Roberto Di Cosmo

Delia Kesner

Emmanuel Polonovski

Proof Nets and Explicit Substitutions

We re ne the simulation technique introduced in 10] to show strong normalization of -calculi with explicit substitutions via termination of cut elimination in proof nets 12]. We rst propose a notion of equivalence relation for proof nets that extends the one in 9], and we show that cut elimination modulo this equivalence relation is terminating. We then show strong normalization of the typed version of the lcalculus with de Bruijn indices (a calculus with full composition de ned in 8]) using a translation from typed l to proof nets. Finally, we propose a version of typed l with named variables which helps to better understand the complex mechanism of the explicit weakening notation introduced in the l -calculus with de Bruijn indices 8].

Introduction

This paper uses linear logic's proof nets, equipped with an extended notion of reduction, to provide several new results in the eld of explicit substitutions. It is also an important step forward in clarifying the connection between explicit substitutions and proof nets, two well established formalisms that have been used to gain a better understanding of the -calculus over the past decade. On one side, explicit substitutions provide an intermediate formalism that -by decomposing the rule into more atomic steps -allows a better understanding of the execution models. On the other side, linear logic decomposes the intuitionistic logical connectives, like the arrow, into more atomic, resource-aware connectives, like the linear arrow and the explicit erasure and duplication operators given by the exponentials: this decomposition is re ected in proof nets, which are the computational side of linear logic, and provides a more re ned computational model than the one given by the -calculus, which is the computational side of intuitionistic logic 1 . The pioneer calculus with explicit substitutions, , was introduced in 1] as a bridge between the classical -calculus and concrete implementations of functional programming languages. An important property of calculi with explicit substitutions is nowadays known as PSN, which stands for \Preservation of Strong Normalization": a calculus with explicit substitutions has PSN when all -terms that are strongly normalizing using the traditional -reduction rule are also strongly normalizing w.r.t. the more re ned reduction system dened using explicit substitutions. But does not preserve -strong normalization as shown by Mellies, who exhibited a well-typed term which, due to the substitution composition rules in , is not -strongly normalizing 17]. DMI-LIENS (CNRS URA 1347) Ecole Normale Sup erieure -45, Rue d'Ulm -75230 Paris France. Email:fdicosmo,polonovsg@ens.fr

x LRI (CNRS URA 410) -Bât 490, Universit e de Paris-Sud -91405 Orsay Cedex, France. Email:kesner@lri.fr 1 Using various translations of the -calculus into proof nets, new abstract machines have been proposed, exploiting the Geometry of Interaction and the Dynamic Algebras 13, 2, 5], leading to the works on optimal reduction [START_REF] Girard | Geometry of interaction I: interpretation of system F[END_REF][START_REF] Guillaume | Un calcul de substitution avec Etiquettes[END_REF].

Since then, a quest was started to nd an \optimal" calculus having all of a wide range of desired properties: it should preserve strong normalization, but also be con uent (in a very large sense that implies the ability to compose substitutions), and its typed version should be strongly normalizing. Meanwhile, in the linear logic community, many studies focused of the connection between -calculus (without explicit substitutions) and proof nets, trying to nd the proper variant or extension of proof nets that could be used to cleanly simulate -reduction, like in 7]. Finally, in 10], the rst two authors of this work showed for the rst time that explicit substitutions could be tightly related to linear logic's proof nets, by providing a translation into a variant of proof nets from x [START_REF] Melli | Typed -calculi with explicit substitutions may not terminate[END_REF][START_REF] Bloo | Preservation of Termination for Explicit Substitution[END_REF], a simple calculus with explicit substitutions and named variables, but no composition. This connection was promising because proof nets seem to have many of the properties which are required of a \good" calculus of explicit substitutions, and especially the strong normalization in the presence of a reduction rule which is reminiscent of the composition rule at the heart of Mellies' counterexample. [START_REF] Cosmo | Strong normalization of proof nets modulo structural congruences[END_REF] only dealt with a calculus without composition, and the translation was complex and obscure enough to make the task of extending it to the case of a calculus with composition quite a daunting one. In this paper, we can nally present a notion of reduction for Girard's proof nets which is exible enough to allow a natural and simple translation from David and Guillaume's l , a complex calculus of explicit substitution with de Bruijn indices and full composition 8]. This translation allows us to prove that typed l is strongly normalizing, which is a new result con rming a conjecture in 8]. Also, the fact that in the translation all information about variable order is lost suggests a version of typed l with named variables which is immediately proved to be strongly normalizing. This is due to the fact that only the type information is used in the translation of both calculi. Also, the typed named version of l gives a better understanding of the mechanisms of labels existing in the calculus. In particular, names allow to understand the ne manipulation of explicit weakenings in l without entering into the complicate details of renaming used in a de Bruijn setting.

The paper is organized as follows: we rst recall the basic de nitions of linear logic and proof nets and we introduce our re ned reduction system for proof nets (Section 2), then prove that it is strongly normalizing (Section 3). In Section 4 we recall the de nition of the l calculus with its type system, present the translation into proof nets, and show strong normalization of typed l . Finally, we introduce a version of typed l with named variables (Section 5), enjoying the same good properties, and we conclude with some remarks and directions for future work (Section 7).

Linear logic, proof nets and extended reduction

We recall here some classical notions from linear logic, namely the linear sequent calculus and proof nets, and some basic results concerning con uence and normalization. MELL: Multiplicative Exponential linear logic Let A be a set of atomic formulae. We suppose that A is partitioned in two disjoint subsets representing positive and negative atoms respectively. The set of formulae of the Multiplicative Exponential fragment of linear logic (called MELL) is de ned by the following grammar, where a 2 A: F ::= a j F F (tensor) j F O F (par) j !F (of course) j ?F (why not) For every p 2 A, we assume that there is p 0 2 A, called the linear negation of the atom p. Linear negation of formulae is de ned as follows p ? = p 0 p 0 ? = p A ?? = A (?A) ? =!(A ?) (A B) ? = A ? O B ?

From now on we will write p ? instead of p 0 .

The name MELL comes from the connectors and O which are called \multiplicatives", while ! and ? are called \exponentials". We say that a formula is exponential if it starts with an exponential connector. While we refer the interested reader to 12] for more details on linear logic, we give here a one-sided presentation of the sequent calculus for MELL: `A; A ? Axiom `?; A `A? ; `?; Cut `?; A `?; ?A Dereliction `?; ?A; ?A `?; ?A Contraction `?; A; B `?; AOB Par `?; A `B; ? 0 `?; A B; ? 0 Times `? `?; ?A Weakening `A; ?? `!A; ?? Box MELL proof nets To all sequent derivations in MELL it is possible to associate an object called a \proof net", which allows to abstract from many inessential details in a derivation, like the order of application of independent logical rules: for example, there are many inessentially di erent ways to obtain `A1 OA 2 ; : : : ; A n?1 OA n from `A1 ; : : : A n , while there is only one proof net representing all these derivations. Proof nets are de ned inductively by rules that follow closely the ones of the one-sided sequent calculus, and the set of proof nets is denoted PN. To simplify the drawing of a proof net, we use the following notation: a conclusion with a capital greek letter ?; ; : : : really stands for a set of conclusions, each one with its own wire. (Box) Each box has exactly one conclusion preceded by a !, which is named \principal" port (or formula), while the other conclusions are named \auxiliary" ports (or formulae). In what follows, we will sometimes write an axiom link as A A ? .

Reduction of proof nets Proof nets are the \computational object" behind linear logic, because there is a notion of reduction on them (called also \cut elimination") that corresponds to the cut-elimination procedure on sequent derivations. The traditional reduction system for MELL is de ned as follows:

Reduction acting on a cut Ax ? cut, removing an axiom :

Ax-cut Ax A A ? A Cut A
Reduction acting on a cut O ? : The reduction R E is exible enough to allow an elegant simulation of reduction and of explicit substitutions, but for that, we rst need to establish that R E is strongly normalizing.

Let us see this property in the next section.

Termination of R E

We know from 9] that R :wc E is terminating, and we can show easily that wc is terminating too, so if we could show that the wc-rule can be postponed with respect to all the other rules of R :wc E , we would be easily done using a well-known abstract lemma. Unfortunately, there is precisely one case in which we cannot postpone the wc-rule: when a wc reduction creates an axiom-cut redex, which in turn can only happen if the axiom link in question introduces an exponential formula as the following example of reduction sequence from t to t 0 shows:

W C !A ?A ? !A Ax-cut ?A ? !A wc !A !A
We remark that starting from the same proof net t we cannot get the same result t 0 by delaying the application of the wc-rule. This is due to the fact that the axiom involved in t has exponential formulae and this is the only case in which the wc-rule cannot be postponed.

As a consequence we can split our termination proof in the following way:

We rst prove that R E is terminating on the set of proof nets without exponential axioms (Theorem 3.7). This can be done with the postponement technique (Lemma 3.3), because the counterexample given above only hold in proof nets with exponential axioms.

We then show that termination of R E on all proof nets in PN is a consequence of termination of R E on proof nets without exponential axioms (Theorem 3.11). To obtain this result, we give a translation of any proof net in PN into a proof net without exponential axioms which allows us to simulate the reduction notion R E on PN into the reduction notion R E on proof nets without exponential axioms.

Termination of R E on proof nets without exponential axioms

We show in this section that all the R E -reduction sequences from a proof net without exponential axioms terminate. We rst remind the following result from 9]: Lemma 3.1 (Termination of R :wc E) The relation ?! R :wc E is terminating on PN.

Then, we establish the termination of wc.

Lemma 3.2 (Termination of wc) The relation ?! wc is terminating on PN.

Proof. The wc-rule strictly decreases the number of nodes in a proof net so no in nite wc-reduction sequence is possible.

Finally, we show that given any proof net without exponential axioms, the wc-rule can be postponed with respect to any rule of R :wc E .

Lemma 3.3 (Postponement of wc w.r.t R :wc E) Let t be a proof net without exponential axioms. If t ?! wc ?! R :wc E t 0 , then, there is a sequence t?! + R :wc E ?! wc t 0 .

Proof. Let t ?! wc ?! R :wc E t 0 be a reduction sequence starting at t with a wcreduction step. Let us show that we can build an equivalent reduction t?! + R :wc E ?! wc t 0 by analyzing all the possible cases.

We do not detail here the cases of disjoint redexes: if we apply the wcrule followed by a rule R1 in R :wc E and if the redexes occur at disjoint positions, then it is evident that R1 can be applied rst, followed by wc, and getting the same result. We study now all the remaining cases: We notice that everything is happening as if the redexes were disjoint. This is due to the fact that the d ? b rule is non-duplicating and non-erasing w.r.t boxes. As a consequence, the wc-redex is still preserved after the application of the d ? b rule. 5. The rule b ? b, rst possibility : For all the other rules the redexes are disjoint. Indeed, only the contraction or the weakening appearing in a reduction sequence can interact with another redex. However, during the elimination of the axiom-cut or the Ocut, neither the weakening nor the contraction may interfere (for proof nets without exponential axioms).

????????

Until now we have only worked with reduction rules of R E , but to complete our statement we also need to show that the wc-rule can be delayed w.r.t one equivalence step. We proceed as we did for the reduction rules. We do not study the cases where redexes are disjoint because they are evident. The remaining cases are the following:

1. Associativity : W C C A A3 A2 A1 W C A W C A A wc A A wc C C A3 C A2 A1 A C C A2 A1 C C A2 A1 A A3 A3 C C A3 A2 A1 2. Box passing, rst case : W C C A2 A1 A C A2 A1 A W C C A1 A A2 W A wc B B wc A C A1 A2 C A1 A2 C A 3. Box passing second case : wc A C A1 A2 A C A2 A1 C W C A1 A2 A C W C C W B A A1 A2 A B C A2 A1 A wc
We can now put together the previous results to prove termination of R E on the set of proof nets without exponential axioms.

But rst of all, we establish two propositions stating the stability of wc and R :wc E .

Proposition 3.4 (Stability by ?! wc) The set of the proof nets without exponential axioms is stable by the reduction ?! wc . In other words, for every proof net r without exponential axioms, if r ?! wc r 0 then r 0 is a proof net without exponential axioms.

Proof. We know that the application of wc does not modify the formulae of a proof net.

As a consequence, it is easy to see that the set of proof nets without exponential axioms is stable by ?! wc . Proposition 3.5 (Stability by ?! R :wc E) The set of the proof nets without exponential axioms is stable by the reduction ?! R :wc E . In other words, for every proof net r without exponential axioms, if r ?! R :wc E r 0 then r 0 is a proof net without exponential axioms.

Proof. The cut-elimination rules are local reductions so that they do not add axioms to the a proof net (and so, a priori no exponential axioms). As a consequence, the formulae of a proof net are never modi ed and, if r does not have exponential axioms, then r 0 can neither have exponential axioms.

Mettre l'endroit ou on applique de la stability Lemma 3.6 (Extraction of R :wc E) Let S be an in nite sequence of R E -reductions starting at a proof net t without exponential axioms. Then, there is a sequence of R E -reductions from the same proof net t which starts by t ?! R :wc E t 0 , where t 0 is also a proof net without exponential axioms, and which continues with an in nite sequence S 0 . We write this sequence as (t ?! R :wc E t 0) S 0 .

Proof. Let S be an in nite sequence of R E -reductions starting at t: t ?! RE : : : ?! RE : : : ?! RE : : :

We know, by Lemmas 3.2 and 3.1, that the systems wc and R :wc E are both terminating, so it is not possible to have an in nite sequence only made of wc or R :wc E . As a consequence, the in nite sequence of R E -reductions must be an in nite alternation of non-empty nite sequences of wc and R :wc E . Now, there are two cases: either the alternation of sequences starts with a sequence of R :wc E -reductions, and then the result holds by taking the sequence S without its rst reduction step as S 0 ;

Or the alternation starts with a wc-step :

t?! + wc ?! + R :wc E ?! + wc ?! + R :wc E : : :

that is, written in other way t?! + wc ?! R :wc E t 00 ?! R :wc E ?! + wc ?! + R :wc E : : : In this case, we consider the sub-sequence P = t?! + wc ?! R :wc E t 00 of the sequence S starting at t. This sub-sequence is composed by k reduction steps of wc and one reduction of R :wc E . Let call R the remaining sub-sequence of S.

By applying Lemma 3.3 k times on P, we can move the rule of R :wc E at the head of the sequence. By Propositions 3.5 and 3.4 we know that all the proof nets of this reduction sequence are proof nets without exponential axioms. We thus obtain a nite sequence P 0 which begins with a reduction t ?! R :wc E t 0 , and ends on t 00 . As a consequence, P 0 R is the in nite sequence starting by a reduction R :wc E we were looking for. Now it is easy to establish the fundamental theorem of this section: Theorem 3.7 (Termination of R E on proof nets without exponential axioms) The reduction relation R E is terminating on the set of proof nets without exponential axioms.

Proof. We show it by contradiction. Let us suppose that R E is not terminating on those nets. Then, there exist a proof net without exponential axioms t and an in nite sequence S of R E starting at t. By applying Lemma 3.6 to this sequence S, we obtain a sequence (t ?! R :wc E t 0) S 0 such that S 0 is in nite again. If we iterate this procedure an arbitrary number times, we obtain a sequence of R :wc E -reduction steps arbitrary long. This contradicts the fact that R :wc E is terminating.

Termination of R E on proof nets with exponential axioms

We know now that R E is terminating on every proof net without exponential axioms, but we want now to show even more: termination of R E on all the proof nets. To achieve this result, we show in this section how to associate to a proof net t, which can eventually contain some exponential axioms, another proof net E(t) without exponential axioms, and such that every reduction from t of length n can be \simulated" on E(t) by another reduction of length at least n. This property will be enough to reduce termination of R E on proof nets with exponential axioms to termination of R E on proof nets without exponential axioms. Now, we rst observe that in the case of the MLL proof nets, one can use indi erently nets with \atomic" axioms (i.e. the conclusions of the axiom links are atomic formulae) or not, because we can easily replace a non-atomic axiom by its \expansion": for example, if A and B are two formulae, then the axiom We can iterate this procedure until no non-atomic axiom remains in the proof net, and obtain in this way what we will write as exp(A B A ? OB ?), the complete expansion of the axiom A B A ? OB ? . An expanded proof net is still a well-formed proof net (as de ned in Section 2) and has the same dynamic properties of the original proof net, i.e. all reductions on the original proof net can be simulated on the expanded proof net.

Starting from this observation, we could de ne expansion for MELL, and hope to obtain a similar result. Nevertheless, it turns out that for our purposes it is enough to expand only exponential axioms, without expanding all non atomic ones, so we will focus here on this limited expansion of exponentials. Let us formalize this special notion of complete expansion of an axiom, for which we can associate a measure of complexity rk.

De nition 3.1 (Complete expansion of an axiom link) For each axiom link A A ?

we can associate a net exp(A A ?) with same conclusions, de ned by induction on the complexity of the formula A as follows:

exp(A A ?) = A A ? , if A is not an exponential formula exp(!A ?A ?) = A ? A D ?A ? ?A ? !A exp() which is well de ned, because the formula A is smaller than !A.

De nition 3.2 (Measure of a complete expansion) We de ne the measure rk of a complete expansion of an axiom by cases: rk(exp(A A ?)) = 0, if A is not an exponential formula rk(exp(?A ? !A)) = 1 + rk(exp(A A ?))

We can now de ne the notion of expanded net E(t) for every net t: De nition 3.3 (Expanded net) The expanded net of a net t, written E(t), is the proof net obtained from t by replacing each occurrence of an exponential axiom a by exp(a).

For example, here is a proof net and its expanded net: D exp !(A B ?) ?(A ? OB) !(A B ?) A B ? A ? OB ?(A ? OB) ?(A ? OB)

The measure of the complete expansion of this net is 1. Remark 3.8 The only di erence between a proof net t and its expanded net E(t) is on the set of their axioms. So, for every reduction t ?! RE t 0 which does not a ect the axioms of t, there is a reduction E(t) ?! RE E(t 0).

We have now to show that there is no problem for the axioms either, and to do so we need the following measure: De nition 3.4 (Maximal distance of a cut) Given a proof net t and a cut link on a completely expanded axiom a in t, the measure d(a; t) is the maximal distance, in the proof net t, between this cut and the rst weakening or dereliction node encountered in the way which leaves the cut, by the opposite extremity from the expanded axiom a, and go throw the nodes from down to up (here up and down are used formally for the orientation of the nodes presented in the introduction). More precisely, each node encountered and each box passed on the way values 1, including the nal dereliction or weakening node. This measure is always nite on a nite proof net because there are no arbitrary long ascendant ways.

Example 3.9 In the following net, the maximal distance of the cut is 4. All the cases such that rk(exp(a)) = 0 (including the base case) correspond to a proof net in which exp(a) is an axiom link, so the same reduction rule applies and the property then trivially holds. Otherwise, for rk(exp(a)) > 0, we must consider all the other cases, which are separated in two di erent categories:

The cut formula has the following shape : ?A ? . In this case, the proof net is expanded, so the cut must necessarily take place with the principal door of a box : nally, by de nition, exp(A ? A) is smaller than exp(?A ? !A). So, the measure rk has decreased and we can apply the hypothesis induction on the axiom cut connected with exp(A ? A). Then we obtain : R ?? ? A ?? ? !A

The cut formula has the following shape : !A. In this case, there are several possibilities for the node which is cut with the completely expanded axiom:

A weakening node. In this case, it is not necessary to use the induction. . . A ?

then, as previously, we notice that the measure rk(exp(A ? A)) is smaller than the measure rk(exp(?A ? !A)) so we can apply the induction to obtain:

?A ? D A ?
A contraction node. In this case, the proof net has the following shape: Since the proof net is expanded there is not cut with an exponential axiom, so there is no other case to consider. This allows us to establish the nal result of this section : Theorem 3.11 (Termination of R E) The reduction R E is terminating on all proof nets.

Proof. We establish this result by proving that each reduction step t ?! RE t 0 can be simulated by at least one reduction step E(t)?! + RE E(t 0).

If the reduction step t ?! RE t 0 does not reduce any exponential axiom with a cut, then we obtain the result immediately because the only di erence between t and E(t) is on their axioms. Indeed, we can reproduce the same reduction on E(t) in order to obtain E(t 0) and this concludes this case.

Otherwise, if t ?! RE t 0 reduces an exponential axiom a with a cut then by Lemma 3.10 there exist a non-empty sequence of reductions starting at E(t) which eliminates the complete expansion of the axiom a, and gives the proof net E(t 0). Now, to conclude the proof, suppose that there is a proof net t such that the reduction R E is not terminating on t, that is, there is an in nite R E -reduction sequence starting at t. By the previous remark we can simulate this in nite reduction sequence by another R Ereduction sequence on expanded proof nets not containing exponential axioms. This leads to a contradiction with Theorem 3.7 so that we can conclude that R E is terminating on the set of all proof nets. [START_REF] Bloo | Preservation of Termination for Explicit Substitution[END_REF] From l with de Bruijn indices to P N We now study the translation from typed terms of the l -calculus 8] into proof nets. We start by introducing the calculus, then we give the translation of types of l into formulae of linear logic, and the translation of terms of l into linear logic proof nets PN. We verify that we can correctly simulate every reduction step of l via the notion of reduction R E .

Finally, we use this simulation result to show strong normalization of the l -calculus.

The l -calculus

The l -calculus is a calculus with explicit substitutions where substitutions are unary (and not multiple). The version studied in this section has variables encoded with de Bruijn indices. The terms of l are given by the following grammar: M ::= n variable j M abstraction j (MM) application j hkiM label j i=M; j]M substitution Intuitively, the term hkiM means that the k ? 1 rst indices in M are not \free" (in the sense of free variables of calculus with indices). The term i=N; j]M means that the i ? 1 rst indices are not free in N and the j ?1 following indices are not free in M. Those indices are used to split the typing environment of i=N; j]M in three parts: the rst (resp. second) one for free variables of M (resp. N), the third one for the free variables in M and N.

The de Bruijn indices we use start with 0 instead of 1. For example, the identity function is written as I = 0.

The reduction rules of l are given in Figure 1 and the typing rules of l are given in Figure 2, where we suppose that j?j = i and j j = j.

We notice that for each well-typed term of the l -calculus, there is only one possible typing judgment. This will simplify the proof of simulation of l by easily considering the unique typing judgment of terms.

As expected the l -calculus enjoys the subject reduction property 15].

Translation of types and terms of l

We use the translation of types introduced in 6] given by :

A = A if A is an atomic type (A ! B) = ?((A) ?) O !B (that is, !A (!B) otherwise
Since wires are commutative in proof nets, we feel free to exchange them when we de ne the translation of a term. The translation associates to every typed term M of l , whose type judgment ends with the conclusion written below on the left, a proof net having the shape sketched below on the right:

? `M : A M A ?? ?
Here is the formal de nition of the translation T from l -terms into proof nets.

If the term is a variable and its type judgment ends with the rule written below on the left, then its translation is the proof net on the right ?; A; `i : A Axiome If the term is a substitution and its type judgment ends with the rule written below on the left, then its translation is the proof net on the right ; `N : A ?; A; `M : B ?; ; ` i=N; j]M : B Subst ?? ? ? ?

? ? A ? ? ? ? C ? ?

where i is the length of the list ? and j is the length of the list , then its translation is the proof net Finally, if the term is a label and its type judgment ends with the rule written below on the left, then its translation is the proof net on the right `M : B ?; `hiiM : B Weak where i is the length of the list ?, then its translation is the proof net

Simulating l -reduction

We now verify that our notion of reduction R E on PN simulates the l -reduction on typed l -terms. It is in this proof that we nd the motivation for our choice of translation from -terms into proof nets: with the more traditional translation sending the intuitionistic type A ! B into the linear !A (B, the simulation of the rewrite rule f would give rise to an equality, not to a reduction step like in this paper. Lemma 4.2 (Simulation of l) The relation R E simulates the l -reduction on typed terms: if t ?! l t 0 , then T(t)?! + RE T(t 0), excepted for the rules e 2 and d for which we have T(t) = T(t 0).

Proof. The proof proceeds by cases on the reduction rule applied in the step t ?! l t 0 .

Since reductions l and R E are closed under all contexts, we only need to study the cases where reduction takes place at the head position of t. In the proof, rule wc is used to simulate b 2 ; e 1 ; n 1 ; n 2 ; n 3 , equivalence A is used to simulate a; c 1 ; c 2 , and equivalence B is used to simulate f; a; c 1 ; c 2 . As for the b ? 1 rule, we eliminate the Ocut, then the d ? b cut, and the Ax ? cut cut. Finally, we apply the wc rule to achieve the desired result. rule f : i=N; j] M ?! i + 1=N; j]M

The typing environment can be split in three parts ?, , , where i is the length of ? and j is the length of . The typing judgment of i=N; j] M ends with ; `N : C B; ?; C; `M : A ?; C; ` M : B ! A Lambda ?; ; ` i=N; j] M : B ! A Subst The typing judgment of i + 1=N; j]M must end with:

; `N : C B; ?; C; `M : A B; ?; ; ` i + 1=N; j]M : A Subst ?; ; ` i + 1=N; j]M : B ! A Lambda rule a : i=N; j](MP) ?! ((i=N; j]M)(i=N; j]P))

The typing environment can be split in three parts ?, , , where i is the length of ? and j is the length of . The typing judgment of i=N; j](MP) ends with ; `N : C ?; C; `M : B ! A ?; C; `P : B ?; C; `MP : A App ?; ; ` i=N; j](MP) : A Subst and its translation is the proof net The typing judgment of ((i=N; j]M)(i=N; j]P)) must end with:

; `N : C ?; C; `M : B ! A ?; ; `(i=N; j]M) : B ! A Subst ; `N : C ?; C; `P : B ?; ; `(i=N; j]P) : B Subst ?; ; `((i=N; j]M)(i=N; j]P)) : A App and its translation is the proof net rule e 1 : i=N; j]hkiM ?! hj + k ? 1iM if i < k

The typing environment can be split in four parts ?, , , and 0 , where i is the length of ?, j is the length of , and k (k > i) is the length of ? plus the length of plus 1. The typing judgment of i=N; j]hkiM ends with ; ; 0 `N : B 0 `M : A ?; B; ; 0 `hkiM : A Weak ?; ; ; 0 ` i=N; j]hkiM : A Subst and its translation is the proof net

C C 0 A T(M) W ? W ?B ? W !B B 0 0 0 T(N)
The typing judgment of hj + k ? 1iM must end with: 0 `M : A ?; ; ; 0 `hj + k ? 1iM : A Weak and its translation is the net

W W 0 A T(M) W ?
Starting from the rst proof net, we eliminate the w ? b cut, then we apply the wc rule and we nally obtain the desired proof net.

rule e 2 : i=N; j]hkiM ?! hki i ? k=N; j]M if i k

The typing environment can be split in four parts ?, ? 0 , , , where i is the length of ? plus the length of ? 0 , j is the length of and k (k i) is the length of ?. The typing judgment of i=N; j]hkiM ends with ; `N : B ? 0 ; B; `M : A ?; ? 0 ; B; `hkiM : A Weak ?; ? 0 ; ; ` i=N; j]hkiM : A Subst and its translation is the proof net

C A T(M) W ? 0 ?B ? !B B T(N) ?
The typing judgment of hki i ? k=N; j]M must end with:

; `N : B ? 0 ; B; `M : A ? 0 ; ; ` i ? k=N; j]M : A Subst ?; ? 0 ; ; `hki i ? k=N; j]M : A Weak We notice that the two nets are already the same. This is the rst of the exception cases of the lemma.

rule n 1 : i=N; j]k ?! k if i > k

The typing environment can be split in ve parts ?, A, ? 0 , , , where i is the length of ? plus the length of ? 0 plus 1, j is the length of and k (k < i) is the length of ?.

The typing judgment of i=N; j]k ends with ; `N : B ?; A; ? 0 ; B; `k : A Axiome ?; A; ? 0 ; ; ` i=N; j]k : A Subst and its translation is the proof net rule n 2 : i=N; j]i ?! hiiN

The typing environment can be split in three parts ?, , , where i is the length of ? and j is the length of . The typing judgment of i=N; j]i ends with ; `N : A ?; A; `i : A Axiome ?; ; ` i=N; j]i : A Subst rule n 3 : i=N; j]k ?! j+k-1 if i < k

The typing environment can be split in ve parts ?, , , A, 0 , where i is the length of ?, j is the length of and k (k > i) is the length of ? plus the length of plus 1.

The typing judgment of i=N; j]k ends with ; ; A; 0 `N : B ?; B; ; A; 0 `k : A Axiome ?; ; ; A; 0 ` i=N; j]k : A Subst and its translation is the proof net A As for the n 1 rule, we eliminate the w ? b cut, then we apply three times the wc rule to achieve the desired result.

rule c 1 : i=N; j] k=P; l]M ?! k= i ? k=N; j]P; j + l ? 1]M if k i < k + l

The typing environment can be split into ve parts ?, ? 0 , , , 0 , where i is the length of ? plus the length of ? 0 , j is the length of , k (k i) is the length of ? and l (k + l > i) is the length of ? 0 plus the length of plus 1. The typing judgment of i=N; j] k=P; l]M ends with ; ; 0 `N : B ? 0 ; B; ; 0 `P : C ?; C; 0 `M : A ?; ? 0 ; B; ; 0 ` k=P; l]M : A Subst ?; ? 0 ; ; ; 0 ` i=N; j] k=P; l]M : A Subst and its translation is the proof net The typing judgment of k= i ? k=N; j]P; j + l ? 1]M must end with:

; ; 0 `N : B ? 0 ; B; ; 0 `P : C ? 0 ; ; ; 0 ` i ? k=N; j]P : C Subst ?; C; 0 `M : A ?; ? 0 ; ; ; 0 ` k= i ? k=N; j]P; j + l ? 1]M : A Subst and its translation is the proof net rule c 2 : i=N; j] k=P; l]M ?! k= i ? k=N; j]P; l] i ? l + 1=N; j]M if k + l i

The typing environment can be split in ve parts ?, ? 0 , ? 00 , , , where i is the length of ? plus the length of ? 0 plus the length of ? 00 , j is the length of , k (k +l i) is the length of ? and l is the length of ? 0 . The typing judgment of i=N; j] k=P; l]M ends with ; `N : B ? 0 ; ? 00 ; B; `P : C ?; C; ? 00 ? 00

The typing judgment of k= i ? k=N; j]P; l] i ? l + 1=N; j]M must end with: ; `N : B ? 0 ; ? 00 ; B; `P : C ? 0 ; ? 00 ; ; ` i ? k=N; j]P : C Subst ; `N : B ?; C; ? 00 ; B; `M : A ?; C; ? 00 ; ; ` i ? l + 1=N; j]M : A Subst ?; ? 0 ; ? 00 ; ; ` k= i ? k=N; j]P; l] i ? l + 1=N; j]M : A Subst and its translation is the proof net ? 00 5 The l -calculus with names

In this section we present a version of typed l with named variables. We rst introduce the grammar of terms, then the typing and reduction rules, and nally, we will brie y discuss the translation of this syntax to PN.

The terms of this calculus are given by the following grammar: Intuitively, the term M means that the variables in are not in M, and the term M x; N; ?;] means that the variables in ? do not appear in N (they only belong to the type environment of M) and the variables do not appear in M (they only belong to the type environment of N).

Variables are bound by the abstraction and substitution operators, so that for example

x is bound in x:x and in x x; N; ?;].

Terms are identi ed modulo -conversion so that bound variables can be systematically renamed. Indeed, we have y:y x; z; ;; ;] = y 0 :y 0 x; z; ;; ;] and y:y x; z; ;; ;] = y:y x 0 ; z; ;; ;] and l:y x; z; flg; ;] = l 0 :y x; z; fl 0 g; ;]. We remark that the conditions on indices used in the typing rules given in Section 4.1 are now conditions on sets of variables. The typing rules are given in Figure 3.

?; x : A `x : A Axiom ? `M : A ? \ = ; ?; ` M : A Weak ? `M : B ! A ? `N : B ? `(MN) : A App ?; x : A `M : B ? ` x : A:M : B ! A Lambda ; `N : A ?; x : A; `M : B (?; x : A) \ = ;

; ?; `M x; N; ?;] : B Subst Figure 3: Typing rules for the l -calculus with named variables

We remark that whenever ? `M x; N; ;] is derivable, then ? necessarily contains and .

As expected the l -calculus with names enjoys the subject reduction property. ; x : A `M : C ` x : A:M : A ! C (lamb) `N : A `(x : A:M)N : C ; `N : B ?; ; x : B; y : A `M : C 0 ?; ; x : B ` y : A:M : C (lamb) (?; x : B) \ = ; ?; ; `(y : A:M) x; N; ?;] : C

Since y is bound in y : A:M we can suppose that does not contain y, so that we obtain ; `N : B ?; ; x : B; y : A `M : C 0 (?; x : B; y : A) \ = ; ?; ; ; y : A `M x x; N; ?;] ?! ?N (c 1) M y; P; ;] x; N; ?;] ?! M y; P x; N; ? n ;]; ; (n x)] x 2 n (c 2) M y; P; ;] x; N; We de ne the reduction rules only on typed terms, since we are focusing here on a named version of the typed l calculus with indices. These rules already give the avor of what a general notion of reduction for non-typed terms with names should be, but a precise formalization of the untyped case is left for further work.

The reduction rules of the typed l -calculus with names are given in Figure 4 (notice that rule b 1 is a particular case of rule b 2 with = ;).

As customary in explicit substitutions calculi with names 3], we work modulo -conversion, so that we can suppose that in the rule Weak the set does not contain variables that are bound in M. Also, this allows us to restrict rule f, without loss of generality, to the case where no variable capture arise.

6 Strong normalization of the l calculus with names

We now give the translation of the terms of l with names into proof nets in PN, and the proof of strong normalization of l .

Translation and simulation of l with names

In order to translate a term of l into a proof net, we use exactly the same translation of types that we used in Section 4.2 and we then de ne the translation of a term M using the type derivation of M.

The translation is then de ned in the following way: If the term is a variable having a type derivation ending with ?; x : A `x : A Axiome ?? ? ? ?

? ? A ? ? ? ? C ? ?

If the term is a label having a type derivation ending with ? `M : A ? \ = ;

?; ` M : A Weak its translation is given by ? ?

B ?? ?

W T(M)

We can clearly verify that the translation is identical to that given for l with de Bruijn indices. This is completely normal since the type derivations are similar in both formalisms.

The simulation of the reduction rules of the l -calculus with names by the reduction R E is identical to that given in Section 4.2 for the l -calculus with indices. We just remark that rule n 3 has no sense in the formalism with names so that the proof has one less case. We just state the result without repeating a boring veri cation: Lemma 6.1 (Simulation of l with names) If t l -reduces to t 0 in the formalism with names, then T(t)?! + RE T(t 0), except for the rules e 2 and d for which we have T(t) = T(t 0). We can then conclude the following: Theorem 6.2 (Strong Normalization of l with names) The typed l -calculus with names is strongly normalizing.

Conclusion and future works

In this paper we enriched the standard notion of cut elimination in proof nets in order to obtain a system R E which is exible enough to provide an interpretation of -calculi with explicit substitutions and which is much simpler than the one proposed in 10]. We have proved that this system is strongly normalizing.

We have then proposed a natural translation from l into proof nets that immediately provides strong normalization of the typed version of l , a calculus featuring full composition of substitutions. The proof is extremely simple w.r.t the proof of PSN of l given in 8] and shows in some sense that l , which was designed independently of proof nets, is really tightly related to reduction in proof nets.

Finally, the fact that the relative order of variables is lost in the proof-net representation of a term lead us to discover a version of typed l with named variables, instead of de Bruijn indices. This typed named version of l gives a better understanding of the mechanisms of the calculus. In particular, names allow to understand the manipulation of explicit weakenings in l without entering into the details of renaming of de Bruijn indices. However, the de nition of a general notion of reduction for non-typed terms with names remains as further work. This work suggests several interesting directions for future investigation: on the linear logic side, one should wonder whether R E is the de nitive system able to interpret reduction, or whether we need some more equivalences to be added. Indeed, there are still a few cases in which the details of a sequent calculus derivation are inessential, even if we did not need to consider them for the purpose of our work, like for example `?; B `?A; ?; B Weakening `?A; ?; !B Box `?; B `?; !B Box `?A; ?; !B Weakening On the explicit substitutions side, we look forward to the discovery of a calculus with multiple substitutions with the same properties as l , in the spirit of .

1.

 The rule c ? b, rst possibility :

6 . 9 .

 69 The rule b ? b, second possibility : For the same reason as for d ? b, the redexes are considered as disjoint. 7. The rule w ? b, rst possibility : The other rules :

10 (

 10 Cut elimination on an expanded net) Let t be an expanded net. A cut in t with a completely expanded axiom exp(a) reduces in t like in an ordinary axiom cut. In other words, prove the property by induction on the lexicographic order (rk(exp(a)); d(exp(a); t)) where exp(a) is the completely expanded axiom in the proof net t.

(

](MP) ?! (i=N; j]M)(i=N; j]P) (e 1)

Figure 2 :

 2 Figure 2: Typing rules for l with de Bruijn indices Theorem 4.1 (Subject Reduction) If `M : C and M ?! M 0 , then `M0 : C.

 the position of A in the typing environment, If the term is a -abstraction and its type judgment ends with the rule written below on the left, then its translation is the proof net on the right B; ? `M : C ? ` M : B ! C Lambda the term is an application and its type judgment ends with the rule written below on the left, then its translation is the proof net on the right ? `M : B ! A ? `N : B ? `(MN)

T

 rule b 1 : (MN) ?! 0=N; 0]M The typing judgment of (MN) ends with B; ? `M : A ? ` M : B ! A Lambda ? `N : B ? `(MN) of 0=N; 0]M must end with: B; ? `M : A ? `N : B ? ` 0=N; 0]M : A Subst and its translation is the proof net Trst proof net, we eliminate the Ocut, then the d ? b cut and nally the Ax ? cut cut to obtain the nal proof net. rule b 2 : ((hki M)N) ?! 0=N; k]M The typing environment can be split in two parts ? and , where k is the length of ?. The typing judgment of ((hki M)N) ends with B; `M : A ` M : B ! A ?; `hki M : B ! A ?; `N : B ?; `((hki M)N) : A and its translation is the proof net C of 0=N; k]M must end with: ?; `N : B B; `M : A ?; ` 0=N; k]M : A Subst and its translation is the proof net T

 and its translation is the proof net Trst proof net into the second one, we must eliminate the b ? b cut, then use the equivalence relation B (we will exactly show how to use the equivalence relations in the case of the rule a).

 c ?b cut, then the b ?b cut, and thus we get the following proof net: the desired proof net we need to use the equivalence relations A and B which were introduced in Section 2. To better understand how to use them, we focus on the crucial informations, i.e. the contraction nodes and their connections with the nets T(M), T(N) and T(P). Here is the net corresponding to the above net : axiom we can put the contraction inside the box : use the A axiom again to obtain the desired proof net :

 of k must end with: ?; A; ? 0 ; ; `k : A and its translation is the proof net rst proof net into the second one it is enough to eliminate the w ? b cut and to apply the wc rule.

 of hiiN must end with: ; `N : A ?; ; `hiiN : A Weak and its translation is the proof net ? rst proof net, we eliminate the d ? b cut, then the Ax ? cut cut, and we apply the wc rule to obtain the desired proof net.

 of j+k-1 must end with: ?; ; ; A; 0 `j+k-1 : A Axiome and its translation is the proof net

 rst proof net into the second one, we must eliminate the b?b cut, then apply the equivalence relations A and B.

Theorem 5 . 1 (

 51 Subject Reduction) If `M : C and M ?! M 0 , then `M0 : C. Proof. By induction on the structure of terms. If the reduction takes place in an internal position of M, then we can apply the induction hypothesis. Otherwise, we verify all the possible cases. Rule b 1 .

 Without loss of of generality we can suppose that = ?; . ?; x : A `M : C ? ` x : A:M : A ! C (lamb) = ? \ = ; ?; ` (x : A:M) : A ! C (weak) ?; `N : A ?; `((x : A:M))N : C (app) Since x is bound in x : A:M we can suppose that = does not contain x, so that we obtain ?; x : A `M : C ?; `N : A x : A \ = ; = ?; `M x; N; ;;] : C (sub) Rule f. Without loss of of generality we can suppose that = ?; ; and C = A ! C 0 .

 is a -abstraction having a type derivation ending with x : B; ? `M : C ? ` x : B:M : B ! C Lambda

 is an application having a type derivation ending with ? `M : B ! A ? `N : B ? `(MN) the term is a substitution having a type derivation ending with ; `N : A ?; x : A; `M : B (?; x : A) \ = ; ; ?; `M x; N; ?;] :

Acknowledgments

We would like to thank Bruno Guillaume and Pierre-Louis Curien for their interesting remarks.

Starting from the rst proof net, we eliminate the c ? b cut, then the b ? b cut, and we apply the equivalence rules A and B to obtain the desired proof net. rule d : hiihjiM ?! hi + jiM

The typing environment can be split in three parts ?, , , where i is the length of ? and j is the length of . The typing judgment of hiihjiM ends with `M : A ; `hjiM : A Weak ?; ; `hiihjiM : A Weak and its translation is the proof net

The typing judgment of hi + jiM must end with: `M : A ?; ; `hi + jiM : A Weak and its translation is the proof net ? W W

T(N)

A We notice that the two proof nets are already the same. This is the second of the exception cases of the lemma.

The proof of strong normalization of l

We are now able to show strong normalization of l . To achieve this result, we use the following abstract theorem (see for example 11]) : Theorem 4.3 Let R = hO; R 1 R 2 i be an abstract reduction system such that R 2 is strongly normalizing and there exist a reduction system S = hO 0 ; R 0 i, with a translation T of O into O 0 such that a ?! R1 b implies T(a)?! + R 0 T(b); a ?! R2 b implies T(a) = T(b).

Then if R 0 is strongly normalizing, R 1 R 2 is also strongly normalizing.

If we take O as the set of typed l -terms, R 1 as l ? fe 2 ; dg, R 2 as fe 2 ; dg, O 0 as the set of proof nets and R 0 as the reduction R E , then, by the Theorem 4.3 and the fact that the system including the rules fe 2 ; dg is strongly normalizing 8], we can conclude : Theorem 4.4 (Strong normalization of l) The typed l -calculus is strongly normalizing.

Rule e 1 . Without loss of of generality we can suppose that = ?; ; . We know also, by hypothesis, that x 2 , so that can be written as x : B; ? 00 ; 00 , where ? = ? 0 ; ? 00 , = 0 ; 00 and such that the set di erence ? n is ? 0 and n is t 0 .

; `N : B ? 0 ; 0 `M : C \ (? 0 ; 0) = ; ?; ; x : B ` M : C (weak) (?; x : B) \ = ; ?; ; ` M x; N; ?;] : C (sub) Since 0 , then it is evident that \ 0 = ;, and since ? 0 ?, then \ ? 0 = ; comes from the fact that (?; x : B) \ = ;. Indeed, (n x) \ (? 0 ; 0) = ; is a consequence of \ (? 0 ; 0) = ;. We thus obtain ? 0 ; 0 `M : C ((n x)) \ (? 0 ; 0) = ;

?; ; `((n x))M : C

(weak) Rule e 2 . Without loss of of generality we can suppose that = ?; ; . We also know, by hypothesis, that x 6 2 , so that can be written as ? 00 ; 00 , where ? = ? 0 ; ? 00 , = 0 ; 00 and so ? 0 ; 0 ; x : B; = ?; ; x : B.

; `N : B ? 0 ; 0 ; x : B `M : C (? 0 ; 0 ; x : B) \ = ; ?; ; x : B ` M : C (weak) (?; x : B) \ = ; ?; ; ` M x; N; ?;] : C (sub ; `N : B ? 0 ; 0 ; x : B `M : C ? 0 = ? n 00 = n ? ; ; ? 0 `M x; N; ? n ; (n ?)] : C (sub) ?; ; `(? \)M x; N; ? n ; (n ?)] : C (weak)

Rule n 1 . Without loss of of generality we can suppose that = ?; ; . ; `N : B ?; ; x : B `y : C (ax) (?; x : B) \ = ;

?; ; `y x; N; ?;] : C (sub) ?; ; ; x : B `y : C (ax)

Rule n 2 . Without loss of of generality we can suppose that = ?; ; .

; `N : C ?; ; x : C `x : C (?; x : C) \ = ; ?; ; `y x; N; ?;] : C (sub)

; `N : C ? \ = ; ?; ; `?N : C (weak) Rule c 1 . Without loss of of generality we can suppose that = ?; ; , where ? = 0 ; ; . Since x 2 n , then can be written as 0 ; x : B.

; `N : B 0 ; ; x : B; `P : C ; y : A; ; `M : C (; y : A) \ (0 ; x : B) = ; 0 ; ; = ?; x : B; `M y; P; ;] : C (sub) (?; x : B) \ = ; ?; ; `M y; P; ;] x; N; ?;] : C ; `N : B x : B; 0 ; ; `P : C (x : B; 0 ;) \ = ; 0 ; ; ; `P `M : C (?) \ = ; ?; ; `(?)M : C (weak)