T P with Av T P (q) = P . Furthermore, the structure of T P gives a solution to 3-PARTITION. (see Lemma 1)

3. Then, we prove that T P is the unique tree whose avalanche polynomial is P (see Lemma 2,[START_REF] Biggs | Chip-firing and the chromatic polynomial[END_REF][START_REF] Chen | Self-organized criticality in a crackpropagation model of earthquakes[END_REF][START_REF] Cori | Avalanche polynomials on some families of graphs[END_REF].

Definition 2 Let I n,C be an instance of the 3-PARTITION problem on a 1 , . . . , a 3n . P (q) is the polynomial associated to I n,C :

P (q) = nq C+1 + 3n i=1 q C+1+a i + 3n i=1 (a i -1)q C+a i +2
Lemma 1 The polynomial P (q) associated to an instance I n,C of the 3-PARTITION problem is an avalanche polynomial. Moreover, the tree given in Figure 2 yields a solution to the 3-PARTITION problem.

Proof 1 Let Π k = (α(k), β(k), γ(k)) be a partition of {1, . . . , 3n} in n parts such that a α(k) + a β(k) + a γ(k) = C
Note that P (q) is the avalanche polynomial of the tree T P in Figure 2. The nodes at height 1 in T P have 3 children, whose labels are a part of Π k . Hence, there exists at least a solution to the Avalanche Polynomial Problem which yields a solution to the 3-PARTITION problem. To prove Theorem 1, we ensure the unicity thanks to the following remark: each value a i (and C) can be multiplied by a polynomial integer factor λ = λ(n). The avalanche polynomial becomes:

0 C + 1 C + 1 + a α(1) C + 2 + a α(1) C + 2 + a α(1) C + 1 + a β(1) C + 2 + a β(1) C + 2 + a β(1) C + 1 + a γ(1) C + 2 + a γ(1) C + 2 + a γ(1) C + 1 C + 1 + a α(n) C + 2 + a α(n) C + 2 + a α(n) C + 1 + a β(n) C + 2 + a β(n) C + 2 + a β(n) C + 1 + a γ(n) C + 2 + a γ(n) C + 2 + a γ(n) a α(1) -1 a β(1) -1 a γ(1) -1 n a α(n) -1 a β(n) -1 a γ(n) -1
P λ (q) = nq λC+1 + 3n i=1 q λC+1+λa i + 3n i=1 (λa i -1)q λC+λa i +2
Note that λ is polynomial ensures that our transformation is a polynomialtime reduction. With the following substitutions (a i → λa i and C → λC), the tree of Figure 2 is a solution of P λ . We are going to prove that, taking λ large enough, every tree such that Av T (q) = P λ (q) yields a solution to the 3-PARTITION problem. Let I be the set of all vertices labeled λC + 1 + λa i and L the set of those labeled λC

+ λa i + 2, λ ≥ 2. Note that if λ > 1 then |I| = 3n, |L| = n(λC -3) and I L = ∅.
Lemma 3 If λ > 2 then the leaves of every solution tree are in L.

Proof 3 Let v be a leaf of a solution tree labeled l v . Then its parent p is labeled l v -1. If l v = λC + 1 + λa v there does not exist any vertex labeled λC + λa v . Otherwise λC + λa v = λC + λa p + 1 + δ (δ ∈ {0, 1}). Hence, λ(a v -a p ) = 1 + δ which contradicts λ > 2. p cannot be labeled λC + 1 since λa v = 1.
Lemma 4 If λ > 3n then all vertices of L are leaves.

Proof 4 Suppose that there exists an internal vertex in L. Take v as the one with the greatest label l v = λC + λa v + 2. Let ν be a child of v. If ν is a leaf, then its label is l v + 1 = λC + λa v + 3. But there is no such vertex since λ > 3. Hence ν is an internal node. But v is the greatest internal node of L and the label of ν is greater than l v , hence ν ∈ I.

Then v is either a child of the node labeled λC + 1 or not. The two cases are shown in Figure 3.

Suppose that the parent p of v is labeled λC + 1 + λa p + δ, δ = 0, 1. The size σ of the subtree rooted at v is given:

1. either by the difference between its label and the label of its parent,

σ = λC + λa v + 2 -(λC + 1 + λa p + δ) = λ(a v -a p ) + (1 -δ),

or by the sum of the size of the t child-trees of v plus 1 (to take v into account):

σ = 1+ t i=1 ((λC + λa s i + 1) -(λC + λa v + 2)) = 1-t+ t i=1 λ(a s i -a v ) ? λC + 1 + λa p + δ λC + λa v + 2 λC + 1 + λa s1 λC + 1 + λa st λ(a s1 -a v ) λ(a st -a v ) 0 λC + 1 λC + λa v + 2 λC + 1 + λa s1 λC + 1 + λa st λ(a s1 -a v ) λ(a st -a v )
Figure 3: Two different shapes of trees that appear in Lemma 4.

Hence λ(a v -a p ) + (1 -δ) = 1 -t + t i=1 λ(a s i -a v ), and λ t i=1 a s i -(t + 1)a v + a p = t -δ. But t ≤ |I| = 3n (the number of values a i ). Hence t -δ < 3n. Taking λ > 3n concludes whenever p is labeled λC + λa p + 1 + δ, δ = 0, 1.
Note that when p is labeled λC + 1, taking a p = 0 and δ = 0 in the preceding proof concludes.

Lemma 5 If λ > 3n, then the nodes of I are children of one of the vertices labeled λC + 1.

Proof 5 Let v ∈ I be a vertex labeled λC + λa v + 1. By Lemmas 3 and 4, the λa v -1 vertices labeled λC + λa v + 2 are leaves, hence children of v. Note that if k vertices v 1 , . . . , v k have the same label than v then there are k(λa v -1) vertices labeled λC + λa v + 2. These vertices are children of the v i , 1 ≤ i ≤ k. The size of each maximal subtree rooted at v i is less or equal than λa v since the size of the subtree is the label of v minus the label of its parent p, and the label of p is at least λC + 1. Hence each v i has exactly

λa v -1 children labeled λC + λa v + 2.
Suppose that the parent p of v is labeled λC + 1 + λa p then the size of the subtree rooted at v is λ(a va p ) < λa v .

Thus the parent of v is labeled λC + 1.

2.3 Avalanche polynomial on plane tree of height at most 2.

We showed in the last section that finding a tree whose avalanche polynomial is given is NP-complete. In this part, we show that considering only trees of height at most 2, then the problem becomes poynomial. Moreover we give a linear time and space algorithm to solve it. A tree of height 2 and its labeling is given in Figure 4 and its associated polynomial is P (q) = n i=1 q a i + (a i -1)q a i +1 . Note that if one of the a i is equal to 1 then it is a leaf rooted at the vertex labeled 0.

The following algorithm takes as input a polynomial P (q) = n i=1 a i q i and output either:

• A tree T of height at most 2 whose avalanche polynomial is P .

• NO if no such tree exists.

1. Create the root with label 0. 2. Find a child of the root by taking the first non-nul coefficient a j . If j = 1 we have found a j leaves of the root. If j > 1 we have a j nodes. Each of these nodes must have j -1 children labeled j + 1. Hence a j+1 must be greater than a j (j -1). If not, output NO and exit.

3. Subtract a j q j + a j (j -1)q j+1 from the polynomial; we take this new polynomial as P 4. If P = 0 output the tree and exit.

5. Goto 2.

0 3 Avalanche polynomial on plane trees

a 1 a 1 + 1 a 1 + 1 a 2 a 2 + 1 a 2 + 1 a n a n + 1 a n + 1 a 1 -1 a 2 -1 a n -1
In this section, we study the avalanche polynomial on plane trees. The aim of this section is to find the average distribution of avalanches on a random tree. We first give the closed expression for the number of avalanches of a given size in plane trees. Unfortunately, this formula does not help to retrieve informations on the distribution, thus we give a recursive formula for the distribution and deduce the mean and the variance of this distribution.

Definition

Let us note

C k = 1 k+1 2k
k the k-th Catalan number. Let T n be the set of rooted plane trees with n edges. |T n | = C n . We extend the definition of avalanche polynomial to the set of plane trees (see Figure 5): (2q + q 2 + q 3 )t 2 (5q + 2q 2 + 4q 3 +2q 4 + q 5 + q 6 )t 3 Remark 1 Note that :

A(t, q) = i≥0 T ∈T i Av T (q)t i = p≥0 A p (q)t p (1) 
A(t, 1) = p≥0 A p (1)t p = p≥0 pC p t p
In fact, the coefficient of t p in A(t, 1) is the number of rooted plane trees of size p + 1 times the number of vertices (excepting the roots). Hence it is pC p .

Closed formula

In this section, we exhibit a decomposition of the rooted plane trees which yields a closed formula for the avalanche polynomial.

Theorem 2 The coefficients of the polynomials A n (q) are given by:

[q v ]A n (q) = j -1+ √ 1+8v 2 k k=1 p∈Π n,v,k C p 1 -1 k i=2 C p i -p i-1 C n-p k +1 (2) 
where

Π n,v,k = {(p 1 , . . . , p k ); p i < p i+1 , p k ≤ n, k i=1 p i = v} Proof 6
The coefficient [q v ]A n (q) represents the number of vertices labeled v in every plane trees of size n + 1.

Let x be such a vertex labeled v in a tree T and y 0 = x, y 1 , . . . , y k = x n+1 be the path joining the root x n+1 labeled 0 to the vertex x in T . Let lab be the function which maps any vertex y of T onto lab(y), the label of y in T . The proof is based on the study of rooted plane trees which have a given path.

• Note that k ≤ -1+ √ 1+8v 2
because the labels of the vertices of the path from the root to x take minimal values when the maximal subtree of T rooted at y k-1 is reduced to the path y 0 , . . . , y k-1 .

Then the labels of the vertices on this path are

k, k + (k -1),k + (k - 1) + (k -2), ..., k(k+1) 2 and if k > -1+ √ 1+8v 2
then the last label is stricly greater than v.

• The sequence of labels of the vertices y l is stricly decreasing by definition.

• The sequence of the differences (lab(y l )lab(y l+1 )) is stricly increasing. This relies on the fact that each difference is the size of the maximal subtree rooted at y l+1 and that the subtrees are nested. Moreover, lab(y k-1 )-lab(y k ) ≤ n as this is the size of the maximal subtree rooted at y k-1 . Finally, k i=1 lab(y i-1 )lab(y i ) = lab(y 0 )lab(y k ) = v.

Let k be an integer such that k ≤ -1+ √ 1+8v 2 and let (p 1 , . . . , p k ) be a stricly increasing sequence such that p k ≤ n and k i=1 p i = v. Let P be a path of vertices {y 0 , . . . , y k } labeled lab(y 0 ) = v, lab(y 1 ) = lab(y 0 )p 1 , lab(y 2 ) = lab(y 1 )p 2 , . . . , lab(y k ) = lab(y k-1 )p k = 0 (see Figure 6). Denote by F i,1 (resp. F i,2 ) the forest hanging on y i at the left (resp. right) of the edge (y i , y i-1 ).

Lemma 6

The number of plane trees of size n + 1 having P as subpath is

C p 1 -1 k i=2 C p i -p i-1 C n-p k +1 .
Proof 7 Note first that the size of the maximal subtree hanging on y i is y iy i+1 = p i+1 . Then the number of vertices of the forest

F i,1 ∪ F i,2 is p i+1 -p i -1 for i ∈ {1, . . . , k -1}. The number of such pair of forests {F i,1 , F i,2 } is C p i+1 -p i .
The size of the maximal subtree rooted at y 0 is y 0y 1 = p 1 . There are C p 1 -1 such trees.

The remaining nodes are in the forests F k,1 and F k,2 which union has np k vertices. So that the number of such forests is C n-p k +1 .

0 y k-1 y k-2 y 1 y 0 = v F k,1 F k,2 F k-1,1 F k-1,2 F k-2,1 F k-2,2 F 1,1 F 1,2 F 0 Figure 6: A tree with its subpath P Remark 2 The coefficient of t n q in A(t, q) is C n and the coefficient of t n q 2 is C n-1 .
Proof 8 There are two different proofs of these results, the first one consists in taking v = 1 or v = 2 in Equation ( 2).

The second one relies on the following property:

Lemma 7 Let T ′ be a tree. Let S T ′ be the set of trees T of size n + 1 where T ′ is a subtree of T rooted at the root of T . Then The bijection between the trees of S T ′ and plane trees of size n -|T ′ | + 1 is given in Figure 7.

|S T ′ | = C n-|T ′ |+2 . 0 T 1 T ′ T 2 0 T 1 T 2
For v = 1 take T ′ as a single edge. For v = 2 take T ′ as a path of length 2.

Functional equation

Lemma 8

The polynomial A p (q), p ≥ 0 -the distribution of avalanches on plane trees of size p + 1-is defined by the following recurrence:

A p+1 (q) = p k=0 C k C p-k q k+1 + C p-k q k+1 A k (q) + C k A p-k (q) (3)
This yields a functionnal equation for A(t, q):

A(t, q) = (1 - √ 1 -4t)(1 - √ 1 -4qt) 4t +q 1 - √ 1 -4t 2 A(qt, q) + 1 - √ 1 -4t 2 A(t, q) (4) 
Proof 10 The proof relies on the following decomposition of rooted plane trees (see Figure 8). A tree T p+1 of size p + 2 can be decomposed into a tree T k of size k + 1 and a tree T p-k of size p + 1k as shown in Figure 8. Hence, the root of the tree T k is the leftmost child of the root of T p-k in T p+1 . Furthermore, the root of T k is labeled k + 1 the number of vertices of T k . This vertex contributes to the term C k C p-k q k+1 in A p+1 (q). The avalanche polynomial of T k is A k (q). In T p+1 the label of a vertex of the subtree T k is increased by k + 1. They contribute to the term C p-k q k+1 A k (q) in A p+1 (q). The last term takes into account the labels of the vertices of T p-k which stay unchanged since the root of T p-k is the root of T p+1 . 1) yields a functionnal equation for A(t, q):

0 k + 1 T k T p-k
A(t, q) = (1 - √ 1 -4t)(1 - √ 1 -4qt) 4t + p≥0 p k=0 (C p-k q k+1 A k (q)t p+1 + C k A p-k (q)t p+1 ) = (1 - √ 1 -4t)(1 - √ 1 -4qt) 4t +q 1 - √ 1 -4t 2 A(qt, q) + 1 - √ 1 -4t 2 A(t, q)
3.4 Average of the distribution of avalanches Proposition 1 The average size of an avalanche on a plane tree of size n is asymptotically equal to

√ π 4 n 3/2 . Proof 11 A(t, q) = n m a m,n q m t n
The mean size of avalanches on all plane trees of size n is given by

M n = m ma m,n m a m,n = ∂A ∂q (t, 1) n [A(t, 1)] n = ∂A ∂q (t, 1) n nC n (5) 
Equation ( 4) yields: 

∂A ∂q (t, 1) = 1 - √ 1 -4t 2 √ 1 -4t + 1 - √ 1 -4t 2 A(t,
∂A ∂q (t, 1) = ( √ 1 -4t -1)(2t -1) 2(4t -1) 2 Since ( √ 1 -4t -1)(2t -1) 2 = t + i≥0 (C i+1 -2C i )t i+2 , ∂A ∂q (t, 1) = t i≥0 4 i (i + 1)t i + i,j≥0 (C i+1 -2C i )4 j (j + 1)t i+j+2 = t i≥0 4 i (i + 1)t i + k≥1 4 k t k+1 k-1 i=0 (C i+1 -2C i ) k -i 4 i+1 Since k-1 i=0 C i+1 -2C i 4 i+1 = - kC k 4 k , k-1 i=0 i(C i+1 -2C i ) 4 i+1 = (2 + 5k + k 2 )C k 4 k -2, ∂A ∂q (t, 1) = i≥1 4 i-1 (i + 2) -(-1 + i + 2i 2 )C i-1 t i
Substitution of ∂A ∂q (t, 1) in Equation ( 5) yields:

M n = 4 n-1 (n + 2) nC n - (n + 1) 2 2n Since C n ∼ 4 n √ πn 3 , M n ∼ √ π 4 n 3/2 .

Variance

The variance of the distribution is given by

h ∂ 2 A ∂q 2 (t,1) i n nCn + M n -M 2
n where M n denotes the mean size (computed in the last section).

Hence we only need the expression of

∂ 2 A ∂q 2 (t, 1) n . ∂ 2 A ∂q 2 (t, 1) = t(1 - √ 1 -4t) (1 -4t) 3/2 + 1 - √ 1 -4t 2 2t ∂A ∂t (t, 1) + 2 ∂A ∂q (t, 1) +t 2 ∂ 2 A ∂t 2 (t, 1) + 2 ∂ 2 A ∂q 2 (t, 1) + 2t ∂ 2 A ∂t∂q (t, 1)
Thus we need the other derivatives ∂A ∂t (t, q), ∂A ∂q (t, q), ∂ 2 A ∂t 2 (t, 1) and ∂ 2 A ∂t∂q (t, 1). Substituting their expression in ∂ 2 A ∂q 2 (t, 1) yields:

∂ 2 A ∂q 2 (t, 1) = -1/2 -1 + √ 1 -4 t 10 t + √ 1 -4 t -1 -32 t 2 + 32 t 3 (-1 + 4 t) 4 
Since :

(

1 -4t) -4 = n≥0 4 n 6 (n + 1)(n + 2)(n + 3)t n (1 -4t) -7/2 = n≥0 (n + 1)(2n + 1)(2n + 3)(2n + 5)4 n C n 152 2n t n
We obtain: In fact the distribution show strange peaks and after a renormalization (scaling in x by a factor 1/n for the distribution on trees of size n and rescaling the ordinate between 0 and 1) it gives the curves in Figure 9 and 9. In the following figures, we draw a curve for A 10 (q), A 20 (q),... Moreover for such a polynomial A n (q) = i≥0 p i q i we put points at coordinates (i/n, p i /p 1 ) since p 1 is the maximum. Let's recall from Remark 2 that p 1 = C n . The grey scale goes from white (for the first polynomial) to black (for the last one). 

V n = 4 

Conclusion

The Figures [START_REF] Dhar | Abelian sandpile model on the bethe lattice[END_REF] and ( 9) point out some convergence of the renormalized distribution. A question arises naturally:

• Is it possible to retrieve the asymptotic of the coefficients from their closed form ?

Note first that the peaks that appear at integer abscissa x, x ≪ √ n do not converge to 0. In fact consider the trees made of a path π 0 = 0, π 1 , . . . , π x of length x and a plane tree of size nx rooted in π x . The label of π x is n+(n-1)+(n-2)+. . .+(n-x+1) thus tends to x after the renormalization by n. Moreover there are C n-x-1 such trees. Since p 1 = C n the peak is higher than C n-x-1 /C n ∼ (1/4) x-1 .
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