Hydrogen for X-group exchange in CHX (X = Cl, Br, I , OMe , and NMe) by monomeric [1,2,4-(Me3C)3C5H2]2CeH: experimental and computational support for a carbenoid mechanism

Evan L. Werkema, Richard A. Andersen, Ahmed Yahia, Laurent Maron, Odile
Eisenstein

- To cite this version:

Evan L. Werkema, Richard A. Andersen, Ahmed Yahia, Laurent Maron, Odile Eisenstein. Hydrogen for X-group exchange in $\mathrm{CHX}(\mathrm{X}=\mathrm{Cl}, \mathrm{Br}, \mathrm{I}, \mathrm{OMe}$, and NMe$)$ by monomeric [1,2,4-(Me3C)3C5H2]2CeH: experimental and computational support for a carbenoid mechanism. Organometallics, 2009, 28, pp.3173-3185. 10.1021/om9001846 . hal-00384982

HAL Id: hal-00384982

https://hal.science/hal-00384982

Submitted on 30 Apr 2019

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L'archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

Lawrence Berkeley National Laboratory
 Lawrence Berkeley National Laboratory

Title

Hydrogen for X-group exchange in CH3X, $\mathrm{X}=\mathrm{Cl}, \mathrm{Br}, \mathrm{I}, \mathrm{OMe}$ and NMe2 by Monomeric [1,2,4-(Me3C)3C5H2]2CeH: Experimental and Computational Support for a Carbenoid Mechanism

Permalink

https://escholarship.org/uc/item/5212v7sp
Author
Werkema, Evan

Publication Date

2010-03-15
Peer reviewed

Hydrogen for X-group exchange in $\mathrm{CH}_{3} \mathrm{X}, \mathrm{X}=\mathrm{Cl}, \mathrm{Br}, \mathrm{I}, \mathrm{OMe}$ and NMe_{2} by Monomeric [1,2,4-($\left.\left.\mathrm{Me}_{3} \mathrm{C}\right)_{3} \mathrm{C}_{5} \mathrm{H}_{2}\right]_{2} \mathrm{CeH}$: Experimental and Computational Support for a Carbenoid Mechanism

Evan L. Werkema ${ }^{\text {a }}$, Richard A. Andersen*a ${ }^{\text {a }}$ Ahmed Yahia ${ }^{\text {b }}$, Laurent Maron* ${ }^{\text {b }}$ and Odile Eisenstein* ${ }^{\text {c }}$

a) Department of Chemistry, University of California, Berkeley, California 947201460, b) Université de Toulouse, INSA, UPS, LPCNO, 135 avenue de Rangueil, 31077 Toulouse, France, and CNRS, 31077 Toulouse, France, c) Université Montpellier 2, Institut Charles Gerhardt, UMR 5253 CNRS-UM2-ENSCM-UM1, Place E. Bataillon, 34095 Montpellier France, and CNRS, Institut Charles Gerhardt, France,

Abstract

The reaction between $\left[1,2,4-\left(\mathrm{Me}_{3} \mathrm{C}\right)_{3} \mathrm{C}_{5} \mathrm{H}_{2}\right]_{2} \mathrm{CeH}$, referred to as $\mathrm{Cp}{ }_{2} \mathrm{CeH}$, and $\mathrm{CH}_{3} \mathrm{X}$ where X is $\mathrm{Cl}, \mathrm{Br}, \mathrm{I}, \mathrm{OMe}$ and NMe_{2}, are described. The reactions fall into three distinct classes. Class a, where $\mathrm{X}=\mathrm{Cl}, \mathrm{Br}$ and I rapidly form $\mathrm{Cp}_{2} \mathrm{CeX}^{\prime}$ and CH_{4} without formation of identifiable intermediates in the ${ }^{1} \mathrm{H}$ NMR spectra. Class b , where $\mathrm{X}=\mathrm{OMe}$ proceeds rapidly to $\mathrm{Cp}{ }_{2} \mathrm{Ce}\left(\eta \eta^{2}-\mathrm{CH}_{2} \mathrm{OMe}\right)$ and H_{2} and then to $\mathrm{Cp}{ }_{2}{ }_{2} \mathrm{CeOMe}$ and CH_{4}. The methoxymethyl derivative is sufficiently stable to be isolated and characterized and it is rapidly converted to $\mathrm{Cp}_{2}{ }_{2} \mathrm{CeOMe}$ in presence of BPh_{3}. Class c , where $\mathrm{X}=\mathrm{NMe}_{2}$ does not result in formation of $\mathrm{Cp}_{2} \mathrm{CeNMe}_{2}$, but deuterium labeling experiments show that H for D exchange occurs in NMe_{3}. Density functional calculations DFT(B3PW91) on the reaction of $\left(\mathrm{C}_{5} \mathrm{H}_{5}\right)_{2} \mathrm{CeH}$, referred to as $\mathrm{Cp}_{2} \mathrm{CeH}$,

and $\mathrm{CH}_{3} \mathrm{X}$ show that the barrier for $\alpha-\mathrm{CH}$ activation, resulting in formation of $\mathrm{Cp}_{2} \mathrm{Ce}\left(\eta^{2}-\mathrm{CH}_{2} \mathrm{X}\right)$, proceeds with a relatively low activation barrier $\left(\Delta \mathrm{G}^{\ddagger}\right)$ but the subsequent ejection of CH_{2} and trapping by H_{2} has a higher barrier; the height of the second barrier lies in the order $\mathrm{F}, \mathrm{Cl}, \mathrm{Br}, \mathrm{I}<\mathrm{OMe} \ll \mathrm{NMe}_{2}$, consistent with the experimental studies. The DFT calculations also show that the two-step reaction, which proceeds through a carbenoid intermediate, has a lower barrier than a direct one-step σ bond metathesis mechanism. The reaction of $\mathrm{Cp}_{2} \mathrm{CeCH}_{2} \mathrm{OMe}$ and BPh_{3} is calculated to be a low barrier process and the ylide, $\mathrm{CH}_{2}^{(+)} \mathrm{BPh}_{3}^{(-)}$, is a transition state and not an intermediate.

Introduction

The reaction between $\mathrm{CH}_{3} \mathrm{~F}$ and $\left[1,2,4-\left(\mathrm{Me}_{3} \mathrm{C}\right)_{3} \mathrm{C}_{5} \mathrm{H}_{2}\right]_{2} \mathrm{CeH}$, referred to as $\mathrm{Cp}^{\prime}{ }_{2} \mathrm{CeH}$ in this article, to give CH_{4} and $\mathrm{Cp}^{\prime}{ }_{2} \mathrm{CeF}$ has been described recently. ${ }^{1}$ The net reaction involves a $\mathrm{Ce}-\mathrm{H}$ for $\mathrm{C}-\mathrm{F}$ exchange that is strongly exoergic; $\Delta \mathrm{G}$ for the model system $\left(\mathrm{C}_{5} \mathrm{H}_{5}\right)_{2} \mathrm{CeH}$ and $\mathrm{CH}_{3} \mathrm{~F}$ in gas phase was calculated by DFT methods to be $-77 \mathrm{kcal} \mathrm{mol}^{-1}$. Although the C-F BDE in $\mathrm{CH}_{3} \mathrm{~F}$ is $108 \mathrm{kcal} \mathrm{mol}^{-1},{ }^{2}$ the $\mathrm{Ce}-\mathrm{F}$ bond is considerably stronger, the average $\mathrm{Ce}-\mathrm{F}$ bond enthalpy of $\mathrm{CeF}_{3}(\mathrm{~g})$ is 153 kcal mol^{-1}, and the net reaction is exothermic. The mechanism of the exchange reaction does not proceed by a σ-bond metathesis transition state as shown by calculational and experimental studies. The calculated activation energy in the model system for a σ-bond metathesis is $31 \mathrm{kcal} \mathrm{mol}^{-1}$ relative to the reactants, too high for a reaction that is rapid and irreversible at $20^{\circ} \mathrm{C}$. The high energy barrier originates from the methyl group occupying the β-site in the $4 \mathrm{c}-4 \mathrm{e}$ metathesis transition state \mathbf{I}, resulting in a five coordinate carbon atom that is high in energy. Calculations showed that an activation energy of only $18 \mathrm{kcal} \mathrm{mol}^{-1}$ was required when an $\alpha-\mathrm{CH}$ activation occurs in
transition state II. In transition state II, the product, CH_{4}, was derived from trapping of the CH_{2} fragment by dihydrogen. Thus the lower activation energy pathway suggested by the calculation is a stepwise or indirect process that proceeds by way of carbenoid fragment III. The indirect α-CH activation pathway discovered in the calculational studies was supported by experimental studies, such as trapping the CH_{2} fragment with cyclohexene. Accordingly, the carbenoid pathway for the reaction between $\mathrm{CH}_{3} \mathrm{~F}$ and $\mathrm{Cp}{ }_{2} \mathrm{CeH}$ was placed on a firm foundation, but the question of generality was not addressed in the original article.

I

II

III

In this article, the results of the reaction between $\mathrm{CH}_{3} \mathrm{X}, \mathrm{X}=\mathrm{Cl}, \mathrm{Br}, \mathrm{I}, \mathrm{OMe}$, NMe_{2} and $\mathrm{Cp}^{\prime}{ }_{2} \mathrm{CeH}$ are described from a calculational and experimental perspective with the general result that the carbenoid pathway is followed for these simple substituted methane derivatives.

Results

General Experimental Studies

The experimental methodology that was used in the earlier article is used in the present one. ${ }^{1}$ The time evolution of the reaction between $\mathrm{Cp}_{2}{ }_{2} \mathrm{CeH}$ and the MeX derivatives is followed by ${ }^{1} \mathrm{H}$ NMR spectroscopy in either $\mathrm{C}_{6} \mathrm{D}_{6}$ or $\mathrm{C}_{6} \mathrm{D}_{12}$ at $20^{\circ} \mathrm{C}$. Since the reactant and product metallocenes are paramagnetic, the $\mathrm{Me}_{3} \mathrm{C}$-resonances on the $1,2,4-\left(\mathrm{Me}_{3} \mathrm{C}_{3} \mathrm{C}_{5} \mathrm{H}_{2}\right.$ rings are a convenient probe to assay the extent, relative rates, and cleanliness of the net reactions; the ring methyne-resonances are often not
observed. After the reactions are complete, hydrolysis $\left(\mathrm{H}_{2} \mathrm{O}\right)$ and GCMS analysis of the hydrosylate is used to identify the organic products in each experiment. As described in the earlier article, the reactions between the metallacycle, [1,2,4$\left.\left(\mathrm{Me}_{3} \mathrm{C}\right)_{3} \mathrm{C}_{5} \mathrm{H}_{2}\right]\left[\left(\mathrm{Me}_{3} \mathrm{C}\right)_{2} \mathrm{C}_{5} \mathrm{H}_{2} \mathrm{C}\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CH}_{2}\right] \mathrm{Ce}, \mathbf{1}$, abbreviated Cp ' $\left[\left(\mathrm{Me}_{3} \mathrm{C}\right)_{2} \mathrm{C}_{5} \mathrm{H}_{2} \mathrm{C}\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CH}_{2}\right) \mathrm{Ce}$ or simply as metallacycle, $\mathbf{1}$, with the MeX derivatives are followed by ${ }^{1} \mathrm{H}$ NMR spectroscopy and the identity of the organic products is determined by GCMS after hydrolysis.

1

In the reactions of $\mathbf{1}$, dihydrogen is not present and cannot serve as a trap for the methylene fragment and therefore intermediates may be observed in the ${ }^{1} \mathrm{H}$ NMR spectra. In addition, added trapping reagents that do not react with $\mathbf{1}$ may be employed. The cerium containing products $\mathrm{Cp}_{2}{ }_{2} \mathrm{CeX}$ are prepared independently, isolated and characterized as outlined in the Experimental Section or in the text.

Reaction of $\mathbf{C p}_{2}{ }_{2} \mathbf{C e H}$ or metallacycle, 1 , with $\mathbf{C H}_{3} \mathbf{X}, \mathrm{X}=\mathbf{C l}, \mathrm{Br}$, and I

The reaction between $\mathrm{Cp}^{\prime}{ }_{2} \mathrm{CeH}$ and $\mathrm{CH}_{3} \mathrm{X}, \mathrm{X}=\mathrm{Cl}, \mathrm{Br}$, and I , are rapid and clean at $20^{\circ} \mathrm{C}$, as only resonances due to $\mathrm{Cp}^{\prime}{ }_{2} \mathrm{CeX}$ and CH_{4} are observed in the ${ }^{1} \mathrm{H}$ NMR spectrum, eq 1.

$$
\begin{equation*}
\mathrm{Cp}_{2}{ }_{2} \mathrm{CeH}+\mathrm{CH}_{3} \mathrm{X}->\mathrm{Cp}_{2} \mathrm{CeX}^{2}+\mathrm{CH}_{4} \quad \mathrm{X}=\mathrm{Cl}, \mathrm{Br}, \mathrm{I} \tag{1}
\end{equation*}
$$

Thus, the net reactions of all of the methylhalides are similar. The reaction between the methylhalides and the metallacycle is slightly more complicated. The reaction with $\mathrm{CH}_{3} \mathrm{Cl}$ is clean, since the resonances in the ${ }^{1} \mathrm{H}$ NMR spectrum due to metallacycle, 1, in $\mathrm{C}_{6} \mathrm{D}_{12}$ disappear within approximately 15 minutes and a new set of $\mathrm{Me}_{3} \mathrm{C}$-resonances, referred to as Q_{C}, appear at $\delta-1.36$ and $\delta-8.54$ in ratio of 2:1, in addition to resonances due to $\mathrm{Cp}^{\prime}{ }_{2} \mathrm{CeCl}$, and the metallocene. Over time, the resonances due to Q_{Cl} disappear and resonances due to $\mathrm{Cp}^{\prime}{ }_{2} \mathrm{CeCl}$ increase in intensity. After approximatively three days, the conversion is complete; since the solubility of $\mathrm{Cp}^{\prime}{ }_{2} \mathrm{CeCl}$ is low in these solvents, mass balance cannot be obtained by integration of the NMR spectrum. When the reaction is complete, hydrolysis of the mixture and analysis of the hydrolysate by GCMS shows the presence of Cp ' H and Cp " H where Cp" represents the isomers of 1,2-($\left.\mathrm{Me}_{3} \mathrm{C}\right)-4-\left(\mathrm{Me}_{2} \mathrm{EtC}\right) \mathrm{C}_{5} \mathrm{H}_{3}$ as observed in the reaction with $\mathrm{CH}_{3} \mathrm{~F} .{ }^{1}$ Thus the net reaction between the metallacycle, $\mathbf{1}$, with $\mathrm{CH}_{3} \mathrm{~F}$ and $\mathrm{CH}_{3} \mathrm{Cl}$ give similar final products, but intermediate, Q_{F}, is not detected. ${ }^{1}$ As in the reaction of $\mathrm{CH}_{3} \mathrm{~F}$, a CH -bond of a $\mathrm{Me}_{3} \mathrm{C}$ group in the Cp 'ring acts as a trap of the CH_{2} fragment, eq 2.

Since the final products in the case of $\mathrm{CH}_{3} \mathrm{~F}$ and $\mathrm{CH}_{3} \mathrm{Cl}$ are similar, both reactions presumably follow similar mechanisms, viz, the generation of a carbenoid intermediate, Q_{X}, followed by ejection of CH_{2} and trapping by H_{2} in the case of
$\mathrm{Cp}^{\prime}{ }_{2} \mathrm{CeH}$ or the CH bond of a $\mathrm{Me}_{3} \mathrm{C}$ - group in the Cp '-ring when H_{2} is absent. The only difference between the $\mathrm{CH}_{3} \mathrm{~F}$ and $\mathrm{CH}_{3} \mathrm{Cl}$ reactions is that Q_{Cl} builds up in the latter reaction and Q_{F} does not.

The reaction of $\mathrm{CH}_{3} \mathrm{Br}$ and $\mathrm{CH}_{3} \mathrm{I}$ with the metallacycle, $\mathbf{1}$, is similar to that of $\mathrm{CH}_{3} \mathrm{Cl}$, eq 2. In the case of $\mathrm{CH}_{3} \mathrm{Br}$, the resonances attributed to Q_{Br} appear at $\delta-1.36$ and $\delta-8.16$ in a ratio of 2:1. Exposure of the metallacycle, 1 , to $\mathrm{CD}_{3} \mathrm{Br}$ in toluene and examining the organic products, after hydrolysis, by GCMS shows the presence of Cp'H and Cp" $\mathrm{H}-\mathrm{d}_{2}$. This result shows that Q_{Br} eliminates CD_{2}, which is trapped by the $\mathrm{Me}_{3} \mathrm{C}$-groups on the Cp '-ring. No deuterium is detected in solvent toluene and therefore the intramolecular trapping of CD_{2} is more efficient than is intermolecular trapping by the solvent CH bonds.

In the $\mathrm{CH}_{3} \mathrm{I}$ reaction, two resonances in a 2:1 ratio due to Q_{I} at $\delta-1.3$ and δ 7.8 appear within 10 minutes of mixing. After approximately 3 hours resonances due to $\mathrm{Cp}^{\prime}{ }_{2} \mathrm{CeI}$ form and the ratio of Q_{I} : $\mathrm{Cp}^{\prime}{ }_{2} \mathrm{CeI}$ is 6:1. After 5 days at $20^{\circ} \mathrm{C}, \mathrm{Q}_{\mathrm{I}}$ disappears and only those resonances due to $\mathrm{Cp}^{\prime}{ }_{2} \mathrm{CeI}$ remain. In all three reactions, the resonances attributed to Q_{X} have similar chemical shifts which implies that the $\mathrm{Me}_{3} \mathrm{C}$ groups on the Cp'-rings are in a similar geometrical arrangement; a postulated structure is shown in eq 2 for all three intermediates. This deduction is developed in more detail in the next section.

Reaction of $\mathbf{C p}{ }_{2} \mathbf{C e H}$ and metallacycle, 1 , with $\mathrm{CH}_{3} \mathrm{OMe}$.

Mixing $\mathrm{Cp}^{\prime}{ }_{2} \mathrm{CeH}$ and $\mathrm{CH}_{3} \mathrm{OMe}$ in $\mathrm{C}_{6} \mathrm{D}_{6}$ in an NMR tube results in disappearance of the resonances due to $\mathrm{Cp}^{\prime}{ }_{2} \mathrm{CeH}$ within 15 minutes and appearance of two new sets of $\mathrm{Me}_{3} \mathrm{C}$-resonances at $\delta-1.11$ and $\delta-10.9(2: 1), \mathrm{Q}_{\mathrm{OMe}}$, and $\delta-2.38$ and δ -4.43 (2:1), Q' ${ }_{\text {оме }}$. After two days at $20^{\circ} \mathrm{C}$ an additional set of resonances appears due
to $\mathrm{Cp}^{\prime}{ }_{2} \mathrm{CeOMe} .^{4}$ The ratio of $\mathrm{Q}_{\text {оме }}: \mathrm{Q}^{\prime}{ }_{\text {оме }}: \mathrm{Cp}^{\prime}{ }_{2} \mathrm{CeOMe}$ is $40: 50: 1$. Heating at $60^{\circ} \mathrm{C}$ for 27 days increases the quantity of $\mathrm{Cp}^{\prime}{ }_{2} \mathrm{CeOMe}$ since the ratio is now $3: 1: 7$, eq 3 , which only shows the cerium containing compounds that are identified.
$\mathrm{Cp}^{\prime}{ }_{2} \mathrm{CeH}+\mathrm{CH}_{3} \mathrm{OMe}->\mathrm{Q}_{\text {оме }}$ and $\mathrm{Q}^{\prime}{ }_{\text {ome }}+\mathrm{H}_{2}->\mathrm{Cp}^{\prime}{ }_{2} \mathrm{CeOMe}+\mathrm{CH}_{4}$

The identity of $\mathrm{Q}_{\text {оме }}$ is presumably similar to that of $\mathrm{Q}_{\mathrm{X}}, \mathrm{X}=\mathrm{Cl}, \mathrm{Br}, \mathrm{I}$ since the pattern of the chemical shifts of the $\mathrm{Me}_{3} \mathrm{C}$-resonances is similar. The identity of $\mathrm{Q}^{\prime}{ }_{\text {оме }}$, remains unknown, though it might be a $\mathrm{Me}_{2} \mathrm{O}$ adduct of either $\mathrm{Q}_{\mathrm{oмe}}$ and $\mathrm{Cp}_{2}{ }_{2} \mathrm{CeH}$, since evaporation to dryness and dissolution in $\mathrm{C}_{6} \mathrm{D}_{6}$ results in resonances only due to Qome and $\mathrm{Cp}^{\prime}{ }_{2} \mathrm{CeH}$.

The reaction of $\mathrm{CH}_{3} \mathrm{OMe}$ with metallacycle, $\mathbf{1}$, is rather more straightforward since mixing the two reactants results in appearance of resonances due to $\mathrm{Q}_{\text {оме }}$ within 20 minutes at $20^{\circ} \mathrm{C}$. Evaporation of the solution to dryness, dissolution in $\mathrm{C}_{6} \mathrm{D}_{12}$ followed by heating the mixture to $60^{\circ} \mathrm{C}$ for a day, then cooling to $20^{\circ} \mathrm{C}$ and examining the ${ }^{1} \mathrm{H}$ NMR spectrum shows resonances due to $\mathrm{Q}_{\text {оме }}$ and metallacycle, $\mathbf{1}$, in a $11: 1$ ratio; heating to $60^{\circ} \mathrm{C}$ for three days does not alter the ratio of $\mathrm{Q}_{\text {оме }}: \mathbf{1}$ from 11:1. Thus, $\mathrm{Q}_{\text {оме }}$ has an appreciable lifetime in absence of H_{2} and should be isolable, see below. In addition, $\mathrm{Q}_{\text {ome }}$ and the metallacycle are in equilibrium, eq 4.

Metallacycle, $1+\mathrm{CH}_{3} \mathrm{OMe} \rightleftharpoons \mathrm{Q}_{\mathrm{OMe}}$

The equilibrium, illustrated by eq 4 , is substantiated by exposing the perdeuterometallacycle, $\mathbf{1 - d} \mathbf{d}_{53}$ to $\mathrm{CH}_{3} \mathrm{OMe}$ in $\mathrm{C}_{6} \mathrm{D}_{12}$. The ${ }^{1} \mathrm{H}$ NMR spectrum shows resonances due to the $\mathrm{C}\left(\mathrm{CD}_{3-\mathrm{x}} \mathrm{H}_{\mathrm{x}}\right)_{3}$ groups and $\mathrm{Q}_{\mathrm{ome}}$ after 30 minutes at $20^{\circ} \mathrm{C}$. The relative amounts change little over two days. The ${ }^{2} \mathrm{H}$ NMR spectrum also shows
resonances due to the $\mathrm{C}\left(\mathrm{CD}_{3-\mathrm{x}} \mathrm{H}_{\mathrm{x}}\right)_{3}$ groups forming over this period of time. Heating to $60^{\circ} \mathrm{C}$ for three days results in appearance of resonances due to $\mathrm{Me}_{2} \mathrm{O}-\mathrm{d}_{1}$, which appear as a 1:1:1 pattern in the ${ }^{1} \mathrm{H}$ NMR spectrum at $\delta_{\mathrm{H}}=3.16$ and $J_{H D}=1.2 \mathrm{~Hz}$. The ${ }^{1} \mathrm{H}$ NMR spectrum also shows resonances due to H for D exchange in the $\mathrm{Me}_{3} \mathrm{C}$ groups on the Cp ' rings. After three days at $60^{\circ} \mathrm{C}$, the deuterium is preferentially located at the unique $\mathrm{Me}_{3} \mathrm{C}$ group, but heating the mixture at $60^{\circ} \mathrm{C}$ for 81 days results in a ${ }^{1} \mathrm{H}$ NMR spectrum in which a single hydrogen atom is statistically distributed into the three $\mathrm{Me}_{3} \mathrm{C}$ groups, see Experimental Section for details. The labeling study shows that insertion of the CH bond of $\mathrm{CH}_{3} \mathrm{OMe}$ into the metallacycle $\mathrm{Ce}-\mathrm{C}$ bond is rapid but elimination of $\mathrm{CH}_{2} \mathrm{DOMe}$ is slow, which rationalizes why $\mathrm{Q}_{\text {оме }}$ is an isolable compound.

On a synthetic scale, addition of an excess of dimethylether to a solution of $\mathrm{Cp}_{2}{ }_{2} \mathrm{CeH}$ in pentane results in a color change from purple to red. Concentrating and cooling the solution gives red crystals of $\mathrm{Cp}^{\prime}{ }_{2} \mathrm{CeCH}_{2} \mathrm{OMe}$ in 37% yield. The methoxymethyl derivative turns deep purple on heating in a sealed tube at $135^{\circ} \mathrm{C}$ and then melts at $210-213^{\circ} \mathrm{C}$. No molecular ion is observed in the mass spectrum but the fragment with highest m / e is $\left[\mathrm{M}-\mathrm{CH}_{2} \mathrm{OMe}\right]^{+}$; a similar fragmentation pattern is observed for $\mathrm{Cp}_{2} \mathrm{CeCH}_{2} \mathrm{Ph}$, i.e., $\left[\mathrm{M}-\mathrm{CH}_{2} \mathrm{Ph}\right]^{+} .{ }^{5}$ The ${ }^{1} \mathrm{H}$ NMR spectrum of $\mathrm{Cp}{ }_{2} \mathrm{CeCH}_{2} \mathrm{OMe}$ at $20^{\circ} \mathrm{C}$ shows the $\mathrm{Me}_{3} \mathrm{C}$-resonances in a 1:2 ratio, though the resonance of area 2 is broadened, and the OMe resonance is a singlet; the methylene resonance and the ring-methyne resonances are not observed. The variable temperature ${ }^{1} \mathrm{H}$ NMR spectrum for the $\mathrm{Me}_{3} \mathrm{C}$-groups is shown as a δ vs T^{-1} plot in Figure 1. The methoxymethyl group resonance is a curve and therefore does not follow Curie law.

Figure 1. δ vs. $1 / \mathrm{T}$ plot for $\mathrm{Cp}_{2}{ }_{2} \mathrm{CeCH}_{2} \mathrm{OCH}_{3}$ showing the $\mathrm{Me}_{3} \mathrm{C}$ resonances on the Cp ' rings and the OMe resonance.

The observation that all of the $\mathrm{Me}_{3} \mathrm{C}$-groups are chemically inequivalent at temperatures below about $-30^{\circ} \mathrm{C}$ is rare in $\mathrm{Cp}^{\prime}{ }_{2} \mathrm{M}(\mathrm{X})(\mathrm{Y})$ metallocene derivatives. Generally, the two Cp '-rings are free to oscillate about their pseudo C_{5} axes generating a molecule with averaged $C_{2 v}$ symmetry and the CMe_{3} groups are observed in a 1:2 ratio. As the temperature is lowered the time averaged mirror plane and the C_{2} axes are removed and the CMe_{3} groups appear in a 1:1:1 ratio. The inequivalence of all six $\mathrm{Me}_{3} \mathrm{C}$-groups was observed in one metallocene, viz., $\mathrm{Cp}^{\prime}{ }_{2} \mathrm{UN}(\mathrm{Me}) \mathrm{C}(\mathrm{Ph}) \mathrm{C}(\mathrm{Ph})^{6}$. In $\mathrm{Cp}^{\prime}{ }_{2} \mathrm{CeCH}_{2} \mathrm{OMe}$, the molecule can have averaged $C_{2 v}$ symmetry if the $\mathrm{CH}_{2} \mathrm{OMe}$ is monodentate and C_{s} symmetry if bidentate, accounting for the 1:2 and 1:1:1 pattern, respectively. The inequivalence of all six CMe_{3} groups means that the molecule has C_{I} symmetry at the temperature below $-30^{\circ} \mathrm{C}, \Delta \mathrm{G}_{(\mathrm{Tc}=250 \mathrm{~K})}^{\ddagger}=10.6 \mathrm{kcal} \mathrm{mol}^{-1}$; the Cp , rings cannot be freely rotating, and the $\eta^{2}-\mathrm{CH}_{2} \mathrm{OMe}$ group must be responsible. The ORTEP in Figure 2 shows that the $\mathrm{Ce}\left(\eta^{2}-\mathrm{CH}_{2} \mathrm{OMe}\right)$ fragment is not planar. Perhaps the orientation of the methyl group, $\mathrm{C}(36)$, is sufficient to prevent the Cp ' group from oscillating resulting in a molecule with C_{I} symmetry at low temperature.

Figure 2 shows an ORTEP of $\mathrm{Cp}_{2} \mathrm{Ce}\left(\eta^{2}-\mathrm{CH}_{2} \mathrm{OMe}\right)$; important bond distances and angles are given in the Figure Caption. There is a disorder in the crystal that results from superposition of the two orientations of the individual molecules in a 94:6 distribution, see Experimental Section and Supporting Information for details. The bond distances and angles in the $\mathrm{Cp}^{\prime}{ }_{2} \mathrm{Ce}$ fragment are similar to those previously reported for this fragment. ${ }^{40,5,7}$ The $\mathrm{Ce}\left(\eta^{2}-\mathrm{CH}_{2} \mathrm{OMe}\right)$ fragment is not planar since the dihedral angle formed by intersection of the planes defined by $\mathrm{CeO}(1) \mathrm{C}(35)$ and $\mathrm{O}(1) \mathrm{C}(35) \mathrm{C}(36)$ is 164°. The $\mathrm{Ce}-\mathrm{C}(35)$ distance of 2.488(4) \AA is shorter than that found in $\left(\mathrm{C}_{5} \mathrm{Me}_{5}\right)_{2} \mathrm{Ce}\left[\mathrm{CH}\left(\mathrm{SiMe}_{3}\right)_{2}\right], 2.535 \AA,{ }^{8}$ and $\left(\mathrm{C}_{5} \mathrm{Me}_{5}\right)_{2} \mathrm{CeCH}_{2} \mathrm{Ph}, 2.596(5) \AA .^{9}$ The Ce-O distance of $2.406(2) \AA$ is shorter than the Ce- O distance in $\mathrm{Cp}^{\prime}{ }_{2} \mathrm{CeO}_{2} \mathrm{~S}(\mathrm{O})\left(\mathrm{CF}_{3}\right)$, where the four independent Ce-O distances in the two individual molecules in the unit cell average to $2.601 \pm 0.008 \AA^{10}$ but longer than that in $\left(\mathrm{C}_{5} \mathrm{Me}_{5}\right) \mathrm{CeO}[2,6-$ $\left.\left.\left(\mathrm{Me}_{3} \mathrm{C}\right)_{2} \mathrm{C}_{6} \mathrm{H}_{3}\right)\right]_{2}$ where the Ce-O distance is $2.253 \pm 0.002 \AA,{ }^{11}$ or in the cis and trans enediolate isomers of $\mathrm{Cp}^{\prime}{ }_{2} \mathrm{CeOCH}=\mathrm{CHOCeCp}{ }_{2}$, where the $\mathrm{Ce}-\mathrm{O}$ distances are 2.171 $\pm 0.001 \AA$ and $2.118(3) \AA$, respectively. ${ }^{4 \mathrm{a}}$

Figure 2. ORTEP of $\left[1,2,4-\left(\mathrm{Me}_{3} \mathrm{C}_{3} \mathrm{C}_{5} \mathrm{H}_{2}\right]_{2} \mathrm{CeCH}_{2} \mathrm{OMe}, 50 \%\right.$ probability ellipsoids. The non-hydrogen atoms are refined anisotropically and the hydrogen atoms (not shown) are included in calculated positions but not refined: $\mathrm{Ce}-\mathrm{C}_{\text {ave }}=2.84 \pm 0.05 \AA$, range $=2.778(3)$ to $2.926(3) \AA, \mathrm{Ce}-\mathrm{C}($ ring centroid $)=2.57 \AA, \mathrm{Cp}$ '(ring centroid $)-\mathrm{Ce}-$ $\mathrm{Cp}^{\prime}($ ring centroid $)=147^{\circ}, \mathrm{Ce}-\mathrm{C}(35)=2.488(4) \AA, \mathrm{Ce}-\mathrm{O}=2.406(2) \AA, \mathrm{C}(35)-\mathrm{O}=$ $1.466(4) \AA, \mathrm{C}(36)-\mathrm{O}=1.414(4) \AA, \mathrm{Ce}-\mathrm{O}-\mathrm{C}(35)=75.7(2)^{\circ}, \mathrm{Ce}-\mathrm{C}(35)-\mathrm{O}=69.5(2)^{\circ}$, $\mathrm{C}(36)-\mathrm{O}-\mathrm{C}(35)=117.2(3)^{\circ}, \mathrm{C}(36)-\mathrm{O}-\mathrm{Ce}=160.3(2)^{\circ}$.

Two other structural comparisons are particularly revealing relative to the electronic structure of the methoxymethylene fragment. In organic molecules containing the $\mathrm{Me}-\mathrm{OC}\left(\mathrm{sp}^{3}\right)$ fragment, the average C - O distance is $1.416 \AA \AA^{12}$ which is identical to the $\mathrm{C}(36)-\mathrm{O}(1)$ distance in the methoxymethyl derivative; the $\mathrm{C}(35)-\mathrm{O}(1)$ distance of $1.466(4) \AA$ is $0.05 \AA$ longer. Further, the $\mathrm{C}-\mathrm{O}$ bond in the $\mathrm{H}_{3} \mathrm{C}-\mathrm{OR}$ group lengthens by $0.12 \AA$ when it is deprotonated at the α-carbon atom as shown by calculations on the hypothetical gas phase molecule $\mathrm{LiCH}_{2} \mathrm{OH}$ relative to $\mathrm{CH}_{3} \mathrm{OH} .{ }^{13}$ The lengthening of the C-O bond is interpreted as arising from increased carbene character in the methylene carbon of the $\mathrm{CH}_{2} \mathrm{OH}$ anion. In another comparison, the crystal structure of the methoxymethyl complex, $\mathrm{Cp}_{2} \mathrm{Zr}(\mathrm{Cl})\left(\eta^{2}-\mathrm{CH}_{2} \mathrm{OMe}\right)$, shows that the CH_{2}-O distance of $1.414(6) \AA$ is shorter than that of the $\mathrm{CH}_{3}-\mathrm{O}$ distance of 1.449(6) $\AA .{ }^{14}$ The crystal structure of the benzyloxymethyl complex, $\mathrm{Cp}_{2} \mathrm{Zr}(\mathrm{Cl})\left(\eta^{2}-\right.$ $\mathrm{CH}_{2} \mathrm{OCH}_{2} \mathrm{Ph}$), shows that the $\mathrm{CH}_{2}-\mathrm{O}$ distance is $1.455(8) \AA$ and close to that of the $\mathrm{O}-$ C (benzyl) distance which is $1.456(7) \AA .{ }^{15}$ These distances are therefore rather different from those in $\mathrm{Cp}^{\prime}{ }_{2} \mathrm{Ce}\left(\eta^{2}-\mathrm{CH}_{2} \mathrm{OMe}\right)$, Figure 1. In addition, the oxygen atom in $\mathrm{Cp}_{2} \mathrm{Zr}(\mathrm{Cl})\left(\eta^{2}-\mathrm{CH}_{2} \mathrm{OMe}\right)$ is out of the plane defined by the ZrC_{2} atoms by $0.51 \AA$, resulting in the authors description of the $\mathrm{Zr}\left(\eta^{2}-\mathrm{CH}_{2} \mathrm{OMe}\right)$ fragment as an "intramolecularly stabilized onium ylide". This description is strengthened by noting
that the oxygen atom in $\left[\mathrm{Me}_{3} \mathrm{O}\right]\left[\mathrm{AsF}_{6}\right]$ is decidedly pyramidal since the angles around oxygen sum to $340^{\circ} .^{16}$

Reaction of $\mathrm{Cp}_{2} \mathbf{C e H}$ and metallacycle, 1 , with $\mathrm{CH}_{3} \mathrm{NMe}_{2}$.

Unlike the reactions illustrated in eqs 1 and 3, addition of trimethylamine to a $\mathrm{C}_{6} \mathrm{D}_{6}$ solution of $\mathrm{Cp}^{\prime}{ }_{2} \mathrm{CeH}$ does not perturb the chemical shift of the $\mathrm{Me}_{3} \mathrm{C}$-resonances at $20^{\circ} \mathrm{C}$ in the ${ }^{1} \mathrm{H}$ NMR spectrum. However, mixing trimethylamine with metallacycle, $\mathbf{1}$, in $\mathrm{C}_{6} \mathrm{D}_{12}$ results in appearance of a new set of $\mathrm{Me}_{3} \mathrm{C}$-resonances in 1:1:1 ratio, though the resonances due to the amine cannot be identified with confidence and a structure analogous to $\mathrm{Q}_{\mathrm{X}}, \mathrm{X}=\mathrm{NMe}_{2}$, seems to be a reasonable postulate. After one hour, the ratio of the metallacycle, $\mathbf{1}$, to $\mathrm{Q}_{\mathrm{NMe} 2}$ is $1: 3$ and this ratio changes to $1: 6$ after a day at $20^{\circ} \mathrm{C}$. Heating to $60^{\circ} \mathrm{C}$ from 2 to 15 days then cooling to room temperature establishes the thermodynamic ratio as 1:1.3. Further support for an equilibrium is obtained by heating metallacycle, $\mathbf{1 - d} \mathbf{d}_{53}$, with $\mathrm{CH}_{3} \mathrm{NMe}_{2}$ in $\mathrm{C}_{6} \mathrm{D}_{12}$. After one day at $60^{\circ} \mathrm{C}$, resonances in the ${ }^{1} \mathrm{H}$ NMR spectrum due to metallacycle, $\mathbf{1}$, increase in intensity at the expense of those in the ${ }^{2} \mathrm{H}$ NMR spectrum. In addition, a triplet is observed in the ${ }^{2} \mathrm{H}$ NMR spectrum due to $\mathrm{CH}_{2} \mathrm{DNMe}_{2}, \delta=2.12, J_{C D}=2 \mathrm{~Hz}$. Heating the sample for 33 days at $60^{\circ} \mathrm{C}$ results in an increase in the paramagnetic resonances due to the $\mathrm{C}\left(\mathrm{CD}_{3}\right)_{2}\left(\mathrm{CD}_{2} \mathrm{H}\right)$ group of the Cp '-rings and their corresponding decrease in the ${ }^{2} \mathrm{H}$ NMR spectrum. The ${ }^{2} \mathrm{H}$ NMR resonance due to trimethylamine- d_{x} increases in intensity and complexity and the ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectrum contains a resonance as a 1:1:1 pattern at $\delta=46.59$ and $J_{C D}=20 \mathrm{~Hz}$, in addition to a singlet at $\delta 46.90$ due to $\mathrm{CH}_{2} \mathrm{DNMe}_{2}$ and $\mathrm{CH}_{3} \mathrm{NMe}_{2}$, respectively, after 33 days at $60^{\circ} \mathrm{C}$. The H for D exchange experiment supports an equilibrium similar to that shown in eq 4 , for $\mathrm{Q}_{\mathrm{NM} 22}$. Thus, H
for D exchange in $\mathrm{CH}_{3} \mathrm{NMe}_{2}$ occurs implicating the formation of $\mathrm{Cp}_{2} \mathrm{CeCH}_{2} \mathrm{NMe}_{2}$, but no resonance due to methane nor $\mathrm{Cp}^{\prime}{ }_{2} \mathrm{CeNMe}_{2}$ are observed.

Reactions of $\mathbf{C p}{ }_{2} \mathbf{C e C H}_{2} \mathbf{O M e}$ with $\mathbf{B P h}_{3}$

It is clear that H_{2} is not able to trap efficiently the CH_{2} fragment in $\mathrm{Cp}_{2}{ }_{2} \mathrm{CeCH}_{2} \mathrm{OMe}$. Cyclohexene is not able to trap the CH_{2} fragment, since norcarane is not formed when the two reagents are mixed, in contrast to the reaction of the metallacycle, 1 , with $\mathrm{CH}_{3} \mathrm{~F} .{ }^{1}$ Thus, another trap that is compatible with the metallocene is needed. ${ }^{1}$ Triphenylboron, and indeed BX_{3} compounds in general, react with diazomethane, $\mathrm{CH}_{2} \mathrm{~N}_{2}$, with formation of polymethylene, a reaction described by Meerwein eighty years ago; ${ }^{17}$ a review of this reaction is available. ${ }^{18}$ The specific reaction between BPh_{3} and $\mathrm{CH}_{2} \mathrm{~N}_{2}$ yields polymeric material and $\left(\mathrm{Ph}_{3-\mathrm{x}}\right) \mathrm{B}\left(\mathrm{CH}_{2} \mathrm{Ph}\right)_{x}$, since on reaction with hydrogen peroxide, PhOH and $\mathrm{PhCH}_{2} \mathrm{OH}$ are formed. ${ }^{19}$ Two related reactions should be mentioned; reaction of $\mathrm{Ph}_{3} \mathrm{PCH}_{2}$ and BPh_{3} yields a 1:1 adduct that gives $\left(\mathrm{PhCH}_{2}\right)_{3} \mathrm{~B}, \mathrm{Ph}_{3} \mathrm{BPPh}_{3}$ and PPh_{3} on heating to $205^{\circ} \mathrm{C}^{20}$ and the nitrogenylide $\mathrm{Me}_{3} \mathrm{NCH}_{2} \bullet \mathrm{LiBr}^{2}$, and BPh_{3} gives $\mathrm{PhCH}_{2} \mathrm{OH}$ and PhOH on alkaline hydrogen peroxide hydrolysis. ${ }^{21}$ More recently, the adduct between BPh_{3} and $\mathrm{Me}_{2} \mathrm{~S}(\mathrm{O})\left(\mathrm{CH}_{2}\right)$ is isolated and after heating and oxidation, $\mathrm{PhCH}_{2} \mathrm{OH}$ and PhOH are obtained. ${ }^{22}$ Thus, BPh_{3} appears to be an efficient trap for the CH_{2} fragment, presumably by forming a Lewis acid-base adduct that subsequently rearranges to a benzylboron compound. Although the perfluoro derivative, $\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{3} \mathrm{~B}$, is a stronger Lewis acid it is not compatible with $\mathrm{Cp}^{\prime}{ }_{2} \mathrm{CeH}^{23}{ }^{23}$ The utility of BPh_{3} as a trap for CH_{2} in $\mathrm{Cp}_{2} \mathrm{CeCH}_{2} \mathrm{OMe}$ is outlined next.

Mixing $\mathrm{Cp}_{2} \mathrm{CeCH}_{2} \mathrm{OMe}$ with BPh_{3} in an NMR tube in $\mathrm{C}_{6} \mathrm{D}_{6}$ at $20^{\circ} \mathrm{C}$ results in disappearance of the resonances due to the methoxymethyl derivative and appearance
of resonances due to $\mathrm{Cp}^{\prime}{ }_{2} \mathrm{CeOMe}$ within 10 minutes. Although resonances that may be attributed to an arylboron derivative are apparent in the spectrum, their identification is not clear cut; the ${ }^{11} \mathrm{~B}$ NMR spectrum offers no help since the quantity of $\left(\mathrm{Ph}_{3-x}\right) \mathrm{B}\left(\mathrm{CH}_{2} \mathrm{Ph}\right)_{\mathrm{x}}$ is small and the paramagnetism of the cerium compound is likely to shift the broadened resonance. However, hydrolysis of the solution with alkaline hydrogen peroxide and examination of the hydrolysate by GCMS conclusively shows that $\mathrm{PhCH}_{2} \mathrm{OH}$ and PhOH , in addition to $\mathrm{Cp}{ }^{\prime} \mathrm{H}$, are formed. Thus BPh_{3} is able to abstract the CH_{2} group resulting in the net reaction shown in eq 5 .
$\mathrm{Cp}^{\prime}{ }_{2} \mathrm{CeCH}_{2} \mathrm{OMe}+\mathrm{BPh}_{3}->\mathrm{Cp}^{\prime}{ }_{2} \mathrm{CeOMe}+\mathrm{Ph}_{2} \mathrm{BCH}_{2} \mathrm{Ph}$

In the reaction illustrated in eq $5, \mathrm{BPh}_{3}$ is a better trap for CH_{2} than H_{2} since the methoxymethyl derivative is formed in presence of H_{2}, eq 3 . This observation begets the question of which reagent is a better trap for a CH_{2} group when the postulated compound $\mathrm{Cp}^{\prime}{ }_{2} \mathrm{CeCH}_{2} \mathrm{X}, \mathrm{Q}_{\mathrm{x}}$, is neither detected nor isolated, i.e., the reaction shown in eq 1 . This is an important question since the only experimental evidence for formation of $\mathrm{Cp}_{2} \mathrm{CeCH}_{2} \mathrm{~F}$ is derived from experiments in which H_{2} is absent, i.e., eq 2. The success of this type of experiment requires that BPh_{3} does not react irreversibly with $\mathrm{Cp}^{\prime}{ }_{2} \mathrm{CeH}$.

An NMR tube experiment shows that mixing BPh_{3} and $\mathrm{Cp}^{\prime}{ }_{2} \mathrm{CeH}$ in $\mathrm{C}_{6} \mathrm{D}_{6}$ results in a rapid color change from purple to yellow and disappearance of the resonances due to $\mathrm{Cp}^{\prime}{ }_{2} \mathrm{CeH}$. On a synthetic scale, addition of $\mathrm{Cp}{ }_{2} \mathrm{CeH}$ and BPh_{3} in toluene at room temperature results in the appearance of a yellow solution and yellow crystals form on standing overnight. The crystals are due to formation of a 1:1 adduct, whose crystal structure is shown in the ORTEP in Figure 3. Some bond distances and angles are given in the Figure Caption.

Figure 3. ORTEP of $\left[1,2,4-\left(\mathrm{Me}_{3} \mathrm{C}\right)_{3} \mathrm{C}_{5} \mathrm{H}_{2}\right]_{2} \mathrm{Ce}(\mathrm{H})\left(\mathrm{BPh}_{3}\right), 50 \%$ probability ellipsoids except for $\mathrm{H}(80)$. All non- hydrogen atoms are refined anisotropically and all hydrogen atoms, except $\mathrm{H}(80)$, are placed in calculated positions and not refined. $H(80)$ is located in the difference Fourier map and refined isotropically. Some bond distances and angles are: $\mathrm{Ce}-\mathrm{C}\left(\mathrm{Cp}^{\prime}\right)_{\mathrm{ave}}=2.82 \pm 0.09 \AA, \mathrm{Ce}-\mathrm{Cp}{ }^{\prime}(\text { centroid })_{\mathrm{ave}}=2.54 \AA$, $\mathrm{Cp}^{\prime}($ centroid $)-\mathrm{Ce}-\mathrm{Cp}{ }^{\prime}($ centroid $)=136^{\circ}, \mathrm{Ce}-\mathrm{H}(80)=2.37(3) \AA, \mathrm{Ce}-\mathrm{B}=3.423(3) \AA, \mathrm{B}-$ $H(80)=1.26(3) \AA, \mathrm{Ce}-\mathrm{H}(80)-\mathrm{B}=139(1)^{\circ}$.

A comparison between the geometrical parameters in $\mathrm{Cp}{ }_{2} \mathrm{CeH}$, the adduct with BPh_{3}, and BPh_{3}, is shown in Table 1. The cyclopentadienyl ring carbon atoms are nearly eclipsed in the starting hydride and the Cp^{\prime} (centroid)- $\mathrm{Ce}-\mathrm{Cp}^{\prime}$ (centroid) angle is $155^{\circ} .{ }^{5}$ The refined position of the hydride atom lies off the C_{2}-axis of the metallocene. When BPh_{3} interacts with the hydride, the Cp '(centroid)-CeCp '(centroid) angle closes to 136°, the cyclopentadienyl-ring carbons on the Cp 'rings are now staggered, but the Cp^{\prime} (centroid)-Ce distances are essentially equal in the two structures. The HBPh_{3} group does not lie on the C_{2}-axis of the complex, but it
is oblique to the $\mathrm{Cp}_{2}{ }_{2} \mathrm{Ce}$ fragment with a $\mathrm{Ce}-\mathrm{H}(80)-\mathrm{B}$ angle of $139(1)^{\circ}$. This orientation forces the BPh_{3} group close to the $\mathrm{Cp}{ }_{2}{ }_{2} \mathrm{Ce}$ fragment with a $\mathrm{Ce} \cdots \mathrm{B}$ distance of 3.423 (3) A. The Ce-H distance in the complex increases to $2.35 \AA$ from $1.90 \AA$ in the BPh_{3}-free complex and the H -B distance is $1.26 \AA$. The refined H -B distance seems reasonable since an equivalent distance of $1.34 \AA$ is found in $\left(\mathrm{C}_{5} \mathrm{H}_{5}\right)_{2} \mathrm{~V}(\mathrm{H})\left(\mathrm{B}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{3}\right)$, where the V-H-B angle is $153^{\circ} .{ }^{24}$ The H -B distance tends to be longer by about $0.2 \AA$ when the HBR_{3} group is inner sphere rather than outer sphere since, for example, the H -B distance in $\left[\left(\mathrm{C}_{5} \mathrm{H}_{5}\right)_{2} \mathrm{~V}(\mathrm{CO})_{2}\right]\left[\mathrm{HB}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{3}\right]$ is $1.14(2)$ \AA^{25} and $1.06(6) \AA$ in $\left[\left(\mathrm{C}_{5} \mathrm{Me}_{5}\right)_{2} \mathrm{ZrH}\right]\left[\mathrm{HB}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{3}\right] .{ }^{26}$ The B-C distance lengthens by 0.05 \AA on complex formation and the C-B-C angles contract from 120° in planar BPh_{3}, in which the phenyl groups are orientated as the blades of a propellar, to $111.8 \pm 3.2^{\circ}$ (ave.) in the complex. However, the C-B-C angles are unequal in the adduct: they range from $107.0(2)^{\circ}$ for $\mathrm{C}(35)-\mathrm{B}-\mathrm{C}(47)$ to $114.3(3)^{\circ}$ and $114.0(3)^{\circ}$ for the other two angles at boron. The geometrical parameters in $\mathrm{Cp}_{2}{ }_{2} \mathrm{Ce}(\mathrm{H})\left(\mathrm{BPh}_{3}\right)$ are consistent with the view that the $\mathrm{Ce}-\mathrm{H}-\mathrm{BPh}_{3}$ interaction is a 3 center- 2 electron bond and the obtuse $\mathrm{Ce}-\mathrm{H}-\mathrm{B}$ angle implies a closed 3-center interaction in the solid state, i.e., there is electron density shared between the Ce and B atoms. ${ }^{27}$

Table 1. Comparison of Bond Lengths and Angles in $\mathrm{Cp}^{\prime}{ }_{2} \mathrm{CeH}, \mathrm{Cp}^{\prime}{ }_{2} \mathrm{Ce}(\mathrm{H})\left(\mathrm{BPh}_{3}\right)$ and BPh_{3}.

	$\mathrm{Cp}^{\prime}{ }_{2} \mathrm{CeH}$	$\mathrm{Cp}^{\prime}{ }_{2} \mathrm{Ce}(\mathrm{H})\left(\mathrm{BPh}_{3}\right)$	$\mathrm{BPh}_{3}{ }^{\mathrm{c}}$
$\mathrm{Ce-C(Cp})_{\text {ave }},{ }^{\circ} \AA$	2.81 ± 0.02	2.82 ± 0.09	
$\mathrm{Ce}-\mathrm{C}\left(\mathrm{Cp}{ }^{\prime}\right)$ range, \AA	$2.757(7)$ to $2.840(6)$	$2.713(3)$ to $2.933(3)$	
$\mathrm{Ce}-\mathrm{Cp}{ }^{\prime}(\text { centroid })_{\text {ave }} . \AA$	2.53	2.54	

Orientation $^{\mathrm{b}}$	Eclipsed	staggered	
Cp'(centroid)-Ce- $^{\text {Cp'(centroid), }}{ }^{\circ}$	155	136	
B-C, \AA			
C-B-C, ${ }^{\circ}$		1.631 ± 0.008	1.580 ± 0.005
		111.8 ± 3.2	120

[^0]In $\mathrm{C}_{6} \mathrm{D}_{6}$ solution the interaction persists, since at $20^{\circ} \mathrm{C}$, the resonances due to $\mathrm{Cp}{ }_{2} \mathrm{Ce}(\mathrm{H})\left(\mathrm{BPh}_{3}\right)$ and those due to added BPh_{3} are observed as separate resonances. The variable temperature ${ }^{1} \mathrm{H}$ NMR spectra of $\mathrm{Cp}{ }_{2} \mathrm{Ce}(\mathrm{H})\left(\mathrm{BPh}_{3}\right)$ are shown as a δ vs $1 / \mathrm{T}$ plot in Figure 4. At temperatures below $332 \mathrm{~K}(1 / \mathrm{T} \cong 0.003)$ separate resonances are observed for free and coordinated BPh_{3}, the para- H resonances are easily distinguished in the adduct and free BPh_{3}. Below that temperature the $\mathrm{Me}_{3} \mathrm{C}$-groups on the Cp'-rings appear in a 1:1:1 ratio consistent with a complex with C_{s} symmetry. At higher temperatures, two of the $\mathrm{Me}_{3} \mathrm{C}$-resonances coalesce, due to the equilibrium illustrated by eq 6 , that averages the BPh_{3} environments. Thus, at temperatures above $\mathrm{T}=330 \mathrm{~K}$, some BPh_{3} is present in solution and may function as a trapping reagent.

Figure 4. δ vs. $1 / \mathrm{T}$ plot for $\mathrm{Cp}{ }_{2} \mathrm{Ce}(\mathrm{H})\left(\mathrm{BPh}_{3}\right)$.

$$
\begin{equation*}
\mathrm{Cp}_{2}^{\prime} \mathrm{Ce}(\mathrm{H})\left(\mathrm{BPh}_{3}\right) \Longrightarrow \mathrm{Cp}_{2}^{\prime} \mathrm{CeH}+\mathrm{BPh}_{3} \tag{6}
\end{equation*}
$$

Accordingly, mixing $\mathrm{Cp}{ }_{2} \mathrm{Ce}(\mathrm{H})\left(\mathrm{BPh}_{3}\right)$ with $\mathrm{CH}_{3} \mathrm{~F}$ results in formation of $\mathrm{Cp}{ }_{2}{ }_{2} \mathrm{CeF}$ and free BPh_{3}. The conversion is only about 20% after 10 minutes and therefore the rate of reaction decreases in the adduct. In a separate experiment, the resonances due to $\mathrm{Cp}_{2}{ }_{2} \mathrm{CeF}$ are not perturbed in presence of BPh_{3} at $20^{\circ} \mathrm{C}$. Similarly, addition of $\mathrm{CH}_{3} \mathrm{Br}$ to $\mathrm{Cp}^{\prime}{ }_{2}(\mathrm{H})\left(\mathrm{BPh}_{3}\right)$ in $\mathrm{C}_{6} \mathrm{D}_{6}$ results in formation of $\mathrm{Cp}^{\prime}{ }_{2} \mathrm{CeBr}$. Hydrolysis of the solution with alkaline hydrogen peroxide and examination by GCMS shows that only phenol is formed. Hence, at the concentrations used, BPh_{3} does not compete with dihydrogen for the CH_{2}-fragment.

As shown in an earlier article, ${ }^{5}$ metallacycle, $\mathbf{1 - \mathbf { d } _ { 5 3 }}$, is readily prepared by exposing $1-\mathbf{d}_{0}$ to $\mathrm{C}_{6} \mathrm{D}_{6}$ solvent. The reverse reaction, viz., metallacycle, $\mathbf{1}-\mathbf{d}_{53}$ in presence of $\mathrm{C}_{6} \mathrm{H}_{6}$ gives 1- d_{0} and $\mathrm{C}_{6} \mathrm{H}_{6-\mathrm{x}} \mathrm{D}_{\mathrm{x}}$ implies that aryl CH -bonds in BPh_{3} will undergo exchange of H for D with $\mathbf{1 - \mathbf { d } _ { 5 3 }}$. This expectation is fulfilled, since mixing 1\mathbf{d}_{53} with BPh_{3} in an NMR tube in $\mathrm{C}_{6} \mathrm{D}_{12}$ at $20^{\circ} \mathrm{C}$ results in a decrease in intensity of the resonances due to the $\left(\mathrm{CD}_{3}\right)_{3} \mathrm{C}$-groups in the ${ }^{2} \mathrm{H}$ NMR spectrum and an increase in intensity of the resonances of the para-H and meta-H sites; those on the ortho-H sites are not affected. After 2 days at $60^{\circ} \mathrm{C}$, the ratio o-H:m-H:p-H is 2.0:0.4:0.09 and after 11 days at $60^{\circ} \mathrm{C}$ the ratio is $2.0: 0.12: 0.025$.

Other reactions of $\mathrm{Cp}{ }_{2} \mathrm{Ce}\left(\eta^{2}-\mathrm{CH}_{2} \mathrm{OMe}\right), \mathrm{Q}_{\text {ome }}$.

Several additional reactions of the methoxymethyl derivative are summarized in the Scheme and outlined in this section. Exposure of $\mathrm{Cp}{ }_{2}{ }_{2} \mathrm{Ce}\left(\eta^{2}-\mathrm{CH}_{2} \mathrm{OMe}\right)$ to D_{2}
results in deuterium being detected in two positions; the $\mathrm{Me}_{3} \mathrm{C}$-groups of the Cp '-ring and the Ce-D sites, i.e., $\left(\mathrm{Cp}^{\prime}\right)\left(\mathrm{Cp}^{\prime}-\mathrm{d}_{1}\right) \mathrm{CeD}$, as shown by the intensity changes in the ${ }^{1} \mathrm{H}$ and ${ }^{2} \mathrm{D}$ NMR spectra. In addition, some deuterium accumulates in $\mathrm{Me}_{2} \mathrm{O}$. These results are consistent with the equilibrium illustrated in eq 4 and in the Scheme.

Scheme

The methoxymethyl derivative reacts with $\mathrm{MeX}, \mathrm{X}=\mathrm{F}$ or Br , as shown in the Scheme. In the case of MeBr , resonances due to $\mathrm{Q}_{\mathrm{ome}}, \mathrm{Cp}^{\prime}{ }_{2} \mathrm{CeBr}, \mathrm{Cp}^{\prime}{ }_{2} \mathrm{CeOMe}$ and Q_{Br} are observed after 1 day at $20^{\circ} \mathrm{C}$ in a ratio of 8:8:1:2 along with $\mathrm{Me}_{2} \mathrm{O}$. After 4 days, only resonances due to $\mathrm{Cp}_{2}{ }_{2} \mathrm{CeBr}$ and $\mathrm{Me}_{2} \mathrm{O}$ are observed. In a separate experiment, $\mathrm{Cp}_{2}{ }_{2} \mathrm{OMe}$ is not converted to $\mathrm{Cp}^{\prime}{ }_{2} \mathrm{CeBr}$ by MeBr , which shows that the disappearance of the small amount of $\mathrm{Cp}^{\prime}{ }_{2} \mathrm{CeOMe}$ is not due to reaction with MeBr . Methylfluoride also reacts with $\mathrm{Cp}^{\prime}{ }_{2} \mathrm{Ce}\left(\eta^{2}-\mathrm{CH}_{2} \mathrm{OMe}\right)$ but the rate is slower that that of MeBr . After 2 days at $20^{\circ} \mathrm{C}$, only resonances due to $\mathrm{Cp}^{\prime}{ }_{2} \mathrm{CeCH}_{2} \mathrm{OMe}$ and $\mathrm{Cp}_{2} \mathrm{CeF}$ are observed, but
heating for 1 day at $60^{\circ} \mathrm{C}$, resonances due to $\mathrm{Cp}^{\prime}{ }_{2} \mathrm{CeOMe}$ appear. In a separate experiment, $\mathrm{Cp}_{2}{ }^{\prime} \mathrm{CeOMe}$ and MeF do not react. After 9 days at $60^{\circ} \mathrm{C}$, the relative ratio of $\mathrm{Cp}^{\prime}{ }_{2} \mathrm{CeF}$ and $\mathrm{Cp}^{\prime}{ }_{2} \mathrm{CeOMe}$ is $1.5: 1$ and the resonances due to $\mathrm{Cp}^{\prime}{ }_{2} \mathrm{Ce}\left(\eta^{2}-\mathrm{CH}_{2} \mathrm{OMe}\right)$ are gone. This result is also consistent with the equilibrium reaction shown in the Scheme.

Computational studies

The metallocene used in the experimental studies, $\mathrm{Cp}^{\prime}{ }_{2} \mathrm{CeH}$ was modeled by $\left(\mathrm{C}_{5} \mathrm{H}_{5}\right)_{2} \mathrm{CeH}$, symbolized as [Ce]H, as in earlier articles. ${ }^{1, \text { ta, } 5}$ The results obtained with $\mathrm{CH}_{3} \mathrm{~F}$ are incorporated into this article for completeness. The free energy profiles for the reaction of $\mathrm{CH}_{3} \mathrm{X}$ with $[\mathrm{Ce}] \mathrm{H}$ to form $[\mathrm{Ce}] \mathrm{X}$ and CH_{4} are shown in Figure 5; the activation barrier is defined as the difference in free energy between the reactant and the transition state and symbolized as $\Delta \mathrm{G}^{\ddagger}$.

The metathesis pathway with a transition state shown as I in the Introduction, has an activation barrier of $31.1 \mathrm{kcal} \mathrm{mol}^{-1}$ for $\mathrm{CH}_{3} \mathrm{~F} .{ }^{1}$ The calculated activation barriers are $30.4 \mathrm{kcal} \mathrm{mol}^{-1}$ for $\mathrm{CH}_{3} \mathrm{I}$ and $43.5 \mathrm{kcal} \mathrm{mol}^{-1}$ for $\mathrm{CH}_{3} \mathrm{OMe}$. These two systems are representative of the series of $\mathrm{CH}_{3} \mathrm{X}$ species discussed in this article and the metathesis pathway is unlikely to be followed. The pathway that proceeds via a transition state of type II and on to intermediate III was proposed in the case of $\mathrm{CH}_{3} \mathrm{~F}$ and this pathway is explored as an alternative pathway below. The activation energy for the CH activation steps in the five reactions is similar but the activation energy for trapping of CH_{2} and formation of $\mathrm{Cp}_{2} \mathrm{CeX}$ is strongly dependent on the identity of X , Figure 5.

Figure 5. Free energy profiles, in kcal mol^{-1}, for the reaction of $\mathrm{Cp}_{2} \mathrm{CeH}$, $[\mathrm{Ce}] \mathrm{H}$, and $\mathrm{CH}_{3} \mathrm{X}$ to form [Ce]X and $\mathrm{CH}_{4}\left(\mathrm{X}=\mathrm{F}, \mathrm{Cl}, \mathrm{Br}, \mathrm{I}, \mathrm{OMe}, \mathrm{NMe}_{2}\right)$. The adduct between $\mathrm{CH}_{3} \mathrm{X}$ and $[\mathrm{Ce}] \mathrm{H}$ is not shown.

The reaction begins by coordination of $\mathrm{CH}_{3} \mathrm{X}$ to $[\mathrm{Ce}] \mathrm{H}$ by a lone pair on X . Coordination just compensates the loss of translational entropy in the system and the free energy of the adducts is similar to that of the separated reactants; for this reason the adducts are not shown on Figure 5. From the adduct, the hydrogen atom transfers as a proton from the methyl group to the hydride as described for the $\mathrm{CH}_{3} \mathrm{~F}$ reaction. At the transition state, the carbon atom, the hydrogen atom that is leaving the methyl group, and the hydrogen atom attached to $\mathrm{Cp}_{2} \mathrm{Ce}$ are essentially co-linear as shown in Figure 6a for $\mathrm{X}=\mathrm{OMe}$ where the $\mathrm{H}^{\cdots} \mathrm{H}^{\cdots} \mathrm{C}$ angle is 170°. The transfer of the proton
results in the formation of H_{2} and $[\mathrm{Ce}]\left(\eta^{2}-\mathrm{CH}_{2} \mathrm{X}\right)$ in which the carbon and X atom of the $\mathrm{CH}_{2} \mathrm{X}$ group are bonded to the cerium atom. The transition state for the insertion of CH_{2} into H_{2} for $\mathrm{X}=\mathrm{OMe}$ is shown in Figure 6 b .

(a)

(b)

Figure 6. Transition states for the formation of CH_{4} and $[\mathrm{Ce}] \mathrm{OMe}$ from $\mathrm{CH}_{3} \mathrm{OMe}$ and [Ce]H. (a) elimination of H_{2} with a $\mathrm{H}^{\cdots} \mathrm{H}^{\cdots} \mathrm{C}$ angle of 170°, (b) addition of H_{2} to the $\eta^{2}-\mathrm{CH}_{2} \mathrm{OM}$ group with formation of [Ce]OMe.

The activation barrier $\left(\Delta \mathrm{G}^{\ddagger}\right)$ for the proton transfer reactions is similar for all X : the lowest value of $13.8 \mathrm{kcal} \mathrm{mol}^{-1}$ is obtained for $\mathrm{X}=\mathrm{OMe}$, the highest value of $18 \mathrm{kcal} \mathrm{mol}^{-1}$ is obtained for F and values for $\mathrm{X}=\mathrm{Cl}, \mathrm{Br}, \mathrm{I}$ and NMe_{2} are in between at about $15 \mathrm{kcal} \mathrm{mol}^{-1}$. The values do not follow the experimental gas phase proton dissociation enthalpies for $\mathrm{CH}_{3} \mathrm{X}$, since the values as a function of X , in $\mathrm{kcal} \mathrm{mol}^{-1}$ are NMe_{2} (>406), OMe (407), $\mathrm{Cl}(396), \mathrm{Br}(393), \mathrm{I}(391) .{ }^{28}$ Thus, the activation barrier is not just determined by the acidity of the α - CH bond, even though the relative acidity is the primary reason for the higher activation energy when H_{2} and CH_{4} are compared, and the identity of X plays a role in determining the barrier. ${ }^{1}$ The free energy of formation of $[\mathrm{Ce}]\left(\eta^{2}-\mathrm{CH}_{2} \mathrm{X}\right)$ is only mildly influenced by X with the heavier halides
and the methoxy group being slightly more stable than the reactant and the fluoride and NMe_{2} slightly less; therefore the reactants, $[\mathrm{Ce}] \mathrm{H}$ and $\mathrm{CH}_{3} \mathrm{X}$, and $[\mathrm{Ce}]\left(\eta^{2}-\mathrm{CH}_{2} \mathrm{X}\right)$ are essentially isoenergetic.

The activation barriers for insertion of CH_{2} into H_{2} vary over a large range of values. For the halides, Cl, Br and I , the activation barriers are about $24 \mathrm{kcal} \mathrm{mol}^{-1}$. A significantly higher activation barrier of $39 \mathrm{kcal} \mathrm{mol}^{-1}$ is calculated for $\mathrm{X}=\mathrm{OMe}$ and the barrier is even higher, $56 \mathrm{kcal} \mathrm{mol}^{-1}$, for $\mathrm{X}=\mathrm{NMe}_{2}$. The formation of [Ce]X and CH_{4} is strongly exoergic for all of the X substituents but the nature of X influences the value of $\Delta \mathrm{G}$ of the reaction which decreases in the order $\mathrm{F}, \mathrm{Cl}, \mathrm{Br}, \mathrm{I}>\mathrm{OMe} \gg$ NMe_{2}. Figure 5 shows a clear relationship between the activation energies for insertion of CH_{2} into H_{2} and the change in free energy of reaction since the highest activation barriers are associated with the lowest thermodynamic driving force. The proton transfer step is a low activation barrier process for all $\mathrm{CH}_{3} \mathrm{X}$ reactants but the insertion of CH_{2} into dihydrogen proceeds with a higher barrier and is therefore rate determining.

The carbon atom that is part of the three-membered ring, $[\mathrm{Ce}]\left(\eta^{2}-\mathrm{CH}_{2} \mathrm{X}\right)$, is a carbenoid, ${ }^{29}$ since it shows reactions associated with a carbene, for example, insertion into H_{2}, as well as that of an alkyl group, for example, as a proton acceptor, see Scheme. However, the identity of X plays an role in the height of the activation barrier since the CH_{2} group is a carbenoid and not a free carbene, which inserts into H_{2} without an energy barrier. ${ }^{30}$ The values of the activation energy become progressively higher as X changes from F to OMe and to NMe_{2}. In the latter example, a calculated activation barrier of $56 \mathrm{kcal} \mathrm{mol}^{-1}$ is prohibitively high consistent with the experimental observation that [Ce$] \mathrm{NMe}_{2}$ does not form from $\mathrm{CH}_{3} \mathrm{NMe}_{2}$, even though
the net reaction is exoergic by $-33 \mathrm{kcal} \mathrm{mol}^{-1}$. In the case of $[\mathrm{Ce}]\left(\eta^{2}-\mathrm{CH}_{2} \mathrm{OMe}\right)$ going to $[\mathrm{Ce}](\mathrm{OMe})$ and CH_{4}, the calculated activation barrier of $39 \mathrm{kcal} \mathrm{mol}^{-1}$ seems too high for an experimental reaction that occurs, albeit slowly at $20^{\circ} \mathrm{C}$, but consistent with the experimental fact that $\mathrm{Cp}^{\prime}{ }_{2} \mathrm{CeCH}_{2} \mathrm{OMe}$ is an isolable compound. Similarly, an activation barrier of $24 \mathrm{kcal} \mathrm{mol}^{-1}$ when X is F , also seems excessive for a net reaction that is rapid at $20^{\circ} \mathrm{C}$.

Figure 7. Optimized structure of $[\mathrm{Ce}]\left(\eta^{2}-\mathrm{CH}_{2} \mathrm{OMe}\right)$.

The calculated structures of $\mathrm{Ce}\left(\eta^{2}-\mathrm{CH}_{2} \mathrm{X}\right)$ when X is a halide are very similar to those for $\mathrm{X}=\mathrm{F} .{ }^{1}$ Descending the halide series results in longer $\mathrm{C}-\mathrm{X}$ bonds and an increase in the Ce-C-X angle that varies from 71° for F to 86° for I . For $\mathrm{X}=\mathrm{OMe}$, the $\mathrm{Ce}-\mathrm{C}-\mathrm{O}$ angle is close to that for $\mathrm{X}=\mathrm{F}$ while for $\mathrm{X}=\mathrm{NMe}_{2}$, the $\mathrm{Ce}-\mathrm{C}-\mathrm{N}$ angle is 76°, midway between that for $\mathrm{F}\left(71^{\circ}\right)$ and for $\mathrm{X}=\mathrm{Cl}\left(80^{\circ}\right)$. An important aspect of the calculated structure, which is not obtained from the crystal structure of $\mathrm{Cp}_{2} \mathrm{CH}_{2} \mathrm{OMe}$, is the position of the two hydrogen atoms on the methylene group, Figure 7. This geometrical parameter is related to the hybridization at the carbon atom and therefore to the carbenoid character in the $\mathrm{CH}_{2} \mathrm{X}$ group. For all X , the two hydrogen atoms are oriented in such a way that the $\mathrm{Ce}-\mathrm{C}$ axis is essentially in the plane defined by carbon and the two hydrogen atoms. The H-C-H angle is close to 120° for all X. These results show that the hybridization of carbon is sp^{2} and that the $\mathrm{C}-\mathrm{X}$ bond is
essentially constructed from a p-orbital on the carbon atom. Similar geometrical features have been found in the calculated structures of $\mathrm{LiCH}_{2} \mathrm{X}(\mathrm{X}=\mathrm{F}, \mathrm{Cl}, \mathrm{Br}, \mathrm{I}, \mathrm{OH}$, $\left.\mathrm{OMe}, \mathrm{NH}_{2}\right) \cdot{ }^{31}$ Thus changing X does not change the orientation of the CH_{2} relative to the $\mathrm{Ce}-\mathrm{C}$ bond nor the $\mathrm{H}-\mathrm{C}-\mathrm{H}$ angle, but changing X changes the $\mathrm{Ce}-\mathrm{C}-\mathrm{X}$ angle, which is the smallest for $\mathrm{F}\left(71^{\circ}\right)$ and largest for $\mathrm{I}\left(86^{\circ}\right)$. This difference is a consequence of the increasing $\mathrm{C}-\mathrm{X}$ bond length down the halide column.

The distortion of $[\mathrm{Ce}]\left(\eta^{2}-\mathrm{CH}_{2} \mathrm{X}\right)$ on going to the transition state as H_{2} traps the CH_{2} fragment is influenced by X as shown in Table 2. The distortions are very similar in the case of Cl, Br, and I ; the Ce-C distance increases by around $0.1 \AA$, the $\mathrm{C}-\mathrm{X}$ distance increases by about $0.5 \AA$, while the $\mathrm{Ce}-\mathrm{X}$ distance decreases by around 0.1 \AA. Different and larger distortions are found for $\mathrm{X}=\mathrm{F}, \mathrm{OMe}$ and NMe_{2}. In the case of F, the Ce-C distance increases by almost $0.4 \AA$, four times that found for the heavier halide, while the increase in the C-F distance of $0.47 \AA$ is marginally smaller than that for the other halides. The Ce-F bond does not shorten much on going from $[\mathrm{Ce}]\left(\eta^{2}-\right.$ $\mathrm{CH}_{2} \mathrm{~F}$) to the transition state. In the case of OMe and NMe_{2}, the Ce-C distance increases as found for the heavy halides, but the C-X bond increases more $(0.66 \AA$ and $0.8 \AA$ for OMe and NMe_{2} respectively). Another difference between the halides and the OMe or NMe_{2} cases is the $\mathrm{H} \cdots \mathrm{H}$ distance at the transition state; the $\mathrm{H} \cdots \mathrm{H}$ distance is $0.80 \AA$ for all of the halides but it increases from 0.83 to $0.88 \AA$ when X is OMe or NMe_{2}, respectively.

Table 2. All bond distances are in \AA. The first row of each cell gives the distances in the ground state (gs) of the three-membered ring and the second row gives the distances in the transition states (ts) for insertion of CH_{2} into H_{2}. a) The changes in the
bond lengths are given as $\Delta(\mathrm{Ce}-\mathrm{C}), \Delta(\mathrm{C}-\mathrm{X})$ and $\Delta(\mathrm{Ce}-\mathrm{X})$ where a positive number is an elongation of the bond from the reactant to the transition state. b) The $\mathrm{C} \cdots \mathrm{H}$ distance given is the shorter of the two $\mathrm{C} \cdots \mathrm{H}$ distances at the transition state. c) The $\mathrm{H} \cdots \mathrm{H}$ distance is given at the transition state.

		Ce-C	C-X	Ce-X	$\Delta(\mathrm{Ce}-\mathrm{C})^{\mathrm{a}}$	$\Delta(\mathrm{C}-\mathrm{X})^{\text {a }}$	$\Delta(\mathrm{Ce}-\mathrm{X})^{\text {a }}$	$\mathrm{C}^{\cdots} \mathrm{H}^{\text {b }}$	$\mathrm{H}^{\cdots} \mathrm{H}^{\text {c }}$
F	gs	2.476	1.510	2.505	+0.374	+0.466	-0.06	-	-
	ts	2.850	1.976	2.445				1.516	0.798
Cl	gs	2.547	1.897	2.904	+0.099	+0.524	-0.122	-	-
	ts	2.646	2.421	2.782				1.485	0.804
Br	gs	2.554	2.045	3.07	+0.101	+0.530	-0.119	-	-
	ts	2.655	2.575	2.951				1.465	0.810
I	gs	2.559	2.277	3.300	+0.105	+0.516	-0.111	-	-
	ts	2.664	2.793	3.189				1.452	0.814
OMe	gs	2.510	1.461	2.445	+0.107	+0.656	-0.187	-	-
	ts	2.617	2.117	2.258				1.407	0.829
NMe_{2}	gs	2.508	1.490	2.587	+0.118	+0.814	-0.175	-	-
	ts	2.626	2.304	2.412				1.314	0.877

Reaction of $[\mathrm{Ce}]\left(\eta^{2}-\mathbf{C H}_{2} \mathbf{O M e}\right)$ with $\mathbf{B P h}_{3}$

The free energy profile for the reaction of $[\mathrm{Ce}]\left(\eta^{2}-\mathrm{CH}_{2} \mathrm{OMe}\right)$ with BPh_{3} is shown in Figure 8; the structure of the intermediate and the transition state are shown in the Supporting Information. The reaction begins by coordination of BPh_{3} to the methylene group of $[\mathrm{Ce}]\left(\eta^{2}-\mathrm{CH}_{2} \mathrm{OMe}\right)$ yielding a complex where the methylene group is bonded to boron not cerium. Thus, BPh_{3} successfully competes with [Ce] for
the density at the carbenoid carbon. However, this complex has a free energy of 15.7 kcal mol ${ }^{-1}$ higher than the separated species $[\mathrm{Ce}]\left(\eta^{2}-\mathrm{CH}_{2} \mathrm{OMe}\right)$ and BPh_{3} and the difference is mostly due to loss in translational entropy since the energy, E , of the adduct between $[\mathrm{Ce}]\left(\eta^{2}-\mathrm{CH}_{2} \mathrm{OMe}\right)$ and BPh_{3} is equal to that of the separated species. From this adduct, [Ce]OMe and $\mathrm{Ph}_{2} \mathrm{BCH}_{2} \mathrm{Ph}$ are formed in a concerted step with an activation barrier of $29 \mathrm{kcal} \mathrm{mol}^{-1}$ relative to separated reactants [Ce] $\mathrm{H}, \mathrm{CH}_{3} \mathrm{OMe}$ and BPh_{3}. This activation barrier is lower than that of $39 \mathrm{kcal} \mathrm{mol}^{-1}$ for the insertion of the methylene group into H_{2} showing that BPh_{3} is a more efficient trap of the methylene group than is H_{2}, a result that is supported by experiment. At the transition state, the C-O bond length of $2.07 \AA$ shows that the bond is essentially cleaved. The ylide $\mathrm{Ph}_{3} \mathrm{~B}^{(+)} \mathrm{CH}_{2}^{(-)}$is not an intermediate; the geometry of the transition state shows that one phenyl group is bending over the $\mathrm{B}-\mathrm{CH}_{2}$ bond with a $\mathrm{C}-\mathrm{B}-\mathrm{C}($ phenyl $)$ angle of 79° for one of the phenyl group and 115° for the two other angles. Insertion of the CH_{2} group into the $\mathrm{B}-\mathrm{C}$ bond is therefore concerted with the $\mathrm{C}-\mathrm{O}$ bond cleavage. The net reaction for $[\mathrm{Ce}]\left(\eta^{2}-\mathrm{CH}_{2} \mathrm{OMe}\right)$ and BPh_{3} forming [Ce]OMe and $\mathrm{Ph}_{2} \mathrm{BCH}_{2} \mathrm{Ph}$ is exoergic by $41 \mathrm{kcal} \mathrm{mol}^{-1}$.

Figure 8. The free energy profile, in kcal mol ${ }^{-1}$, for the reaction of $[\mathrm{Ce}] \mathrm{H}, \mathrm{CH}_{3} \mathrm{OMe}$, and BPh_{3}. The free energy profile for the reaction of $[\mathrm{Ce}] \mathrm{H}$ and $\mathrm{CH}_{3} \mathrm{OMe}$, Figure 5, is added for comparison.

Discussion

The reactions between $\mathrm{Cp}_{2}{ }_{2} \mathrm{CeH}$ and $\mathrm{CH}_{3} \mathrm{X}$ compounds fall into three distinct classes, depending on the identity of X . When X is a halide, $\mathrm{F}, \mathrm{Cl}, \mathrm{Br}$ or I , class a, the net reaction is a simple H for X exchange that proceeds rapidly without any intermediates detected by ${ }^{1} \mathrm{H}$ NMR spectroscopy. Class b is when X is OMe , as the reaction with $\mathrm{Cp}^{\prime}{ }_{2} \mathrm{CeH}$ gives the H for $\mathrm{CH}_{2} \mathrm{OMe}$ exchange product, $\mathrm{Cp}{ }_{2} \mathrm{Ce}\left(\eta^{2}-\right.$
$\mathrm{CH}_{2} \mathrm{OMe}$), as an isolable compound and H_{2}. The ${ }^{1} \mathrm{H}$ NMR chemical shifts of the $\mathrm{Me}_{3} \mathrm{C}$-groups at $20^{\circ} \mathrm{C}$ have similar values as those observed in the reaction between the metallacycle, $\mathbf{1}$, with $\mathrm{CH}_{3} \mathrm{X}, \mathrm{X}=\mathrm{Cl}, \mathrm{Br}$, and I , consistent with the postulate that all of these reactions proceed through a common intermediate Q_{x}, eq 2 and 3. Since the reaction with metallacycle, $\mathbf{1}$, does not generate H_{2}, the intermediates Q_{x} are detected, which implies that the barrier for conversion of Q_{X} to $\mathrm{Cp}_{2}{ }_{2} \mathrm{CeX}$ and CH_{4} in presence of H_{2}, is lower when X is $\mathrm{Cl}, \mathrm{Br}, \mathrm{I}$ than when X is OMe . Class c is the reaction with $\mathrm{CH}_{3} \mathrm{NMe}_{2}$. No net reaction is observed but deuterium labeling experiments show that H for D exchange occurs in trimethylamine, implying that intermediate $\mathrm{Q}_{\text {NMe2 }}$ forms and that $\mathrm{Cp}^{\prime}{ }_{2} \mathrm{CeH}$ and $\mathrm{Q}_{\mathrm{NMe} 2}$ are in equilibrium. This implies that the H for D exchange proceeds with a low barrier but that the conversion of $\mathrm{Q}_{\mathrm{NMe} 2}$ to $\mathrm{Cp}^{\prime}{ }_{2} \mathrm{CeNMe}_{2}$ has an impossibly high barrier. The reactions between $\mathrm{Cp}^{\prime}{ }_{2} \mathrm{CeH}$ and $\mathrm{CH}_{3} \mathrm{X}$ proceed by a low barrier intermolecular $\alpha-\mathrm{CH}$ activation followed by ejection of the CH_{2} fragment and capture by H_{2}, a higher barrier process whose value is strongly correlated with the identity of X . The latter barriers define the classes a, b or c .

The net reaction of $\mathrm{Cp}_{2}{ }_{2} \mathrm{CeH}$ and $\mathrm{CH}_{3} \mathrm{X}$, eq 1, is thermodynamically favorable since the experimentally determined or estimated changes in the enthalpy are exothermic for the reaction shown in eq 7. ${ }^{32}$
$\left(\mathrm{C}_{5} \mathrm{Me}_{5}\right)_{2} \mathrm{SmH}+\mathrm{MeX} \rightarrow\left(\mathrm{C}_{5} \mathrm{Me}_{5}\right)_{2} \mathrm{SmX}+\mathrm{MeH} \quad$ (7)
$\Delta \mathrm{H}\left(\mathrm{kcal} \mathrm{mol}{ }^{-1}\right): \mathrm{X}=\mathrm{Cl},-66 ; \mathrm{Br},-65 ; \mathrm{I},-64 ; \mathrm{OMe},-48 ; \mathrm{NMe}_{2},-22$.

Although the experimental values are only available for the samarium metallocenes, the trends in $\Delta \mathrm{H}$ should be similar when the metal is a lanthanide in general, and when the metal is cerium in the present article. As shown in the experimental and calculational results described in this article, even though the net reaction is
thermodynamically favorable for all X , the reactions are under kinetic control. The calculated potential energy surfaces for the gas phase reaction between $\mathrm{Cp}_{2} \mathrm{CeH}$ and MeX parallel and therefore illuminate the experimental reactions between $\mathrm{Cp}_{2}{ }_{2} \mathrm{CeH}$ and MeX . The calculated free energy profiles show that the net reaction is exoergic, in agreement with experiments, and that a σ-bond metathesis transition state has a higher activation barrier.

A mechanism that is calculated to proceed by a lower energy pathway for $\mathrm{X}=$ a halide, is a two-step process in which the first step is a α - CH activation that forms Q_{X} and H_{2}, followed by trapping of CH_{2} by H_{2}, that proceeds with a higher activation barrier, its height defining the classification as either a, b, or c . Since the rate controlling elementary step is the conversion of Q_{X} into the products, the structure and bonding in Q_{x} is of paramount importance. Accordingly, the structure is calculated for all of the X's studied and calibrated with the experimental geometry observed in $\mathrm{Cp}^{\prime}{ }_{2} \mathrm{Ce}\left(\eta^{2}-\mathrm{CH}_{2} \mathrm{OMe}\right)$. In general $\mathrm{Q}_{\mathrm{x}}, \mathrm{Cp}^{\prime}{ }_{2} \mathrm{Ce}\left(\eta^{2}-\mathrm{CH}_{2} \mathrm{OMe}\right)$, is a three-membered ring in which the carbon atom is sp^{2}-hybridized and therefore the CH_{2} fragment is a carbenoid. The bonding between the carbene and $\mathrm{M} \cdots \mathrm{X}$, when M is electropositive and X is electronegative, is maximized when the σ-lone pair of the carbene interacts with M and the empty 2 p orbital of the carbene interacts with X; this is the basis of Bent's rule. ${ }^{33}$ At the transition state, the $\mathrm{C}-\mathrm{X}$ bond lengthens as the $\mathrm{Ce}-\mathrm{X}$ bond forms. The orientation of the CH_{2} group is such that the carbon p-orbital points toward dihydrogen. The activation barrier for trapping of CH_{2} by H_{2} parallels the free energy of reaction. When X is a halide, the change in the $\mathrm{C}-\mathrm{X}$ bond distance going from $[\mathrm{Ce}]\left[\eta^{2}-\mathrm{CH}_{2} \mathrm{X}\right)$ to the transition state is similar for all halides but larger when X is OMe and NMe_{2}. In addition, the $\mathrm{H} \cdots \mathrm{H}$ distance in the transition state is longer when X is OMe and NMe_{2}. Thus, the transition state for trapping of CH_{2} by H_{2} is higher in
energy when X is OMe and NMe_{2}, which in turn implies that the CH_{2} fragment in $[\mathrm{Ce}]\left[\eta^{2}-\mathrm{CH}_{2} \mathrm{X}\right)$ is closer to a free carbene when X is a halide.

Conclusion

At first glance, the reactions illustrated in eq 1 are simple H for X metathesis reactions. The reactions, however, are deceptively simple since the mechanism deduced by DFT calculations and trapping experiments is not a one-step, synchronous σ-bond metathesis, but a two-step process in which a relatively rapid α - CH activation results in formation of H_{2} and $\mathrm{Cp}_{2} \mathrm{Ce}\left(\eta^{2}-\mathrm{CH}_{2} \mathrm{X}\right)$, in which the CH_{2} fragment is a carbenoid. The reactivity patterns are therefore correlated with how closely the carbenoid fragment resembles a free carbene fragment, on one hand, and a methyl group on the other: the closer the resemblance to CH_{2}, the lower the barrier. The calculational and experimental studies outlined in this and an earlier article ${ }^{1}$ show that the mechanisms of the H for X exchange reaction between $\mathrm{Cp}_{2}{ }_{2} \mathrm{CeH}$ and $\mathrm{CH}_{3} \mathrm{X}$ is a two-step pathway, and this is a general reactivity pattern. The reactants, $\mathrm{CH}_{3} \mathrm{X}$, studied in these articles have only $\alpha-\mathrm{CH}$ bonds and therefore the question of selectivity does not arise. It will be of interest to examine $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{X}$ reactants in which the choice between α - and β-CH activation processes are available; this selectivity issue will be addressed in another article.

Experimental Section

General

All manipulations were performed under an inert atmosphere using standard Schlenk and dry box techniques. All solvents were dried and distilled from sodium or
sodium benzophenoneketyl. Anhydrous methylchloride, methylbromide, dimethylether, and trimethylamine were used without further purification. Methyliodide was obtained commercially and purified by distillation onto activated 4 \AA molecular sieves. Triphenylboron was obtained commercially and purified by sublimation under dynamic vacuum. NMR spectra were recorded on Bruker AV-300 or AV-400 spectrometers at $20^{\circ} \mathrm{C}$ in the solvent specified. J-Young NMR tubes were used for all NMR tube experiments. Electron impact mass spectrometry and elemental analyses were performed by the microanalytical facility at the University of California, Berkeley. The abbreviation Cp ' is used for the 1,2,4-tri-tertbutylcyclopentadienyl ligand. Unless otherwise specified, samples for GC-MS were prepared by adding a drop of nitrogen-purged $\mathrm{H}_{2} \mathrm{O}$, agitating, and allowing the samples to stand closed for 10 min . The samples were then dried over magnesium sulfate, filtered, and diluted ten-fold with pentane. A $1 \mu \mathrm{~L}$ sample was injected into a HP6890 GC system with a J\&W DB-XLB universal non-polar column, attached to an HP5973 Mass Selective Detector. For samples hydrolyzed with basic hydrogen peroxide, a 3 N aqueous NaOH solution was sparged for 10 minutes with nitrogen, and a drop was added to the sample under nitrogen flush. The sample was closed, agitated, and allowed to stand for 10 minutes, after which time a drop of 30% aqueous $\mathrm{H}_{2} \mathrm{O}_{2}$ was added, the sample was closed briefly, agitated, then opened and allowed to stand for five minutes. The organic and aqueous layers were separated, and the aqueous layer was extracted twice with diethylether. The combined organic layers were then analyzed by GC MS as before.
$\mathbf{C p}{ }_{2} \mathbf{C e C H}_{2} \mathbf{O M e}: \mathrm{Cp}_{2}{ }_{2} \mathrm{CeH}^{5}(0.5 \mathrm{~g}, 0.82 \mathrm{mmol})$ was dissolved in pentane $(10 \mathrm{~mL})$. The headspace was evacuated and replaced with dimethylether (1 atm). The solution color changed from purple to red as it was stirred over the course of one hour. The
volume of the solution was reduced to 5 mL under reduced pressure, and the solution was cooled to $-15^{\circ} \mathrm{C}$, yielding red crystals. Yield, $0.20 \mathrm{~g}(0.31 \mathrm{mmol}, 37 \%)$. MP 210$213^{\circ} \mathrm{C}$ (sample turned deep purple at $135^{\circ} \mathrm{C}$, melted at $210-213^{\circ} \mathrm{C}$). ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{C}_{6} \mathrm{D}_{6}\right.$, $300 \mathrm{MHz}): \delta 35.38\left(4 \mathrm{H}, \mathrm{v}_{1 / 2}=260 \mathrm{~Hz}\right), 26.10\left(3 \mathrm{H}, \mathrm{v}_{1 / 2}=140 \mathrm{~Hz}\right),-1.11\left(36 \mathrm{H}, v_{1 / 2}=\right.$ $730 \mathrm{~Hz}),-10.90\left(18 \mathrm{H}, v_{1 / 2}=15 \mathrm{~Hz}\right)$; the CH_{2} resonance in the $\mathrm{CH}_{2} \mathrm{OMe}$ ligand was not observed. MS: no $(\mathrm{M})^{+}$was observed but $\left(\mathrm{M}-\mathrm{CH}_{2} \mathrm{OMe}\right)^{+}$was found m / z (calc, found) $605(100,100) 606(39,52) 607(17,22) 608(6,10)$. Anal. Calcd. for $\mathrm{C}_{36} \mathrm{H}_{63} \mathrm{CeO}: \mathrm{C}, 66.32 ; \mathrm{H}, 9.74$. Found C, $66.41 ; \mathrm{H}, 10.03$. Full crystallographic details are included as Supporting Information. Triclinic cell space group P1(bar): a = $10.4888(5) \AA, b=10.9920(5) \AA, c=15.9639(7) \AA, \alpha=99.137(1)^{\circ}, \beta=104.458(1)^{\circ}$, $\gamma=95.703(1)^{\circ}, \mathrm{V}=1740.9(1) \AA^{3}$.
 $\mathrm{Me}_{3} \mathrm{SiBr}(120 \mu \mathrm{~L}, 0.91 \mathrm{mmol})$ was added via syringe. The solution was stirred for one day, then taken to dryness under reduced pressure. The yellow solid was dissolved in pentane and filtered. The yellow solution was concentrated until precipitation occurred, warmed to dissolve the precipitate, then cooled to $-15^{\circ} \mathrm{C}$, yielding a yellow powder. Yield, $0.095 \mathrm{~g}(0.13 \mathrm{mmol}, 42 \%)$. MP $266-270^{\circ} \mathrm{C}$. ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{C}_{6} \mathrm{D}_{6}\right.$, $300 \mathrm{MHz}): \delta-2.46\left(36 \mathrm{H}, v_{1 / 2}=550 \mathrm{~Hz}\right),-14.03\left(18 \mathrm{H}, v_{1 / 2}=170 \mathrm{~Hz}\right) . \mathrm{MS}(\mathrm{M})^{+} m / z$ (calc, found) $685(86,85) 686(32,30) 687(100,100) 688(36,31) 689(17,13)$. Anal. Calcd. for $\mathrm{C}_{34} \mathrm{H}_{58} \mathrm{CeBr}$: C, 59.46; H, 8.51. Found C, 59.61; H, 8.36.

Cp’ ${ }_{2} \mathbf{C e I}: \mathrm{CeI}_{3} \cdot 3 \mathrm{THF}^{34}(18.1 \mathrm{~g}, 25.0 \mathrm{mmol})$ and $\mathrm{Cp}_{2}{ }_{2} \mathrm{Mg}^{35}(12.0 \mathrm{~g}, 24.0 \mathrm{mmol})$ were stirred at reflux in a mixture of pyridine $(10 \mathrm{~mL})$ and toluene $(100 \mathrm{~mL})$ for 24 hours. The orange-brown suspension was taken to dryness under reduced pressure. The solid residue was loaded into an extraction thimble (dried at $120^{\circ} \mathrm{C}$ for three days) and extracted with pentane (200 mL) in a Soxhlet extractor for three days. After

12 hours, an orange precipitate appeared in the solvent flask. The extraction was stopped and the flask containing the precipitat was cooled to $-15^{\circ} \mathrm{C}$, yielding dirty orange powder. The suspension was filtered, and the flask containing the mother liquor was reattached to the extraction apparatus. The extraction was continued until the solution around the extraction thimble was colorless. Recrystallization of the combined orange powder from toluene $(100 \mathrm{~mL})$ yielded small, opaque, bright orange crystals. Yield, $10.2 \mathrm{~g}(14 \mathrm{mmol}, 56 \%)$. MP $309-311^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{C}_{6} \mathrm{D}_{6}, 300 \mathrm{MHz}\right): \delta$ $3.20\left(18 \mathrm{H}, v_{1 / 2}=430 \mathrm{~Hz}\right),-8.03\left(18 \mathrm{H}, v_{1 / 2}=430 \mathrm{~Hz}\right),-15.14\left(18 \mathrm{H}, v_{1 / 2}=220 \mathrm{~Hz}\right)$. MS $(\mathrm{M})^{+} \mathrm{m} / \mathrm{z}$ (calc, found) $733(100,100) 734(37,37) 735(19,19) 736(6,5)$. Anal. Calcd. for $\mathrm{C}_{34} \mathrm{H}_{58}$ CeI: C, 55.65; H, 7.96. Found C, 55.76; H, 8.17.
$\mathbf{C p}{ }_{2} \mathbf{C e H B P h}_{3}: \mathrm{Cp}_{2}{ }_{2} \mathrm{CeH}^{5}(0.5 \mathrm{~g}, 0.72 \mathrm{mmol})$ and $\mathrm{BPh}_{3}(0.2 \mathrm{~g}, 0.82 \mathrm{mmol})$ were dissolved in toluene (10 mL). The clear yellow solution was allowed to stand at $19^{\circ} \mathrm{C}$ overnight, resulting in yellow crystals. The ${ }^{1} \mathrm{H}$ NMR spectrum of the crystals in $\mathrm{C}_{6} \mathrm{D}_{6}$ indicated the presence of toluene of crystallization. Yield, $0.50 \mathrm{~g}(0.53 \mathrm{mmol}, 74 \%)$. MP 202-205 ${ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{C}_{7} \mathrm{D}_{8}, 300 \mathrm{MHz}\right): \delta 5.35\left(18 \mathrm{H}, v_{1 / 2}=100 \mathrm{~Hz}\right), 4.99\left(3 \mathrm{H}, v_{1 / 2}\right.$ $=25 \mathrm{~Hz}), 4.08\left(6 \mathrm{H}, v_{1 / 2}=30 \mathrm{~Hz}\right),-2.42\left(6 \mathrm{H}, v_{1 / 2}=100 \mathrm{~Hz}\right),-6.68\left(18 \mathrm{H}, v_{1 / 2}=70 \mathrm{~Hz}\right)$, $-14.514\left(18 \mathrm{H}, v_{1 / 2}=200 \mathrm{~Hz}\right)$. Anal. Calcd. for $\mathrm{C}_{59} \mathrm{H}_{82} \mathrm{BCe}: \mathrm{C}, 75.21 ; \mathrm{H}, 8.77$. Found C, 74.88; H, 8.67. Full crystallographic details are included as Supporting Information. Monoclinic cell space group $\mathrm{P} 2_{1} / \mathrm{n}: \mathrm{a}=10.6158(5) \AA, \mathrm{b}=22.808(1) \AA, \mathrm{c}$ $=20.588(1) \AA, \beta=100.579(1)^{\circ}, \mathrm{V}=4900.3(4) \AA^{3}$. The crystal used for structural determination was grown in a $\mathrm{C}_{6} \mathrm{D}_{12}$ solution in an NMR tube, and the asymmetric unit contained half a molecule of $\mathrm{C}_{6} \mathrm{D}_{12}$.

NMR tube reaction of $\mathrm{CH}_{3} \mathrm{Br}$ or $\mathrm{CH}_{3} \mathrm{I}$ and $\mathrm{Cp}_{2}{ }_{2} \mathrm{CeH}$ in cyclohexane- d_{12}.

$\mathrm{Cp}^{\prime}{ }_{2} \mathrm{CeH}$ was dissolved in cyclohexane $-\mathrm{d}_{12}$ in an NMR tube. The tube was cooled in a liquid nitrogen isopropanol bath, and the head space was evacuated. In the case of
$\mathrm{CH}_{3} \mathrm{Br}, 1 \mathrm{~atm}$ of the gas was added, while in the case of $\mathrm{CH}_{3} \mathrm{I}$, an excess of the liquid was added via vacuum transfer followed by N_{2} (1 atm). In both cases, upon warming to $19^{\circ} \mathrm{C}$, the solution immediately turned yellow and a yellow precipitate formed. The ${ }^{1} \mathrm{H}$ NMR spectra contained only resonances due to CH_{4} and either $\mathrm{Cp}{ }_{2} \mathrm{CeBr}$ or Cp' ${ }_{2} \mathrm{CeI}$.

NMR tube reaction of dimethylether and $\mathbf{C p}{ }_{2}{ }_{2} \mathrm{CeH}$ in cyclohexane- d_{12}.

$\mathrm{Cp}{ }_{2}{ }_{2} \mathrm{CeH}$ was dissolved in cyclohexane- d_{12} in an NMR tube. The tube was cooled in a liquid nitrogen isopropanol bath, the head space was evacuated and replaced with dimethylether (1 atm). The tube was warmed to $19^{\circ} \mathrm{C}$, and the purple solution rapidly turned red. After 15 minutes, resonances due to $\mathrm{Cp}{ }_{2} \mathrm{CeH}$ had disappeared from the ${ }^{1} \mathrm{H}$ NMR spectrum. Resonances due to $\mathrm{Cp}_{2}{ }_{2} \mathrm{CeCH}_{2} \mathrm{OMe}$ and a new pair of paramagnetic resonances [${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{C}_{6} \mathrm{D}_{12}\right) \delta-2.38\left(36 \mathrm{H}, v_{1 / 2}=15 \mathrm{~Hz}\right),-4.43\left(18 \mathrm{H}, v_{1 / 2}=15 \mathrm{~Hz}\right)$] had appeared. The ratio of $\mathrm{Cp}_{2}{ }_{2} \mathrm{CeCH}_{2} \mathrm{OMe}$ and the unknown species, $\mathrm{Q}^{\prime}{ }_{\text {оме }}$, was approximately 1.3:1. After two days, resonances due to $\mathrm{Cp}^{\prime}{ }_{2} \mathrm{CeOMe}$ had appeared in the spectrum; the ratio of $\mathrm{Cp}^{\prime}{ }_{2} \mathrm{CeOMe}, \mathrm{Cp}_{2}{ }_{2} \mathrm{CeCH}_{2} \mathrm{OMe}$, and Q ' ${ }_{\text {оме }}$ was approximately 1:40:48. The sample was heated at $60^{\circ} \mathrm{C}$. After one day, the ratio of the three species was 1:6:5, after 12 days 2.5:2:1, and after 27 days 7:3:1.

NMR tube reaction of trimethylamine and $\mathbf{C p}_{2}{ }_{2} \mathbf{C e H}$ in cyclohexane- d_{12}.

$\mathrm{Cp}^{\prime}{ }_{2} \mathrm{CeH}$ was dissolved in cyclohexane- d_{12}, the sample was cooled in a liquid nitrogen isopropanol bath, the head space was evacuated, and replaced with anhydrous trimethylamine (1 atm). The tube was warmed to $19^{\circ} \mathrm{C}$ and allowed to stand. After 2 days, the ${ }^{1} \mathrm{H}$ NMR spectrum contained only paramagnetic resonances due to $\mathrm{Cp}_{2} \mathrm{CeH}$. The sample was heated at $60^{\circ} \mathrm{C}$ for 19 days, after which time the ${ }^{1} \mathrm{H}$ NMR spectrum was unchanged.

NMR tube reaction of $\mathrm{CH}_{3} \mathrm{Cl}, \mathrm{CH}_{3} \mathrm{Br}$, or $\mathrm{CH}_{3} \mathrm{I}$ and Cp' $\left[\left(\mathrm{Me}_{3} \mathrm{C}\right)_{2} \mathrm{C}_{5} \mathrm{H}_{2} \mathrm{C}\left(\mathrm{Me}_{2}\right) \mathrm{CH}_{2}\right] \mathrm{Ce}$ in cyclohexane- d_{12}.
$\mathrm{Cp}_{2} \mathrm{Ce}^{\prime}\left(\mathrm{CH}_{2} \mathrm{C}_{6} \mathrm{H}_{5}\right)$ was dissolved in cyclohexane- d_{12} and heated at $60^{\circ} \mathrm{C}$ for 12 hours, yielding a solution of $\mathrm{Cp}{ }^{\prime}\left[\left(\mathrm{Me}_{3} \mathrm{C}\right)_{2} \mathrm{C}_{5} \mathrm{H}_{2} \mathrm{C}\left(\mathrm{Me}_{2}\right) \mathrm{CH}_{2}\right] \mathrm{Ce}$. The tube was cooled in a liquid nitrogen isopropanol bath, the head space was evacuated, and replaced with $\mathrm{CH}_{3} \mathrm{Cl}(1 \mathrm{~atm}), \mathrm{CH}_{3} \mathrm{Br}(1 \mathrm{~atm})$, or an excess of $\mathrm{CH}_{3} \mathrm{I}$ via vacuum transfer followed by N_{2} (1 atm). The tube was warmed to $19^{\circ} \mathrm{C}$ and allowed to stand.

In the case of $\mathrm{CH}_{3} \mathrm{Cl}$, after 10 min , the purple solution had turned red. Resonances due to the starting material had disappeared from the ${ }^{1} \mathrm{H}$ NMR spectrum, and a pair of resonances due to $\mathrm{Cp}^{\prime}{ }_{2} \mathrm{CeCl}^{4 \mathrm{a}}$ and two new paramagnetic resonances in a 2:1 ratio, Q_{C}, had appeared, ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{C}_{6} \mathrm{D}_{12}\right)-1.36\left(\mathrm{v}_{1 / 2}=25 \mathrm{~Hz}\right),-8.54\left(v_{1 / 2}=10 \mathrm{~Hz}\right)$. The ratio of Q_{Cl} to $\mathrm{Cp}^{\prime}{ }_{2} \mathrm{CeCl}$ was $4: 1$. After 1 hour, the ratio was $1: 2$, and after 2 hours, the solution was orange and the ratio was 1:5. After 3 days, the solution had turned yellow, yellow crystals had formed, and only resonances due to $\mathrm{Cp}^{\prime}{ }_{2} \mathrm{CeCl}$ remained in the spectrum.

In the case of $\mathrm{CH}_{3} \mathrm{Br}$, after 10 min , the purple solution had turned deep orangebrown, and two new paramagnetic resonances in a $2: 1$ ratio, Q_{Br}, had appeared in the ${ }^{1} \mathrm{H}$ NMR spectrum. After 30 minutes, only the new resonances remained in the spectrum, ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{C}_{6} \mathrm{D}_{12}\right)-1.36\left(v_{1 / 2}=15 \mathrm{~Hz}\right),-8.16\left(v_{1 / 2}=10 \mathrm{~Hz}\right)$. After 7 hours, resonances due to $\mathrm{Cp}^{\prime}{ }_{2} \mathrm{CeBr}$ had appeared in the spectrum; the ratio of Q_{Br} to $\mathrm{Cp}^{\prime}{ }_{2} \mathrm{CeBr}$ was $1: 2$, after 3 days, yellow crystals had formed, and only resonances due to $\mathrm{Cp}_{2}{ }_{2} \mathrm{CeBr}$ remained.

In the case of $\mathrm{CH}_{3} \mathrm{I}$, after 15 min , the purple solution had turned redder, and two new paramagnetic resonances in a 2:1 ratio, Q_{I}, had appeared in the ${ }^{1} \mathrm{H}$ NMR spectrum. After 40 minutes, the solution was red-orange, and only the new resonances remained in the spectrum. ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{C}_{6} \mathrm{D}_{12}\right) \delta-1.29\left(v_{1 / 2}=260 \mathrm{~Hz}\right),-7.82$ $\left(v_{1 / 2}=10 \mathrm{~Hz}\right)$. After 3 hours, resonances due to $\mathrm{Cp}{ }_{2} \mathrm{CeI}$ had appeared; the ratio of the Q_{I} to $\mathrm{Cp}^{\prime}{ }_{2} \mathrm{CeI}$ was 6:1, after five days, only resonances due to $\mathrm{Cp}{ }_{2} \mathrm{CeI}$ remained.

In all cases, GCMS analysis of the hydrolyzate showed one principle component in addition to Cp 'H, with $(\mathrm{M})^{+} m / z 248(\mathrm{Cp} " \mathrm{H})$. Resonances due to $\mathrm{Cp} " \mathrm{Cp}{ }^{\prime} \mathrm{CeCl}$, Cp" ${ }^{\prime}$ ' CeBr , and Cp " Cp 'CeI could not be unequivocally assigned; presumably the line widths are broad and the chemical shift differences relative to the resonances of $\mathrm{Cp}^{\prime}{ }_{2} \mathrm{CeCl}, \mathrm{Cp}^{\prime}{ }_{2} \mathrm{CeBr}$, and $\mathrm{Cp}^{\prime}{ }_{2} \mathrm{CeI}$ are small, unlike in the case of $\mathrm{Cp}{ }^{\prime} \mathrm{Cp}{ }^{\prime} \mathrm{CeF}$ where the line widths are narrow. ${ }^{4 a}$ The hydrolysis experiments provided unequivocal evidence for the presence of $\mathrm{Cp}{ }^{\prime} \mathrm{H}$.

NMR tube reaction of dimethylether and $\mathbf{C p}{ }^{\prime}\left[\left(\mathrm{Me}_{3} \mathrm{C}_{2} \mathrm{C}_{5} \mathrm{H}_{2} \mathrm{C}\left(\mathrm{Me}_{2}\right) \mathrm{CH}_{2}\right] \mathrm{Ce}\right.$ in cyclohexane- d_{12}.

$\mathrm{Cp}{ }_{2} \mathrm{Ce}\left(\mathrm{CH}_{2} \mathrm{C}_{6} \mathrm{H}_{5}\right)$ was dissolved in cyclohexane- d_{12} and heated at $60^{\circ} \mathrm{C}$ for 12 hours, yielding a solution of $\mathrm{Cp}{ }^{\prime}\left[\left(\mathrm{Me}_{3} \mathrm{C}\right)_{2} \mathrm{C}_{5} \mathrm{H}_{2} \mathrm{C}\left(\mathrm{Me}_{2}\right) \mathrm{CH}_{2}\right] \mathrm{Ce}$. The tube was cooled in a liquid nitrogen isopropanol bath, the head space was evacuated, and replaced with dimethylether (1 atm). The tube was warmed to $19^{\circ} \mathrm{C}$, and the deep purple solution rapidly turned red. After 20 minutes, the only paramagnetic resonances in the ${ }^{1} \mathrm{H}$ NMR spectrum were those of $\mathrm{Cp}^{\prime} \mathrm{CeCH}_{2} \mathrm{OMe}$. The sample was taken to dryness, and the red solid was dissolved in cyclohexane- d_{12}. No new paramagnetic resonances appeared in the ${ }^{1} \mathrm{H}$ NMR spectrum. The sample was heated at $60^{\circ} \mathrm{C}$, and after one day, resonances due to Cp ' $\left[\left(\mathrm{Me}_{3} \mathrm{C}\right)_{2} \mathrm{C}_{5} \mathrm{H}_{2} \mathrm{C}\left(\mathrm{Me}_{2}\right) \mathrm{CH}_{2}\right] \mathrm{Ce}$ had appeared in the ${ }^{1} \mathrm{H}$ NMR
spectrum; the ratio of $\mathrm{Cp}^{\prime}{ }_{2} \mathrm{CeCH}_{2} \mathrm{OMe}$ to $\mathrm{Cp}{ }^{\prime}\left[\left(\mathrm{Me}_{3} \mathrm{C}\right)_{2} \mathrm{C}_{5} \mathrm{H}_{2} \mathrm{C}\left(\mathrm{Me}_{2}\right) \mathrm{CH}_{2}\right] \mathrm{Ce}$ was approximately 11:1. After three days, the ratio was unchanged. The tube was cooled in a liquid nitrogen isopropanol bath, the head space was evacuated, and the sample was warmed to $19^{\circ} \mathrm{C}$. This freeze-pump-thaw procedure was performed two more times, and the headspace was refilled with $\mathrm{N}_{2}(1 \mathrm{~atm})$. The sample was heated for three days at $60^{\circ} \mathrm{C}$. The ratio of $\mathrm{Cp}^{\prime}{ }_{2} \mathrm{CeCH}_{2} \mathrm{OMe}$ to $\mathrm{Cp}{ }^{\prime}\left[\left(\mathrm{Me}_{3} \mathrm{C}\right)_{2} \mathrm{C}_{5} \mathrm{H}_{2} \mathrm{C}\left(\mathrm{Me}_{2}\right) \mathrm{CH}_{2}\right] \mathrm{Ce}$ in the ${ }^{1} \mathrm{H}$ NMR spectrum remained approximately 11:1.

NMR tube reaction of trimethylamine and $\mathrm{Cp}^{\prime}\left[\left(\mathrm{Me}_{3} \mathrm{C}_{2} \mathrm{C}_{5} \mathrm{H}_{2} \mathrm{C}\left(\mathrm{Me}_{2}\right) \mathrm{CH}_{2}\right] \mathrm{Ce}\right.$ in cyclohexane- d_{12}.

$\mathrm{Cp}{ }_{2} \mathrm{Ce}\left(\mathrm{CH}_{2} \mathrm{C}_{6} \mathrm{H}_{5}\right)$ was dissolved in cyclohexane- d_{12} and heated at $60^{\circ} \mathrm{C}$ for 12 hours, yielding a solution of $\mathrm{Cp}{ }^{\prime}\left[\left(\mathrm{Me}_{3} \mathrm{C}\right)_{2} \mathrm{C}_{5} \mathrm{H}_{2} \mathrm{C}\left(\mathrm{Me}_{2}\right) \mathrm{CH}_{2}\right] \mathrm{Ce}$. The tube was cooled in a liquid nitrogen isopropanol bath, the head space was evacuated, and replaced with anhydrous trimethylamine (1 atm). The tube was warmed to $19^{\circ} \mathrm{C}$ and allowed to stand. After 1 hour, the ${ }^{1} \mathrm{H}$ NMR spectrum contained three new $\mathrm{Me}_{3} \mathrm{C}$ - resonances in a 1:1:1 ratio, ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{C}_{6} \mathrm{D}_{12}\right) 6.43\left(18 \mathrm{H}, \mathrm{v}_{1 / 2}=90 \mathrm{~Hz}\right),-2.47\left(18 \mathrm{H}, v_{1 / 2}=40 \mathrm{~Hz}\right),-$ $13.60\left(18 \mathrm{H}, v_{1 / 2}=40 \mathrm{~Hz}\right), \mathrm{Q}_{\text {ММе2 }}$; resonances due to the $\mathrm{CH}_{2} \mathrm{NMe}_{2}$ ligand were not observed. The ratio of the new species to $\mathrm{Cp}^{\prime}\left[\left(\mathrm{Me}_{3} \mathrm{C}\right)_{2} \mathrm{C}_{5} \mathrm{H}_{2} \mathrm{C}\left(\mathrm{Me}_{2}\right) \mathrm{CH}_{2}\right] \mathrm{Ce}$ was 1:1.3. After 3.5 hours, the ratio was $3: 1$, and after one day, it was $6: 1$. The sample was heated at $60^{\circ} \mathrm{C}$ for 2 days, and the ratio was $1.3: 1$; the ratios did not change upon heating the sample for an additional 15 days.

NMR tube reaction of dimethylether or trimethylamine and (Cp’-

 $\left.\mathrm{d}_{27}\right)\left\{\left[\mathrm{C}\left(\mathrm{CD}_{3}\right)_{3}\right]_{2} \mathrm{C}_{5} \mathrm{H}_{2}\left[\mathrm{C}\left(\mathrm{CD}_{3}\right)_{2} \mathrm{CD}_{2}\right]\right\} \mathrm{Ce}$ in cyclohexane- d_{12}.$\mathrm{Cp}^{\prime}{ }_{2} \mathrm{Ce}\left(\mathrm{CH}_{2} \mathrm{Ph}\right)$ was dissolved in $\mathrm{C}_{6} \mathrm{D}_{6}$ and heated at $60^{\circ} \mathrm{C}$ for 4 days to perdeuterate the ring t-butyl groups. The sample was taken to dryness and the solid residue was
redissolved in fresh $\mathrm{C}_{6} \mathrm{D}_{6}$. The sample was heated for an additional 7 days, then taken to dryness and the solid residue was redissolved in $\mathrm{C}_{6} \mathrm{D}_{12}$. The sample was heated at $60^{\circ} \mathrm{C}$ for 1 day, yielding a solution of $\left(\mathrm{Cp}^{\prime}-\mathrm{d}_{27}\right)\left\{\left[\mathrm{C}\left(\mathrm{CD}_{3}\right)_{3}\right]_{2} \mathrm{C}_{5} \mathrm{H}_{2}\left[\mathrm{C}\left(\mathrm{CD}_{3}\right)_{2} \mathrm{CD}_{2}\right]\right\} \mathrm{Ce}$. The tube was cooled in a liquid nitrogen isopropanol bath, the head space was evacuated, and replaced with dimethylether or trimethylamine (1 atm).

In the case of dimethylether, the tube was warmed to $19^{\circ} \mathrm{C}$, and the deep purple solution rapidly turned red. After 30 minutes, the only paramagnetic resonances in the ${ }^{1} \mathrm{H}$ NMR spectrum were those of the Cp '-ring $\mathrm{C}-\mathrm{H}$ and the OMe group of (Cp'$\mathrm{d}_{27} 7_{2} \mathrm{CeCH}_{2} \mathrm{OMe}$. The ${ }^{2} \mathrm{H}$ NMR spectrum contained resonances due to the Cp '-ring t butyl groups of $\left(\mathrm{Cp}^{\prime}-\mathrm{d}_{27}\right)_{2} \mathrm{CeCH}_{2} \mathrm{OMe}$. The ${ }^{13} \mathrm{C}$ NMR spectrum contained a single resonance corresponding to dimethylether. After two days, the spectra were unchanged. The sample was heated at $60^{\circ} \mathrm{C}$. After three days, a 1:1:1 pattern (3.16 $\mathrm{ppm}, J_{\mathrm{HD}}=1.2 \mathrm{~Hz}$) had appeared in the ${ }^{1} \mathrm{H}$ NMR spectrum just upfield of the signal for dimethylether (3.18 ppm). Resonances due to the Cp '-ring t-butyl groups of (Cp '-$\left.\mathrm{d}_{27-\mathrm{x}}\right)_{2} \mathrm{CeCH}_{2} \mathrm{OMe}$ had also appeared in the ${ }^{1} \mathrm{H}$ NMR spectrum; the ratio of the integrated intensities of the t-butyl resonances at -1.11 and -10.90 ppm was $1: 7$. The ratio of the corresponding peaks in the ${ }^{2} \mathrm{H}$ NMR spectrum was $3: 1$, and a broadened triplet ($3.20 \mathrm{ppm}, J_{\mathrm{HD}}=1.5 \mathrm{~Hz}$) corresponding to partially deuterated dimethylether had also appeared. The ratio of the resonance at -10.90 ppm to the dimethylether resonance was 1:1. In the ${ }^{13} \mathrm{C}$ NMR spectrum, a 1:1:1 pattern ($59.95 \mathrm{ppm}, J_{\mathrm{CD}}=21$ Hz) had appeared just upfield of the signal for dimethylether (60.25 ppm). After seven days, the ratio of the integrated intensities of the resonances at -1.11 and -10.90 ppm in the ${ }^{1} \mathrm{H}$ NMR and ${ }^{2} \mathrm{H}$ NMR spectra were virtually unchanged, but the ratio of the resonance at -10.90 ppm to the dimethylether resonance in the ${ }^{2} \mathrm{H}$ NMR spectrum was 1:4. After 18 days, the ratio of the resonances at -1.11 and -10.90 ppm was $1: 2.5$
in the ${ }^{1} \mathrm{H}$ NMR spectrum and $12: 1$ in the ${ }^{2} \mathrm{H}$ NMR spectrum, and the ratio of the resonance at -10.90 ppm to the dimethylether resonance in the ${ }^{2} \mathrm{H}$ NMR spectrum was 1:13. After 81 days, the ratio of the resonances at -1.11 and -10.90 ppm was $1: 1$ in the ${ }^{1} \mathrm{H}$ NMR spectrum and 2:1 in the ${ }^{2} \mathrm{H}$ NMR spectrum, and the ratio of the resonance at -10.90 ppm to the dimethylether resonance in the ${ }^{2} \mathrm{H}$ NMR spectrum was 1:14.

In the case of trimethylamine, the sample was heated at $60^{\circ} \mathrm{C}$. After one day, resonances due to partially protiated $\left(\mathrm{Cp}^{\prime}-\mathrm{d}_{27}\right)\left\{\left[\mathrm{C}\left(\mathrm{CD}_{3}\right)_{3}\right]_{2} \mathrm{C}_{5} \mathrm{H}_{2}\left[\mathrm{C}\left(\mathrm{CD}_{3}\right)_{2} \mathrm{CD}_{2}\right]\right\} \mathrm{Ce}$ and $\mathrm{Q}_{\mathrm{NMe2}}$ had appeared in both the ${ }^{1} \mathrm{H}$ and ${ }^{2} \mathrm{H}$ NMR spectra. In addition, a triplet (2.12 ppm, 2 Hz) corresponding to $\mathrm{NMe}_{3}-\mathrm{d}_{1}$ had appeared in the ${ }^{2} \mathrm{H}$ NMR spectrum. The sample was heated at $60^{\circ} \mathrm{C}$ for 33 days. The intensity of the paramagnetic resonances in the ${ }^{1} \mathrm{H}$ NMR spectrum had increased substantially, and the corresponding resonances in the ${ }^{2} \mathrm{H}$ NMR spectrum had diminished. A broad resonance presumably corresponding to partially deuterated trimethylamine $\left(2.08 \mathrm{ppm}, v_{1 / 2}=46 \mathrm{~Hz}\right) \mathrm{had}$ appeared just upfield of the resonance of trimethylamine (2.10 ppm). The signal was too broadened to discern HD coupling. The multiplet corresponding to partially deuterated trimethylamine in the ${ }^{2} \mathrm{H}$ NMR spectrum had increased in intensity and complexity. The ${ }^{13} \mathrm{C}$ NMR spectrum included a resonance for trimethylamine (46.90 ppm) and a 1:1:1 pattern slightly upfield corresponding to partially deuterated trimethylamine ($46.59 \mathrm{ppm}, J_{\mathrm{CD}}=20 \mathrm{~Hz}$).

NMR tube reaction of D_{2} and $\mathrm{Cp}_{2}{ }_{2} \mathrm{CeCH}_{2} \mathbf{O M e}$ in cyclohexane- d_{12}.

$\mathrm{Cp}_{2} \mathrm{CeCH}_{2} \mathrm{OMe}$ was dissolved in cyclohexane- d_{12} in an NMR tube. The tube was cooled in a liquid nitrogen isopropanol bath, the head space was evacuated, and replaced with $\mathrm{D}_{2}(1 \mathrm{~atm})$. The tube was warmed to $19^{\circ} \mathrm{C}$ and allowed to stand. After

15 minutes, resonances due to $\mathrm{Cp}^{\prime}{ }_{2} \mathrm{CeOMe}$ and $\mathrm{Cp}_{2}{ }_{2} \mathrm{CeD}$ had appeared in the ${ }^{1} \mathrm{H}$ NMR spectrum. The ${ }^{2} \mathrm{H}$ NMR spectrum contained resonances due to $\mathrm{CH}_{2} \mathrm{DOCH}_{3}$. The ratio of $\mathrm{Cp}^{\prime}{ }_{2} \mathrm{CeOMe}, \mathrm{Cp}^{\prime}{ }_{2} \mathrm{CeCH}_{2} \mathrm{OMe}$, and $\mathrm{Cp}{ }_{2} \mathrm{CeD}$ in the ${ }^{1} \mathrm{H}$ NMR spectrum was approximately 1:7:8. After two days, the ratio was approximately 1:1:7. After 9 days, resonances due to $\mathrm{Cp}_{2} \mathrm{CeCH}_{2} \mathrm{OMe}$ had disappeared from the spectrum, and the ratio of $\mathrm{Cp}^{\prime}{ }_{2} \mathrm{CeOMe}$ and $\mathrm{Cp}^{\prime}{ }_{2} \mathrm{CeD}$ was approximately $1: 5$. No resonances for methane were observed. The ${ }^{2} \mathrm{H}$ NMR spectrum contained resonances due to $\mathrm{CH}_{2} \mathrm{DOCH}_{3}$ and deuterium incorporation into the Cp '-ring t-butyl groups of $\mathrm{Cp}^{\prime}{ }_{2} \mathrm{CeD}$.

NMR tube reaction of $\mathrm{CH}_{3} \mathrm{Br}$ and $\mathrm{Cp}^{\prime}{ }_{2} \mathrm{CeCH}_{2} \mathbf{O M e}$ in benzene- d_{6}.

$\mathrm{Cp}{ }_{2} \mathrm{CeCH}_{2} \mathrm{OMe}$ was dissolved in benzene- d_{6} in an NMR tube. The tube was cooled in a liquid nitrogen isopropanol bath, the head space was evacuated, and replaced with $\mathrm{CH}_{3} \mathrm{Br}$ (1 atm). The red solution was warmed to $19^{\circ} \mathrm{C}$ and allowed to stand. After one day, resonances due to dimethylether, $\mathrm{Cp}^{\prime}{ }_{2} \mathrm{CeBr}, \mathrm{Cp}^{\prime}{ }_{2} \mathrm{CeOMe}$, and Q_{Br}, had appeared in the ${ }^{1} \mathrm{H}$ NMR spectrum; the ratio of $\mathrm{Cp}^{\prime}{ }_{2} \mathrm{CeCH}_{2} \mathrm{OMe}, \mathrm{Cp}{ }_{2} \mathrm{CeBr}, \mathrm{Cp}{ }_{2} \mathrm{CeOMe}$, and Q_{Br} was 8:8:1:2. After 4 days, the solution had turned yellow, and only resonances due to $\mathrm{Cp}^{\prime}{ }_{2} \mathrm{CeBr}$ and dimethylether remained in the spectrum.

NMR tube reaction of $\mathrm{CH}_{3} \mathrm{~F}$ and $\mathrm{Cp}_{2}{ }_{2} \mathrm{CeCH}_{2} \mathrm{OMe}$ in benzene-d ${ }_{6}$.

$\mathrm{Cp}{ }_{2} \mathrm{CeCH}_{2} \mathrm{OMe}$ was dissolved in benzene- d_{6} in an NMR tube. The tube was cooled in a liquid nitrogen isopropanol bath, the head space was evacuated, and replaced with $\mathrm{CH}_{3} \mathrm{~F}$ (1 atm). The red solution was warmed to $19^{\circ} \mathrm{C}$ and allowed to stand. After one day, resonances due to dimethylether and $\mathrm{Cp}^{\prime}{ }_{2} \mathrm{CeF}$ had appeared in the ${ }^{1} \mathrm{H}$ NMR spectrum; the ratio of $\mathrm{Cp}_{2}{ }_{2} \mathrm{CeCH}_{2} \mathrm{OMe}$ to $\mathrm{Cp}^{\prime}{ }_{2} \mathrm{CeF}$ was approximately $30: 1$. After 2 days, the ratio was $18: 1$. The sample was warmed to $60^{\circ} \mathrm{C}$, and after one day, the red solution had become more orange, and resonances due to $\mathrm{Cp}^{\prime}{ }_{2} \mathrm{CeOMe}$ had appeared;
the ratio of $\mathrm{Cp}_{2} \mathrm{CeCH}_{2} \mathrm{OMe}, \mathrm{Cp}^{\prime}{ }_{2} \mathrm{CeF}$, and $\mathrm{Cp}_{2}{ }_{2} \mathrm{CeOMe}$ was approximately 6.5:2.5:1. After five days, the ratio was 1:4:2, after nine days, only resonances due to $\mathrm{Cp}^{\prime}{ }_{2} \mathrm{CeF}$, and $\mathrm{Cp}_{2}{ }_{2} \mathrm{CeOMe}$ remained in a 1.5:1 ratio.

NMR tube reaction of BPh_{3} and $\mathrm{Cp}_{2}{ }_{2} \mathrm{CeCH}_{2} \mathbf{O M e}$ in benzene- d_{6}.

$\mathrm{Cp}_{2} \mathrm{CeCH}_{2} \mathrm{OMe}$ was dissolved in $\mathrm{C}_{6} \mathrm{D}_{6}$ in an NMR tube and less than an equimolar amount of BPh_{3} was added. After 10 minutes, the only paramagnetic resonances in the ${ }^{1} \mathrm{H}$ NMR spectrum were those due to $\mathrm{Cp}{ }_{2} \mathrm{CeOMe}$. Integration relative to the solvent residual proton peak indicated that the conversion of $\mathrm{Cp}^{\prime} \mathrm{CeCH}_{2} \mathrm{OMe}$ to $\mathrm{Cp}_{2} \mathrm{CeOMe}$ was quantitative. The sample was hydrolyzed with basic hydrogen peroxide, and GC MS analysis of the combined organic layers showed that the sample contained a fraction with $(\mathrm{M})^{+} \mathrm{m} / \mathrm{z} 108\left(\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{CH}_{2} \mathrm{OH}\right)$ and a smaller fraction with $(\mathrm{M})^{+} m / z 122\left(\mathrm{C}_{6} \mathrm{H}_{5}\left(\mathrm{CH}_{2}\right)_{2} \mathrm{OH}\right)$ in addition to $\mathrm{Cp}{ }^{\prime} \mathrm{H}$. No fraction corresponding to $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{OH}$ was observed.

NMR tube reaction of BPh_{3} and Q_{I} in benzene-d ${ }_{6}$.

$\mathrm{Cp}_{2}{ }_{2} \mathrm{Ce}\left(\mathrm{CH}_{2} \mathrm{C}_{6} \mathrm{H}_{5}\right)$ was dissolved in cyclohexane- d_{12} and heated at $60^{\circ} \mathrm{C}$ for 12 hours, yielding a solution of $\mathrm{Cp}{ }^{\prime}\left[\left(\mathrm{Me}_{3} \mathrm{C}\right)_{2} \mathrm{C}_{5} \mathrm{H}_{2} \mathrm{C}\left(\mathrm{Me}_{2}\right) \mathrm{CH}_{2}\right] \mathrm{Ce}$. The tube was cooled in a liquid nitrogen isopropanol bath, the head space was evacuated, and an excess of $\mathrm{CH}_{3} \mathrm{I}$ was added by vacuum transfer. The tube was warmed to $19^{\circ} \mathrm{C}$, the headspace was refilled with $\mathrm{N}_{2}(1 \mathrm{~atm})$, and the sample was allowed to stand. After 40 minutes, the solution was red-orange, and only resonances of Q_{I} remained in the spectrum. A less than an equimolar amount of BPh_{3} was added, the sample was agitated and allowed to stand. The resonances due to Q_{I} disappeared and those of $\mathrm{Cp}^{\prime}{ }_{2} \mathrm{CeI}$ appeared over the course of 1 hour. Integration relative to the solvent residual proton peak indicated that the conversion of Q_{I} to $\mathrm{Cp}^{\prime}{ }_{2} \mathrm{CeI}$ was quantitative. The sample was
hydrolyzed with basic hydrogen peroxide, and GC MS analysis showed that the sample contained a fraction with $(\mathrm{M})^{+} \mathrm{m} / \mathrm{z} 108\left(\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{CH}_{2} \mathrm{OH}\right)$ and a smaller fraction with $(\mathrm{M})^{+} m / z 122\left(\mathrm{C}_{6} \mathrm{H}_{5}\left(\mathrm{CH}_{2}\right)_{2} \mathrm{OH}\right)$ in addition to $\mathrm{Cp}{ }^{\prime} \mathrm{H}$. No fraction corresponding to $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{OH}$ was observed.

NMR tube reaction of $\mathrm{CH}_{3} \mathrm{~F}$ and $\mathrm{Cp}_{2} \mathbf{C e H B P h}_{3}$ in cyclohexane- \mathbf{d}_{12}.

$\mathrm{Cp}_{2} \mathrm{CeH}$ was dissolved in cyclohexane- d_{12}, and a slight excess of BPh_{3} was added. The purple solution immediately turned yellow, and the ${ }^{1} \mathrm{H}$ NMR spectrum contained only resonances due to $\mathrm{Cp}^{\prime}{ }_{2} \mathrm{CeHBPh}_{3}$. The tube was cooled in a liquid nitrogen isopropanol bath, the head space was evacuated, and replaced with $\mathrm{CH}_{3} \mathrm{~F}$ (1 atm). The sample was warmed to $19^{\circ} \mathrm{C}$, and the solution color became slightly more orange. After 10 minutes, the resonances due to free BPh_{3} had grown substantially in the ${ }^{1} \mathrm{H}$ NMR spectrum, and the only significant paramagnetic resonances were those of $\mathrm{Cp}_{2} \mathrm{CeF}$. Integration relative to the solvent residual proton peak indicated that the conversion of $\mathrm{Cp}^{\prime}{ }_{2} \mathrm{CeH}$ to $\mathrm{Cp}^{\prime}{ }_{2} \mathrm{CeF}$ was approximately 20%.

In a separate experiment, $\mathrm{Cp}^{\prime}{ }_{2} \mathrm{CeF}$ and an excess of BPh_{3} were dissolved in benzene- d_{6} in an NMR tube. The ${ }^{1} \mathrm{H}$ NMR spectrum contained only resonances due to the two individual components with no perturbation to their chemical shifts or line shapes. The orange solution was heated at $60^{\circ} \mathrm{C}$. After three days, the ${ }^{1} \mathrm{H}$ NMR spectrum had not changed.

NMR tube reaction of $\mathrm{CH}_{3} \mathrm{Br}$ and $\mathrm{Cp}_{2} \mathrm{CeHBPh}_{3}$ in cyclohexane- d_{12}.

$\mathrm{Cp}{ }_{2} \mathrm{CeH}$ was dissolved in cyclohexane- d_{12}, and a slight excess of BPh_{3} was added. The purple solution immediately turned yellow, and the ${ }^{1} \mathrm{H}$ NMR spectrum contained only resonances due to $\mathrm{Cp}^{\prime}{ }_{2} \mathrm{CeHBPh}_{3}$. The tube was cooled in a liquid nitrogen
isopropanol bath, the head space was evacuated, and replaced with $\mathrm{CH}_{3} \mathrm{Br}$ (1 atm). The sample was warmed to $19^{\circ} \mathrm{C}$, and the solution color became more orange. After 10 minutes, the resonances due to free BPh_{3} had grown substantially in the ${ }^{1} \mathrm{H}$ NMR spectrum, and the only significant paramagnetic resonances were those of $\mathrm{Cp}^{\prime}{ }_{2} \mathrm{CeBr}$. Integration relative to the solvent residual proton peak indicated that the conversion of $\mathrm{Cp}^{\prime}{ }_{2} \mathrm{CeH}$ to $\mathrm{Cp}^{\prime}{ }_{2} \mathrm{CeBr}$ was essentially quantitative. The sample was hydrolyzed with basic hydrogen peroxide, and GC MS analysis of the combined organic layers showed a fraction with $(\mathrm{M})^{+} \mathrm{m} / \mathrm{z} 94$ corresponding to $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{OH}$ in addition to $\mathrm{Cp}{ }^{\prime} \mathrm{H}$. No fractions with $(\mathrm{M})^{+} m / z 108\left(\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{CH}_{2} \mathrm{OH}\right)$ nor $(\mathrm{M})^{+} m / z 122\left(\mathrm{C}_{6} \mathrm{H}_{5}\left(\mathrm{CH}_{2}\right)_{2} \mathrm{OH}\right)$ were observed.

Computational details

The Stuttgart-Dresden-Bonn Relativistic large Effective Core Potential (RECP) ${ }^{36 a}$ was used to represent the inner shells of Ce . The associated basis set ${ }^{36 \mathrm{a}}$ augmented by an f polarization function $(\alpha=1.000)$ was used to represent the valence orbitals. ${ }^{36 \mathrm{~b}} \mathrm{~F}$ was also represented by an $\operatorname{RECP}^{37 a}$ with the associated basis set of the type $(4 \mathrm{~s} 5 \mathrm{p} / 2 \mathrm{~s} 3 \mathrm{p})^{37 \mathrm{a}}$ augmented by two contracted d polarisation gaussian functions $\left(\alpha_{1}=\right.$ $\left.3.3505(0.357851), \alpha_{2}=0.9924(0.795561)\right) .^{37 b}$ The atoms Cl, Br, and I were represented by an $\operatorname{RECP}^{37 c}$ with the associated basis set of the type $(4 \mathrm{~s} 5 \mathrm{p} / 2 \mathrm{~s} 3 \mathrm{p})^{37 \mathrm{c}}$ augmented by a single d polarization gaussian function with exponent of $0.643,0.550$ and 0.730 respectively. ${ }^{37 b}$ The atoms C, O, and H were represented by an all-electron 6-31G(d, p) basis set. ${ }^{38}$ Calculations were carried out at the DFT(B3PW91) level ${ }^{39}$ with Gaussian $03 .{ }^{40}$ The nature of the extrema (minimum or transition state) was established with analytical frequencies calculations and the intrinsic reaction coordinate (IRC) was followed to confirm that the transition states connect to
reactants and products. The zero point energy (ZPE) and entropic contribution have been estimated within the harmonic potential approximation. The Gibbs free energy, G, was calculated at $T=298.15 \mathrm{~K}$. Using gas phase calculations for evaluating the entropic contribution to reactions in solution is an approximation; in particular, the translational degrees of freedom are exaggerated. ${ }^{41}$ However, the trends are properly calculated especially for a similar set of molecules as is the case here. This is supported by the observation that using E in place of G gives similar profiles and similar ranking as a function of X as shown in the Supporting Information. Thus, the trends in G are reliable even though the absolute values are not. The NBO analysis ${ }^{42}$ was carried out replacing Ce by La because of the technical requirement to have an even number of f electrons for the calculations; these values are included in the Supporting Information for the inquisitive reader. Since the solvent used in the experimental studies was a hydrocarbon, such as cyclohexane or benzene, no large solvent effect on the reactants and products is expected. Consequently, no solvation effects were introduced in the computational studies.

Acknowledgment

This work was supported by the Director, Office of Science, Office of Basic Energy Sciences (OBES), of the U.S. Department of Energy (DOE) under Contract No. DE-AC02-05CH11231. We thank F. J. Hollander at CHEXRAY, the U.C. Berkeley X-ray diffraction facility, for help with the crystallography. L.M thanks the CINES and CALMIP for a generous grant of computing time. L.M. is also member of the Institut Universitaire de France, L.M. and O.E thank the CNRS and Ministère de l'Enseignement Supérieur et de la Recherche for funding, and A.Y. thanks the CEA for PhD fellowship.

Supporting information

Additional experimental details, X-ray crystallographic data (CIF), CCD numbers, Coordinates and potential energies, E, and Gibbs free energies, G, values in a.u. for all calculated structures. Energy profiles for the reactions shown in Figure 5 using energies E. Table of NBO charges. This material is available free of charge via the Internet at http:// pubs.acs.org. Crystallographic data for the structures in this paper have also been deposited with the Cambridge Crystallographic Data Center. Copies of the data CCDC 711256 for $\left[1,2,4-\left(\mathrm{Me}_{3} \mathrm{C}_{3} \mathrm{C}_{5} \mathrm{H}_{2}\right]_{2} \mathrm{CeCH}_{2} \mathrm{OMe}\right.$, and CCDC 711255 for $\left[1,2,4-\left(\mathrm{Me}_{3} \mathrm{C}\right)_{3} \mathrm{C}_{5} \mathrm{H}_{2}\right]_{2} \mathrm{Ce}(\mathrm{H})\left(\mathrm{BPh}_{3}\right)$ can be obtained free of charge via www. ccdc.cam.ac.uk/data_request/cif, by e-mailing data_request@ccdc.cam.ac.uk, or by contacting The Cambridge Crystallographic Data Center, 12 Union Road, Cambridge CB2 1EZ, UK; fax +44 1223336033.

References

1) Werkema, E. L.; Messines, E.; Perrin, L.; Maron, L.; Eisenstein, O.; Andersen, R. A. J. Am. Chem. Soc. 2005, 127, 7781.
2) Slayden, S. W.; Liebman, J. F.; Mallard; W. G. in " The Chemistry of Halides, Pseudohalides and Azides" Supp D2, Patai, S. and Rappoport, Z. Eds. Wiley, Chichester 1995, pp 386.
3) Pankratz, L. B. "Thermodynamic Properties of Halides, Bulletin 674, Bureau of Mines", 1984.
4) (a) Werkema, E. L.; Maron, L.; Eisenstein, O.; Andersen, R. A. J. Am. Chem. Soc. 2007, 129, 2529. (b) Werkema, E. L.; Maron, L.; Eisenstein, O.; Andersen, R. A. J. Am. Chem. Soc. 2007, 129, 6662.
5) Maron, L.; Werkema, E.; Perrin, L.; Eisenstein, O.; Andersen, R. A. J. Am. Chem. Soc. 2005, 127, 279.
6) Zi, G.; Blosch, L. L.; Jia, L.; Andersen, R. A. Organometallics 2005, 24, 4602.
7) Werkema, E.; Andersen, R. A. J. Am. Chem. Soc. 2008, 130, 7153.
8) Heeres, H. J.; Renkema, J.; Booij, M.; Meetsma, A.; Teuben, J. Organometallics 1988, 7, 2495.
9) Booij, M.; Meetsma, A.; Teuben, J. H. Organometallics 1991, 10, 3246.
10) Ph. D. Thesis of Werkema, E. L. University of California, Berkeley, 2005.
11) Heeres, H. J.; Meetsma, A.; Teuben, J. H.; Rogers, R. D. Organometallics, 1989, 8, 2637.
12) Allen, F. H.; Kennard, O.; Watson, D. G.; Brammer, L.; Orpen, G. A.; Taylor, R. J. Chem. Soc., Perkin Trans, 1987, 2, S1.
13) (a) Clark, T.; Schleyer, P. v. R.; Houk, K. N.; Rondan, N. G. J. Chem. Soc., Chem. Commun. 1981, 579. (b) Boche, G.; Opel, A.; Marsch, M.; Harms, K.; Haller, F.; Lorenz, J. C. W.; Thummler, C.; Koch, W. Chem. Ber.-Rec. 1992, 125, 2265. (c) Boche, G.; Lohrenz, J. C. Chem. Rev. 2001, 101, 697. Braun, W. in Patai Series, The Chemistry of Organolithium Compounds, Part 2. Rappoport, Z.; Marek, I. Eds. 2008. Chap. 13. Wiley, New York, NY.
14) Erker, G.; Schlund, P.; Krüger, C. J. Chem. Soc. Chem. Commun. 1986, 1403.

The two distances are inverted compared to the distances in $\mathrm{Cp}{ }_{2} \mathrm{Ce}\left(\eta^{2}-\mathrm{CH}_{2} \mathrm{OMe}\right)$ and expectation. However, all of the heavy atoms in the crystal structure of the zirconium compound are refined isotropically in the CCDC, resulting in considerable uncertainty
in the distances. The calculated structure of $\mathrm{Cp}_{2} \mathrm{Zr}\left(\eta^{2}-\mathrm{CH}_{2} \mathrm{OMe}\right)$ yields $\mathrm{Zr}-\mathrm{CH}_{2}=$ $2.249 \AA, \mathrm{CH}_{2}-\mathrm{O}=1.444 \AA, \mathrm{Zr}-\mathrm{O}=2.328 \AA$, which differ somewhat from the corresponding experimental values of 2.271(5), 1.414(6) and 2.204(3) \AA, however, the oxygen is pyramidal as found in the X-ray crystal structure. The calculated distances are therefore in accord with the experimental values for $\mathrm{Cp}{ }_{2} \mathrm{Ce}\left(\left(\eta^{2}-\right.\right.$ $\left.\mathrm{CH}_{2} \mathrm{OMe}\right)$.
15) Buchwald, S. L.; Nielsen, R. B.; Dewan, J. C. Organometallics 1989, 8, 1593.
16) Lork, E.; Gortier, B.; Knapp, C.; Mews, R. Solid State Sci. 2002, 4, 1403.
17) (a) Meerwein, H.; Burneleit, W. Ber. Dtsch. Chem. Ges. 1928, 61, 1840. (b)

Meerwein, H. Angew. Chem. 1948, 60, 78.
18) Bawn, C. E. H.; Ledwith, A. Prog. Boron Chem. 1964, 1, 345.
19) Leffler, J. E.; Ramsey, B. G. Proc. Chem. Soc. 1961, 117.
20) Köster, R.; Rickborn, B. J. Am. Chem. Soc. 1967, 89, 2782.
21) (a) Musker, W. K.; Stevens, R. R. Inorg. Chem. 1969, 8, 255. (b) Bickelhaupt, F.; Barnick, J. W. F. K. Rec. Trav. Chim. 1968, 87, 188.
22) Stoddard, J. M.; Shea, K. J. Organometallics 2003, 22, 1124.
23) (a) Piers, W. E. Adv. Organomet. Chem. 2005, 52, 1. (b) Erker, G. Dalton Trans. 2005, 1883.
24) Choukroun, R.; Lorber, C.; Vendier, L.; Lepetit, C. Organometallics 2006, 25, 1551.
25) Choukroun, R.; Lorber, C.; Donnadieu, B. Organometallics 2004, 23, 1434.
26) Yang, X.; Stern, C. L.; Marks, T. J. Angew Chem. Int. Ed. Engl. 1992, 31, 1375.
27) Bau, R.; Teller, R. G.; Kirtley, S. W.; Koetzle, T. F. Acc. Chem. Res. 1979, 12, 176.
28) (a) Lias, S. G.; Bartmess, J. E.; Liebman, J. F.; Holmes, J. L.; Levin, R. D.;

Mallard, W. G. J. Phys. Chem. Ref. Data 1988, 17, 647. (b) Dewar, M. J. S.; Dieter, K. M. J. J. Am. Chem. Soc. 1986, 108, 8075.

29 (a) Closs, G. L.; Closs, L. E. Angew. Chem. 1962, 74, 431. (b) Closs, G. L.; Closs, L. E. J. Am. Chem. Soc. 1963, 85, 99.
30) Bauschlicher, C. W.; Haber, K.; Schaefer, H. F. III, Bender, C. F. J. Am. Chem. Soc. 1977, 99, 3610.
31) Clark, T.; Schleyer, P. v. R.; Houk, K. N.; Rondan, N. G. J. Chem. Soc., Chem. Commun. 1981, 579. Boche, G.; Opel, A.; Marsch M.; Harms, K.; Haller, F.;

Lohrenz, J. C. W.; Thümmler, C.; Koch, W. Chem. Ber., 1992, 125, 2265. Hermann, H.; Lohrenz, J. C.; Kühn, A.; Boche, G. Tetrahedron 2000, 56, 4109. Naruse, Y.; Hayashi, A.; Sou, S.-i.; Ikeda, H.; Inagaki, S. Bull Chem Soc. Jpn. 2001, 74, 245.

Pratt, M.; Ramachandran, B.; Xidos, J. D.; Cramer, C. J.; Truhlar, D. G. J. Org. Chem. 2002, 67, 7607.
32) Nolan, S. P.; Stern, D.; Marks, T. J. J. Am. Chem. Soc. 1989, 111, 7844. The values for $\mathrm{X}=\mathrm{OMe}$ and NMe_{2} are given in this article and the values for $\mathrm{X}=\mathrm{Cl}, \mathrm{Br}$, and I are determined using BDE values in (a) McMillen, D. F.; Golden, D. M. Ann Rev. Phys. Chem. 1982, 33, 493. (b) Blanksby, S. J.; Ellison, G. B. Acc. Chem. Res. 2003, 36, 255.
33) (a) Weinhold, F.; Landis, C. Valency and Bonding: a natural bond orbital donor Acceptor Perspective. Cambridge University Press, Cambridge, UK, 2005. p 138. (b) Bent H. A. Chem. Rev. 1961, 61, 275.
34) Sofield, C. D.; Andersen, R. A. J. Organomet. Chem 1995, 501, 271.
35) Weber, F.; Sitzmann, H.; Schultz, M.; Sofield, C. D.; Andersen, R. A. Organometallics 2002, 21, 3139.
36) (a) Dolg, M.; Stoll, H.; Savin, A.; Preuß, H. Theor. Chim. Acta 1989, 75, 173.

Dolg, M.; Stoll, H.; Preuß, H. Theor. Chim. Acta 1993, 85, 441. (b) Maron, L.
Eisenstein, O. J. Phys. Chem. A, 2000, 104, 7140.
37) (a) Igel-Mann, H.; Stoll, H.; Preuß, H. Mol. Phys. 1988, 65, 1321. (b) Maron, L.;

Teichteil, C. Chem. Phys. 1998, 237, 105. (c) Bergner, A.; Dolg, M. ; Küchle, W.;
Stoll, H.; Preuß, H. Mol. Phys. 1993, 80, 1431.
38) Hariharan, P. C.; Pople, J. A. Theor. Chim. Acta 1973, 28, 213.
39) Perdew, J. J. P.; Wang, Y. Phys. Rev. B, 1992, 82, 284. Becke, A. D. J. Chem.

Phys. 1993, 98, 5648. Burke, K.; Perdew, J. P.; Yang, W. in "Electronic Density Functional Theory: Recent Progress and New Directions" Dobson, J. F.; Vignale, G., Das, M. P. Eds. 1998, Plenum.
40) Gaussian 03, Revision C.02, Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.;

Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Montgomery, Jr., J. A.; Vreven, T.;
Kudin, K. N.; Burant, J. C.; Millam, J. M.; Iyengar, S. S.; Tomasi, J.; Barone, V.;
Mennucci, B.; Cossi, M.; Scalmani, G.; Rega, N.; Petersson, G. A.; Nakatsuji, H.;
Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T.;
Honda, Y.; Kitao, O.; Nakai, H.; Klene, M.; Li, X.; Knox, J. E.; Hratchian, H. P.;

Cross, J. B.; Bakken, V.; Adamo, C.; Jaramillo, J.; Gomperts, R.; Stratmann, R. E.;
Yazyev, O.; Austin, A. J.; Cammi, R.; Pomelli, C.; Ochterski, J. W.; Ayala, P. Y.;
Morokuma, K.; Voth, G. A.; Salvador, P.; Dannenberg, J. J.; Zakrzewski, V. G.;
Dapprich, S.; Daniels, A. D.; Strain, M. C.; Farkas, O.; Malick, D. K.; Rabuck, A. D.;
Raghavachari, K.; Foresman, J. B.; Ortiz, J. V.; Cui, Q.; Baboul, A. G.; Clifford, S.;
Cioslowski, J.; Stefanov, B. B.; Liu, G.; Liashenko, A.; Piskorz, P.; Komaromi, I.;
Martin, R. L.; Fox, D. J.; Keith, T.; Al-Laham, M. A.; Peng, C. Y.; Nanayakkara, A.;
Challacombe, M.; Gill, P. M. W.; Johnson, B.; Chen, W.; Wong, M. W.; Gonzalez,
C.; Pople, J. A.; Gaussian, Inc., Wallingford CT, 2004.
(41) Leung, B. O. ; Reid, D. L. ; Armstrong, D. A. ; Rauk, A. J. Phys. Chem. A 2004, 108, 2720.
42) Reed, A. E.; Curtiss, L. A.; Weinhold, F. Chem. Rev. 1988, 88, 899.

TOC

A one-step or two-step pathway for the H for X exchange reactions: that is the question.

[^0]: ${ }^{\text {a) }}$ For averaged values, the deviation is the average deviation from the mean.
 ${ }^{\text {b) }}$ The relative orientation of the carbon atoms in the Cp '-rings.
 ${ }^{\text {c) }}$ Zettler, F.; Hausen, H. D.; Hess , H. J. Organomet. Chem. 1974, 72, 157.

