
Proof Nets and Explicit SubstitutionsRoberto Di Cosmo� Delia Kesner x Emmanuel Polonovski�January 13, 2000AbstractWe re�ne the simulation technique introduced in [10] to show strong normaliza-tion of �-calculi with explicit substitutions via termination of cut elimination in proofnets [12]. We �rst propose a notion of equivalence relation for proof nets that ex-tends the one in [9], and we show that cut elimination modulo this equivalence relationis terminating. We then show strong normalization of the typed version of the �l-calculus with de Bruijn indices (a calculus with full composition de�ned in [8]) usinga translation from typed �l to proof nets. Finally, we propose a version of typed �lwith named variables which helps to better understand the complex mechanism of theexplicit weakening notation introduced in the �l-calculus with de Bruijn indices [8].1 IntroductionThis paper uses linear logic's proof nets, equipped with an extended notion of reduction, toprovide several new results in the �eld of explicit substitutions. It is also an important stepforward in clarifying the connection between explicit substitutions and proof nets, two wellestablished formalisms that have been used to gain a better understanding of the �-calculusover the past decade. On one side, explicit substitutions provide an intermediate formalismthat - by decomposing the � rule into more atomic steps - allows a better understanding ofthe execution models. On the other side, linear logic decomposes the intuitionistic logicalconnectives, like the arrow, into more atomic, resource-aware connectives, like the lineararrow and the explicit erasure and duplication operators given by the exponentials: this de-composition is re
ected in proof nets, which are the computational side of linear logic, andprovides a more re�ned computational model than the one given by the �-calculus, which isthe computational side of intuitionistic logic1.The pioneer calculus with explicit substitutions, �� , was introduced in [1] as a bridge be-tween the classical �-calculus and concrete implementations of functional programming lan-guages. An important property of calculi with explicit substitutions is nowadays knownas PSN, which stands for \Preservation of Strong Normalization": a calculus with explicitsubstitutions has PSN when all �-terms that are strongly normalizing using the traditional�-reduction rule are also strongly normalizing w.r.t. the more re�ned reduction system de-�ned using explicit substitutions. But �� does not preserve �-strong normalization as shownby Mellies, who exhibited a well-typed term which, due to the substitution composition rulesin �� , is not ��-strongly normalizing [17].�DMI-LIENS (CNRS URA 1347) Ecole Normale Sup�erieure - 45, Rue d'Ulm - 75230 Paris France.Email:fdicosmo,polonovsg@ens.frxLRI (CNRS URA 410) - Bât 490, Universit�e de Paris-Sud - 91405 Orsay Cedex, France.Email:kesner@lri.fr1Using various translations of the �-calculus into proof nets, new abstract machines have been proposed,exploiting the Geometry of Interaction and the Dynamic Algebras [13, 2, 5], leading to the works on optimalreduction [14, 16]. 1



Since then, a quest was started to �nd an \optimal" calculus having all of a wide range ofdesired properties: it should preserve strong normalization, but also be con
uent (in a verylarge sense that implies the ability to compose substitutions), and its typed version shouldbe strongly normalizing.Meanwhile, in the linear logic community, many studies focused of the connection between�-calculus (without explicit substitutions) and proof nets, trying to �nd the proper variantor extension of proof nets that could be used to cleanly simulate �-reduction, like in [7].Finally, in [10], the �rst two authors of this work showed for the �rst time that explicitsubstitutions could be tightly related to linear logic's proof nets, by providing a translationinto a variant of proof nets from �x [18, 4], a simple calculus with explicit substitutions andnamed variables, but no composition.This connection was promising because proof nets seem to have many of the propertieswhich are required of a \good" calculus of explicit substitutions, and especially the strongnormalization in the presence of a reduction rule which is reminiscent of the compositionrule at the heart of Mellies' counterexample. But [10] only dealt with a calculus withoutcomposition, and the translation was complex and obscure enough to make the task of ex-tending it to the case of a calculus with composition quite a daunting one.In this paper, we can �nally present a notion of reduction for Girard's proof nets which is
exible enough to allow a natural and simple translation from David and Guillaume's �l,a complex calculus of explicit substitution with de Bruijn indices and full composition [8].This translation allows us to prove that typed �l is strongly normalizing, which is a newresult con�rming a conjecture in [8]. Also, the fact that in the translation all informationabout variable order is lost suggests a version of typed �l with named variables which isimmediately proved to be strongly normalizing. This is due to the fact that only the typeinformation is used in the translation of both calculi. Also, the typed named version of �lgives a better understanding of the mechanisms of labels existing in the calculus. In partic-ular, names allow to understand the �ne manipulation of explicit weakenings in �l withoutentering into the complicate details of renaming used in a de Bruijn setting.The paper is organized as follows: we �rst recall the basic de�nitions of linear logic andproof nets and we introduce our re�ned reduction system for proof nets (Section 2), thenprove that it is strongly normalizing (Section 3). In Section 4 we recall the de�nition of the�l calculus with its type system, present the translation into proof nets, and show strongnormalization of typed �l. Finally, we introduce a version of typed �l with named variables(Section 5), enjoying the same good properties, and we conclude with some remarks anddirections for future work (Section 7).2 Linear logic, proof nets and extended reductionWe recall here some classical notions from linear logic, namely the linear sequent calculusand proof nets, and some basic results concerning con
uence and normalization.MELL: Multiplicative Exponential linear logic Let A be a set of atomic formulae.We suppose that A is partitioned in two disjoint subsets representing positive and negativeatoms respectively.The set of formulae of the Multiplicative Exponential fragment of linear logic (called MELL)is de�ned by the following grammar, where a 2 A:F ::= a j F 
 F (tensor) j F O F (par) j !F (of course) j ?F (why not)For every p 2 A, we assume that there is p0 2 A, called the linear negation of the atomp. Linear negation of formulae is de�ned as follows2



p? = p0 p0? = p A?? = A (?A)? =!(A?) (A 
 B)? = A? O B?From now on we will write p? instead of p0.The name MELL comes from the connectors 
 and O which are called \multiplicatives",while ! and ? are called \exponentials". We say that a formula is exponential if it startswith an exponential connector. While we refer the interested reader to [12] for more detailson linear logic, we give here a one-sided presentation of the sequent calculus for MELL:` A;A? Axiom ` �; A ` A?;�` �;� Cut ` �; A` �; ?A Dereliction ` �; ?A; ?A` �; ?A Contraction` �; A;B` �; AOB Par ` �; A ` B;�0` �; A
B;�0 T imes ` �` �; ?A Weakening ` A; ?�`!A; ?� BoxMELL proof nets To all sequent derivations in MELL it is possible to associate anobject called a \proof net", which allows to abstract from many inessential details in aderivation, like the order of application of independent logical rules: for example, there aremany inessentially di�erent ways to obtain ` A1OA2; : : : ; An�1OAn from ` A1; : : : An, whilethere is only one proof net representing all these derivations.Proof nets are de�ned inductively by rules that follow closely the ones of the one-sidedsequent calculus, and the set of proof nets is denoted PN . To simplify the drawing of aproof net, we use the following notation: a conclusion with a capital greek letter �;�; : : :really stands for a set of conclusions, each one with its own wire.AxA A? (Axiom) � �0A?A (Cut)
� D?AA (Dereliction) ?AC� ?A ?A (Contraction)
� A BA O B (Par) � �0A BA
B (T imes)W?A� (Weakening) A ?�!A ?� (Box)Each box has exactly one conclusion preceded by a !, which is named \principal" port (orformula), while the other conclusions are named \auxiliary" ports (or formulae). In whatfollows, we will sometimes write an axiom link as A A?.3



Reduction of proof nets Proof nets are the \computational object" behind linear logic,because there is a notion of reduction on them (called also \cut elimination") that corre-sponds to the cut-elimination procedure on sequent derivations. The traditional reductionsystem for MELL is de�ned as follows:Reduction acting on a cut Ax� cut, removing an axiom :
Ax-cutAxA A? ACut AReduction acting on a cut O�
 :A BA O B A? B?A? 
 B?Cut O�
 A B A?Cut Cut B?

Reduction acting on a cut w � b, erasing a box :
W?A W?�A? ?�!A? ?�Cut

w-b
Reduction acting on a cut d� b, opening a box :

D?AA A? ?�!A? ?�Cut d-b A? ?�CutA
Reduction acting on a cut c� b, duplicating a box :

?A A? ?�!A? ?�Cut
?AC A?!A? ?�?Ac-b?A Cut CutA? ?�?�!A? ?�?A C?�Reduction acting on a cut b� b, absorbing a box into another :4



?�0 ?AB Cut?�0 A??�!A? ?� b-b ?�?�A?Cut !B !A? ?�?�0?�0 ?A?AB!BExtended reduction modulo an equivalence relation Unfortunately, the original no-tion of reduction on PN is not well adapted to simulate neither the � rule of �-calculus,nor the rules dealing with propagation of substitution in explicit substitution calculi: toomany inessential details on the order of application of the rules are still present, and to makeabstraction from them, one is naturally led to de�ne an equivalence relation on PN , as isdone in [9], where the following two equivalences are introduced:
CC

?AC?A C
?A ?A?A1 ?A2 ?A3 ?A2 ?A3?A1�A C?A?A

?A ?A �B!B C?A ?A?A ?A?A BB
!BEquivalence A turns contraction into an associative operator, and corresponds to forget-ting the order in which the contraction rule is used to build, for example, the derivation:`?A; ?A; ?A`?A; ?A Contraction`?A ContractionEquivalence B abstracts away the relative order of application of the rules of box-formationand contraction on the premises of a box, like in the following example.`?A; ?A;B`?A;B Contraction`?A; !B Box `?A; ?A;B`?A; ?A; !B Box`?A; !B ContractionFinally, besides the equivalence relation de�ned in [9], we will also need an extra reductionrule allowing to remove unneeded weakening links when simulating explicit substitutions:

wc?A ?A?AW ?AC ......
This rule allows to simplify the proof below on the left into the proof on the right�`?A`?A; ?A Weakening`?A Contraction �`?A5



Notation We will call in the following R the system made of rules Ax� cut, O�
, w� b,d � b,c � b, b � b and wc; we will name E the relation induced on PN by the contextualclosure of axioms A and B; we will write RE for the system made of the rules in R and theequivalences in E; �nally, R:wcE will stand for system RE without rule wc.Systems RE and R:wcE , that contain E, are actually de�ning a notion of reduction moduloan equivalence relation, so we write for example t �!RE s if and only if there exist r0 ands0 such that r =E r0 �!R s0 =E s, where the equality =E is the re
exive, symmetric andtransitive closure of the relation de�ned by A and B.An example of reduction in RE is given here:

wc
w-b

�B

?��?C
W ?��? ?��?

C ?��?
W

C
W

C?��?!B�?B�? ?��??��?B� ?��??��? ?��? ?B�? B� ?��??��? ?��?
?��?!B� ?��?C

?��?
?��?

The reduction RE is 
exible enough to allow an elegant simulation of � reduction and ofexplicit substitutions, but for that, we �rst need to establish that RE is strongly normalizing.Let us see this property in the next section.3 Termination of REWe know from [9] that R:wcE is terminating, and we can show easily that wc is terminatingtoo, so if we could show that the wc-rule can be postponed with respect to all the other rulesof R:wcE , we would be easily done using a well-known abstract lemma. Unfortunately, thereis precisely one case in which we cannot postpone the wc-rule: when a wc reduction createsan axiom-cut redex, which in turn can only happen if the axiom link in question introducesan exponential formula as the following example of reduction sequence from t to t0 shows:6



WC !A?A?!A Ax-cut?A?!Awc !A !A
We remark that starting from the same proof net t we cannot get the same result t0 bydelaying the application of the wc-rule. This is due to the fact that the axiom involved in thas exponential formulae and this is the only case in which the wc-rule cannot be postponed.As a consequence we can split our termination proof in the following way:� We �rst prove that RE is terminating on the set of proof nets without exponential ax-ioms (Theorem 3.7). This can be done with the postponement technique (Lemma 3.3),because the counterexample given above only hold in proof nets with exponential ax-ioms.� We then show that termination of RE on all proof nets in PN is a consequence oftermination of RE on proof nets without exponential axioms (Theorem 3.11). Toobtain this result, we give a translation of any proof net in PN into a proof netwithout exponential axioms which allows us to simulate the reduction notion RE onPN into the reduction notion RE on proof nets without exponential axioms.3.1 Termination of RE on proof nets without exponential axiomsWe show in this section that all the RE-reduction sequences from a proof net withoutexponential axioms terminate. We �rst remind the following result from [9]:Lemma 3.1 (Termination of R:wcE ) The relation �!R:wcE is terminating on PN .Then, we establish the termination of wc.Lemma 3.2 (Termination of wc) The relation �!wc is terminating on PN .Proof. The wc-rule strictly decreases the number of nodes in a proof net so no in�nitewc-reduction sequence is possible.Finally, we show that given any proof net without exponential axioms, the wc-rule canbe postponed with respect to any rule of R:wcE .Lemma 3.3 (Postponement of wc w.r.t R:wcE ) Let t be a proof net without exponentialaxioms. If t �!wc �!R:wcE t0, then, there is a sequence t�!+R:wcE �!�wc t0.Proof. Let t �!wc �!R:wcE t0 be a reduction sequence starting at t with a wc-reduction step. Let us show that we can build an equivalent reduction t�!+R:wcE �!�wc t0by analyzing all the possible cases.We do not detail here the cases of disjoint redexes: if we apply the wc- rule followedby a rule R1 in R:wcE and if the redexes occur at disjoint positions, then it is evident thatR1 can be applied �rst, followed by wc, and getting the same result. We study now all theremaining cases: 7



1. The rule c� b, �rst possibility :W Ba BbcCCa b
Ca bW B BcC

c-b Ca bW cC W
cBCC a b

cB c-bwc
Bw-b c-b wcBa BbCcC2. The rule c� b, second possibility :Ca b Ca b B'a B'bcCc-bcB cwc B'

Ba BbcC
wcwcc-b

3. The rule d� b, �rst possibility :

8



W

W

Da Da cB
W WDa Da cBaC cB wc

Bw-b wc
cC

d-b
d-bB B

cC
c-b

cC
Ba

4. The rule d� b, second possibility :Da cB Da ca B'wc d-bcB'
ca Bd-b wc

We notice that everything is happening as if the redexes were disjoint. This is dueto the fact that the d � b rule is non-duplicating and non-erasing w.r.t boxes. As aconsequence, the wc-redex is still preserved after the application of the d� b rule.5. The rule b� b, �rst possibility :

9



W

W
cBB'a B'a

cW WB'a cB'a B
wcB'a BC b-bwc

Bw-b b-b
cCB BcC

c-b
cC

B'a B
6. The rule b� b, second possibility :For the same reason as for d� b, the redexes are considered as disjoint.7. The rule w � b, �rst possibility :W

WW
WW

wcW W WWcBC cB wc
Bw-b w-b

cWw-b

cCB BcC
c-b cC

8. The rule w � b, second possibility :WW cB'cB wc cWw-bw-b10



9. The other rules :For all the other rules the redexes are disjoint. Indeed, only the contraction or theweakening appearing in a reduction sequence can interact with another redex. How-ever, during the elimination of the axiom-cut or the O-
 cut, neither the weakeningnor the contraction may interfere (for proof nets without exponential axioms).????????Until now we have only worked with reduction rules of RE , but to complete our statementwe also need to show that the wc-rule can be delayed w.r.t one equivalence step. We proceedas we did for the reduction rules. We do not study the cases where redexes are disjointbecause they are evident. The remaining cases are the following:1. Associativity :W C CA
A3A2A1

WCA WCA
�A wc �A

�A wcC CA3CA2A1 A
CCA2A1

CCA2A1 A A3
A3 C C A3A2A1

2. Box passing, �rst case :WCC A2A1
A C A2A1 AW CCA1
A A2 W�A wc �B

�B wc ACA1 A2
CA1 A2CA3. Box passing second case : 11



wc ACA1 A2 ACA2A1CW CA1 A2
A

CW C C W
�B

�AA1 A2
A

�B CA2A1
A

wc
We can now put together the previous results to prove termination of RE on the set ofproof nets without exponential axioms.But �rst of all, we establish two propositions stating the stability of wc and R:wcE .Proposition 3.4 (Stability by �!wc ) The set of the proof nets without exponential ax-ioms is stable by the reduction �!wc . In other words, for every proof net r withoutexponential axioms, if r �!wc r0 then r0 is a proof net without exponential axioms.Proof. We know that the application of wc does not modify the formulae of a proof net.As a consequence, it is easy to see that the set of proof nets without exponential axioms isstable by �!wc .Proposition 3.5 (Stability by �!R:wcE ) The set of the proof nets without exponentialaxioms is stable by the reduction �!R:wcE . In other words, for every proof net r withoutexponential axioms, if r �!R:wcE r0 then r0 is a proof net without exponential axioms.Proof. The cut-elimination rules are local reductions so that they do not add axioms tothe a proof net (and so, a priori no exponential axioms). As a consequence, the formulaeof a proof net are never modi�ed and, if r does not have exponential axioms, then r0 canneither have exponential axioms.Mettre l'endroit ou on applique de la stabilityLemma 3.6 (Extraction of R:wcE ) Let S be an in�nite sequence of RE-reductions start-ing at a proof net t without exponential axioms. Then, there is a sequence of RE-reductionsfrom the same proof net t which starts by t �!R:wcE t0, where t0 is also a proof net with-out exponential axioms, and which continues with an in�nite sequence S0. We write thissequence as (t �!R:wcE t0) � S0. 12



Proof. Let S be an in�nite sequence of RE-reductions starting at t:t �!RE : : : �!RE : : : �!RE : : :We know, by Lemmas 3.2 and 3.1, that the systems wc and R:wcE are both terminating,so it is not possible to have an in�nite sequence only made of wc or R:wcE . As a consequence,the in�nite sequence of RE-reductions must be an in�nite alternation of non-empty �nitesequences of wc and R:wcE .Now, there are two cases: either the alternation of sequences starts with a sequenceof R:wcE -reductions, and then the result holds by taking the sequence S without its �rstreduction step as S0;Or the alternation starts with a wc-step :t�!+wc �!+R:wcE �!+wc �!+R:wcE : : :that is, written in other wayt�!+wc �!R:wcE t00�!�R:wcE �!+wc �!+R:wcE : : :In this case, we consider the sub-sequence P = t�!+wc �!R:wcE t00 of the sequence Sstarting at t. This sub-sequence is composed by k reduction steps of wc and one reductionof R:wcE . Let call R the remaining sub-sequence of S.By applying Lemma 3.3 k times on P , we can move the rule of R:wcE at the head of thesequence. By Propositions 3.5 and 3.4 we know that all the proof nets of this reductionsequence are proof nets without exponential axioms. We thus obtain a �nite sequence P 0which begins with a reduction t �!R:wcE t0, and ends on t00. As a consequence, P 0 �R is thein�nite sequence starting by a reduction R:wcE we were looking for.Now it is easy to establish the fundamental theorem of this section:Theorem 3.7 (Termination of RE on proof nets without exponential axioms) Thereduction relation RE is terminating on the set of proof nets without exponential axioms.Proof. We show it by contradiction. Let us suppose that RE is not terminating on thosenets. Then, there exist a proof net without exponential axioms t and an in�nite sequenceS of RE starting at t. By applying Lemma 3.6 to this sequence S, we obtain a sequence(t �!R:wcE t0) � S0 such that S0 is in�nite again. If we iterate this procedure an arbitrarynumber times, we obtain a sequence of R:wcE -reduction steps arbitrary long. This contradictsthe fact that R:wcE is terminating.3.2 Termination of RE on proof nets with exponential axiomsWe know now that RE is terminating on every proof net without exponential axioms, butwe want now to show even more: termination of RE on all the proof nets. To achieve thisresult, we show in this section how to associate to a proof net t, which can eventually containsome exponential axioms, another proof net E(t) without exponential axioms, and such thatevery reduction from t of length n can be \simulated" on E(t) by another reduction of lengthat least n. This property will be enough to reduce termination of RE on proof nets withexponential axioms to termination of RE on proof nets without exponential axioms.Now, we �rst observe that in the case of the MLL proof nets, one can use indi�erentlynets with \atomic" axioms (i.e. the conclusions of the axiom links are atomic formulae) ornot, because we can easily replace a non-atomic axiom by its \expansion": for example, ifA and B are two formulae, then the axiom 13



A
B A? O B?can be replaced by A A?A
B A? O B?B B?We can iterate this procedure until no non-atomic axiom remains in the proof net, andobtain in this way what we will write as exp(A
B A?OB?), the complete expansionof the axiom A
B A?OB?. An expanded proof net is still a well-formed proof net (asde�ned in Section 2) and has the same dynamic properties of the original proof net, i.e. allreductions on the original proof net can be simulated on the expanded proof net.Starting from this observation, we could de�ne expansion for MELL, and hope to obtaina similar result. Nevertheless, it turns out that for our purposes it is enough to expand onlyexponential axioms, without expanding all non atomic ones, so we will focus here on thislimited expansion of exponentials.Let us formalize this special notion of complete expansion of an axiom, for which we canassociate a measure of complexity rk.De�nition 3.1 (Complete expansion of an axiom link) For each axiom linkA A?we can associate a net exp(A A?) with same conclusions, de�ned by induction on thecomplexity of the formula A as follows:� exp(A A?) = A A?, if A is not an exponential formula
� exp(!A ?A?) = A?A D?A??A?!A

exp( )
which is well de�ned, because the formula A is smaller than !A.De�nition 3.2 (Measure of a complete expansion) We de�ne the measure rk of acomplete expansion of an axiom by cases:� rk(exp(A A?)) = 0, if A is not an exponential formula� rk(exp(?A? !A)) = 1 + rk(exp(A A?))We can now de�ne the notion of expanded net E(t) for every net t:De�nition 3.3 (Expanded net) The expanded net of a net t, written E(t), is the proofnet obtained from t by replacing each occurrence of an exponential axiom a by exp(a).For example, here is a proof net and its expanded net:14



Dexp!(A 
 B?) ?(A?OB) !(A 
 B?)
A 
 B? A?OB?(A?OB)?(A?OB)The measure of the complete expansion of this net is 1.Remark 3.8 The only di�erence between a proof net t and its expanded net E(t) is on theset of their axioms. So, for every reduction t �!RE t0 which does not a�ect the axioms oft, there is a reduction E(t) �!RE E(t0).We have now to show that there is no problem for the axioms either, and to do so weneed the following measure:De�nition 3.4 (Maximal distance of a cut) Given a proof net t and a cut link on acompletely expanded axiom a in t, the measure d(a; t) is the maximal distance, in the proofnet t, between this cut and the �rst weakening or dereliction node encountered in the waywhich leaves the cut, by the opposite extremity from the expanded axiom a, and go throwthe nodes from down to up (here up and down are used formally for the orientation of thenodes presented in the introduction). More precisely, each node encountered and each boxpassed on the way values 1, including the �nal dereliction or weakening node. This measureis always �nite on a �nite proof net because there are no arbitrary long ascendant ways.Example 3.9 In the following net, the maximal distance of the cut is 4.W

C WC W3 4
1 22 3 FullyexpandedaxiomLemma 3.10 (Cut elimination on an expanded net) Let t be an expanded net. Acut in t with a completely expanded axiom exp(a) reduces in t like in an ordinary axiomcut. In other words,

!A?A?!A !A RE+Ax
Cutexp( )

Proof. We prove the property by induction on the lexicographic order (rk(exp(a)); d(exp(a); t))where exp(a) is the completely expanded axiom in the proof net t.15



All the cases such that rk(exp(a)) = 0 (including the base case) correspond to a proofnet in which exp(a) is an axiom link, so the same reduction rule applies and the propertythen trivially holds. Otherwise, for rk(exp(a)) > 0, we must consider all the other cases,which are separated in two di�erent categories:The cut formula has the following shape : ?A?. In this case, the proof net is expanded,so the cut must necessarily take place with the principal door of a box :
?A??A?D!A
A?Aexp( ) R ?��?A ?��?!Athen, we can eliminate the b� b cut to obtain :

?A?DA?Aexp( ) R ?��?A!A!A ?��?then, we eliminate the d� b cut :
?��?!A

A?Aexp( ) RA ?��?
�nally, by de�nition, exp(A? A) is smaller than exp(?A? !A). So, the mea-sure rk has decreased and we can apply the hypothesis induction on the axiom cutconnected with exp(A? A). Then we obtain :16



R ?��?A ?��?!AThe cut formula has the following shape : !A. In this case, there are several possibil-ities for the node which is cut with the completely expanded axiom:� A weakening node. In this case, it is not necessary to use the induction. . .exp( )
?A?W?A??A? !A

A? AD
We eliminate the w � b cut to obtain :?A?W� A dereliction node. The cut has the following shape :

?A?!A
Aexp( )?A?DA? ?A?DA?and we can eliminate the d� b cut :Aexp( )?A?DA? A?
17



then, as previously, we notice that the measure rk(exp(A? A)) is smaller thanthe measure rk(exp(?A? !A)) so we can apply the induction to obtain:
?A?DA?� A contraction node. In this case, the proof net has the following shape:

?A?!A
Aexp( )?A?DA? ?A?C?A? ?A?

and we can then eliminate the c� b cut as follows:
?A?!A

Aexp( )?A?DA? ?A? ?A?!A
Aexp( )?A?DA? ?A?

?A?CNow, the measure rk(exp(A? A)) is the same but d has decreased in the newproof net (we have one less contraction node), so that we can apply twice theinduction hypothesis to obtain the �nal proof net:
18



?A?C?A? ?A?
� An auxiliary door of a box. In this last case, we have this con�guration :

?A??A?D!A
A?Aexp( ) R?A??A? ?��??��?B!Bso that we can eliminate the b� b cut as follows:
?A?DA?Aexp( ) R!A ?A? ?��?B ?��?!B?A??A?Now, the measure rk(exp(A? A)) is the same but d has decreased in the newproof net (we have one less box), so that we can apply the induction hypothesisto obtain the �nal proof net: R?A??A? ?��??��?B!B� Since the proof net is expanded there is not cut with an exponential axiom, sothere is no other case to consider.19



This allows us to establish the �nal result of this section :Theorem 3.11 (Termination of RE) The reduction RE is terminating on all proof nets.Proof. We establish this result by proving that each reduction step t �!RE t0 can besimulated by at least one reduction step E(t)�!+RE E(t0).If the reduction step t �!RE t0 does not reduce any exponential axiom with a cut, thenwe obtain the result immediately because the only di�erence between t and E(t) is on theiraxioms. Indeed, we can reproduce the same reduction on E(t) in order to obtain E(t0) andthis concludes this case.Otherwise, if t �!RE t0 reduces an exponential axiom a with a cut then by Lemma 3.10there exist a non-empty sequence of reductions starting at E(t) which eliminates the com-plete expansion of the axiom a, and gives the proof net E(t0).Now, to conclude the proof, suppose that there is a proof net t such that the reductionRE is not terminating on t, that is, there is an in�nite RE-reduction sequence starting att. By the previous remark we can simulate this in�nite reduction sequence by another RE-reduction sequence on expanded proof nets not containing exponential axioms. This leadsto a contradiction with Theorem 3.7 so that we can conclude that RE is terminating on theset of all proof nets.4 From �l with de Bruijn indices to PNWe now study the translation from typed terms of the �l-calculus [8] into proof nets. Westart by introducing the calculus, then we give the translation of types of �l into formulaeof linear logic, and the translation of terms of �l into linear logic proof nets PN . We verifythat we can correctly simulate every reduction step of �l via the notion of reduction RE .Finally, we use this simulation result to show strong normalization of the �l-calculus.4.1 The �l-calculusThe �l-calculus is a calculus with explicit substitutions where substitutions are unary (andnot multiple). The version studied in this section has variables encoded with de Bruijnindices. The terms of �l are given by the following grammar:M ::= n variablej �M abstractionj (MM) applicationj hkiM labelj [i=M; j]M substitutionIntuitively, the term hkiM means that the k � 1 �rst indices in M are not \free" (in thesense of free variables of calculus with indices). The term [i=N; j]M means that the i � 1�rst indices are not free in N and the j�1 following indices are not free inM . Those indicesare used to split the typing environment of [i=N; j]M in three parts: the �rst (resp. second)one for free variables of M (resp. N), the third one for the free variables in M and N .The de Bruijn indices we use start with 0 instead of 1. For example, the identity functionis written as I = �0.The reduction rules of �l are given in Figure 1 and the typing rules of �l are given inFigure 2, where we suppose that j�j = i and j�j = j.We notice that for each well-typed term of the �l-calculus, there is only one possibletyping judgment. This will simplify the proof of simulation of �l by easily considering theunique typing judgment of terms.As expected the �l-calculus enjoys the subject reduction property [15].20



(b1) (�MN) �! [0=N; 0]M(b2) (hki(�M)N) �! [0=N; k]M(f) [i=N; j](�M) �! �[i+ 1=N; j]M(a) [i=N; j](MP ) �! ([i=N; j]M)([i=N; j]P )(e1) [i=N; j]hkiM �! hj + k � 1iM if i < k(e2) [i=N; j]hkiM �! hki[i� k=N; j]M if i � k(n1) [i=N; j]k �! k if i > k(n2) [i=N; j]i �! hiiN(n3) [i=N; j]k �! j+k-1 if i < k(c1) [i=N; j][k=P; l]M �! [k=[i� k=N; j]P; j + l � 1]M if k � i < k + l(c2) [i=N; j][k=P; l]M �! [k=[i� k=N; j]P; l][i� l + 1=N; j]M if i � k + l(d) hiihjiM �! hi+ jiMFigure 1: Reduction rules of �l with de Bruijn indices�; A;� ` i : A Axiom � `M : B�;� ` hiiM : B Weak� `M : B ! A � ` N : B� ` (MN) : A App B;� `M : C� ` �M : B ! C Lambda�;� ` N : A �; A;� `M : B�;�;� ` [i=N; j]M : B SubstFigure 2: Typing rules for �l with de Bruijn indicesTheorem 4.1 (Subject Reduction) If 	 `M : C and M �! M 0, then 	 `M 0 : C.4.2 Translation of types and terms of �lWe use the translation of types introduced in [6] given by :A� = A if A is an atomic type(A! B)� = ?((A�)?)O !B� (that is, !A�(!B�) otherwiseSince wires are commutative in proof nets, we feel free to exchange them when we de�nethe translation of a term. The translation associates to every typed term M of �l, whosetype judgment ends with the conclusion written below on the left, a proof net having theshape sketched below on the right:� `M : A M A�?��?Here is the formal de�nition of the translation T from �l-terms into proof nets.� If the term is a variable and its type judgment ends with the rule written below onthe left, then its translation is the proof net on the right21



�; A;� ` i : A Axiome W?��?W?��? D?A�?A�? A�where i is the position of A in the typing environment,� If the term is a �-abstraction and its type judgment ends with the rule written belowon the left, then its translation is the proof net on the right
B;� `M : C� ` �M : B ! C Lambda ?B�??��? C�T(M)

?B�? O !C�?��? !C�?B�?� If the term is an application and its type judgment ends with the rule written belowon the left, then its translation is the proof net on the right
� `M : B ! A � ` N : B� ` (MN) : A App C

T(M)
B�?B�? O !A� ?��??��?

A� ?��?
T(N)?��? D!B� ?A�?!B� 
 ?A�?� If the term is a substitution and its type judgment ends with the rule written belowon the left, then its translation is the proof net on the right

�;� ` N : A �; A;� `M : B�;�;� ` [i=N; j]M : B Subst ?A�? !A� T(N)T(M)
B�

?��?
?��? ?��?

?��?A� ?��?
?��?C
?��?

where i is the length of the list � and j is the length of the list �, then its translationis the proof net� Finally, if the term is a label and its type judgment ends with the rule written belowon the left, then its translation is the proof net on the right� `M : B�;� ` hiiM : B Weak ?��? B� ?��?WT(M)where i is the length of the list �, then its translation is the proof net22



4.3 Simulating �l-reductionWe now verify that our notion of reduction RE on PN simulates the �l-reduction on typed�l-terms. It is in this proof that we �nd the motivation for our choice of translation from�-terms into proof nets: with the more traditional translation sending the intuitionistic typeA ! B into the linear !A ( B, the simulation of the rewrite rule f would give rise to anequality, not to a reduction step like in this paper.Lemma 4.2 (Simulation of �l) The relation RE simulates the �l-reduction on typedterms: if t �!�l t0, then T (t)�!+RE T (t0), excepted for the rules e2 and d for whichwe have T (t) = T (t0).Proof. The proof proceeds by cases on the reduction rule applied in the step t �!�l t0.Since reductions �l and RE are closed under all contexts, we only need to study the caseswhere reduction takes place at the head position of t. In the proof, rule wc is used tosimulate b2; e1; n1; n2; n3, equivalence A is used to simulate a; c1; c2, and equivalence B isused to simulate f; a; c1; c2.� rule b1 : (�MN) �! [0=N; 0]MThe typing judgment of (�MN) ends withB;� `M : A� ` �M : B ! A Lambda � ` N : B� ` (�MN) : A Appand its translation is the proof net

C
� ?B�? A�T(M) B�?B�? O !A� ��

A� �
T(N)
D!B� ?A�?!B� 
 ?A�?

� ?B�? !A�
The typing judgment of [0=N; 0]M must end with:B;� `M : A � ` N : B� ` [0=N; 0]M : A Substand its translation is the proof net 23



T(M) B� �!B� �
�C

T(N)� ?B�?
A�Starting from the �rst proof net, we eliminate the O-
 cut, then the d � b cut and�nally the Ax� cut cut to obtain the �nal proof net.� rule b2 : ((hki�M)N) �! [0=N; k]MThe typing environment can be split in two parts � and �, where k is the length of�. The typing judgment of ((hki�M)N) ends withB;� `M : A� ` �M : B ! A�;� ` hki�M : B ! A �;� ` N : B�;� ` ((hki�M)N) : Aand its translation is the proof net

C
T(M)?B�? O !A� T(N)� ?B�? !A� W�� ?B�? A� ��

�
B�

A�
D!B� ?A�?!B� 
 ?A�?

��
�CThe typing judgment of [0=N; k]M must end with:�;� ` N : B B;� `M : A�;� ` [0=N; k]M : A Substand its translation is the proof net 24



T(M) B�!B�
T(N)� ?B�?

A�
��
�C

��
�As for the b� 1 rule, we eliminate the O-
 cut, then the d� b cut, and the Ax� cutcut. Finally, we apply the wc rule to achieve the desired result.� rule f : [i=N; j]�M �! �[i+ 1=N; j]MThe typing environment can be split in three parts �, �, �, where i is the length of� and j is the length of �. The typing judgment of [i=N; j]�M ends with�;� ` N : C B;�; C;� `M : A�; C;� ` �M : B ! A Lambda�;�;� ` [i=N; j]�M : B ! A Substand its translation is the proof netT(M)

?C�??B�? !A�?B�? O !A�
?B�?A� ?C�?�� ��

�C
T(N)C�!C� �� ��

The typing judgment of �[i+ 1=N; j]M must end with:�;� ` N : C B;�; C;� `M : AB;�;�;� ` [i+ 1=N; j]M : A Subst�;�;� ` �[i+ 1=N; j]M : B ! A Lambdaand its translation is the proof net 25



T(M) T(N)C�!C�?C�??B�? !A�?B�? O !A�
?B�?A���

�
���

��C�To reduce the �rst proof net into the second one, we must eliminate the b � b cut,then use the equivalence relation B (we will exactly show how to use the equivalencerelations in the case of the rule a).� rule a : [i=N; j](MP ) �! (([i=N; j]M)([i=N; j]P ))The typing environment can be split in three parts �, �, �, where i is the length of� and j is the length of �. The typing judgment of [i=N; j](MP ) ends with�;� ` N : C �; C;� `M : B ! A �; C;� ` P : B�; C;� `MP : A App�;�;� ` [i=N; j](MP ) : A Substand its translation is the proof net

C� �C
� T(M)

�B� �T(P)?B�? O !A� T(N)
?C�?C

C�!C� CA� �
!B� ?A�?!B� 
 ?A�?D �� ��� ?C�? �� ?C�??C�?

The typing judgment of (([i=N; j]M)([i=N; j]P )) must end with:26



�;� ` N : C �; C;� `M : B ! A�;�;� ` ([i=N; j]M) : B ! A Subst �;� ` N : C �; C;� ` P : B�;�;� ` ([i=N; j]P ) : B Subst�;�;� ` (([i=N; j]M)([i=N; j]P )) : A Appand its translation is the proof net

C�C� �C
C C

T(M) T(N)C�!C� B� T(P) ?C�? T(N)C�!C�?B�? O !A� �� �� �� ����� ?C�?�
�� �

A�
!B� ?A�?!B� 
 ?A�?D

We eliminate the c� b cut, then the b� b cut, and thus we get the following proof net:

27



�CC

T(M) T(N)C�!C� B� T(P) ?C�? T(N)C�!C�
C

?B�? O !A�

A�
D!B� ?A�?!B� 
 ?A�? C�

�� �� �
��

���
�
�

�
�

� ?C�?�
C�To get to the desired proof net we need to use the equivalence relations A and B whichwere introduced in Section 2. To better understand how to use them, we focus on thecrucial informations, i.e. the contraction nodes and their connections with the netsT (M), T (N) and T (P ). Here is the net corresponding to the above net :

�
C C
��T(M) T(N) T(P) T(N)� ��� �C�We use the associativity axiom A to obtain :

28



� CC
��T(M) T(N) T(P) T(N)� ��� �C�Again by associativity we get
� CC
��T(M) T(N) T(P) T(N)� ��� �C�Using the B axiom we can put the contraction inside the box :

29



�
C C��T(M) T(N) T(P) T(N)� ��

C�
��

And �nally we use the A axiom again to obtain the desired proof net :
� CC

�C
��T(M) T(N) T(P) T(N)� ����

� rule e1 : [i=N; j]hkiM �! hj + k � 1iM if i < kThe typing environment can be split in four parts �, �, �, and �0, where i is thelength of �, j is the length of �, and k (k > i) is the length of � plus the length of �plus 1. The typing judgment of [i=N; j]hkiM ends with�;�;�0 ` N : B �0 `M : A�; B;�;�0 ` hkiM : A Weak�;�;�;�0 ` [i=N; j]hkiM : A Substand its translation is the proof net
30



C C�0 A�T(M)�W �W ?B�?W !B�B� �� �� �0�0�0 �
T(N)

The typing judgment of hj + k � 1iM must end with:�0 `M : A�;�;�;�0 ` hj + k � 1iM : A Weakand its translation is the net W W��0 A�T(M)�W �Starting from the �rst proof net, we eliminate the w � b cut, then we apply the wcrule and we �nally obtain the desired proof net.� rule e2 : [i=N; j]hkiM �! hki[i� k=N; j]M if i � kThe typing environment can be split in four parts �, �0, �, �, where i is the lengthof � plus the length of �0, j is the length of � and k (k � i) is the length of �. Thetyping judgment of [i=N; j]hkiM ends with�;� ` N : B �0; B;� `M : A�;�0; B;� ` hkiM : A Weak�;�0;�;� ` [i=N; j]hkiM : A Substand its translation is the proof net
C� A�T(M)W �0 ?B�? !B�B� �� ���

T(N)�
31



The typing judgment of hki[i� k=N; j]M must end with:�;� ` N : B �0; B;� `M : A�0;�;� ` [i� k=N; j]M : A Subst�;�0;�;� ` hki[i� k=N; j]M : A Weakand its translation is the proof net
C� A�T(M)�W �0 ?B�? !B�B� �� ���

T(N)
We notice that the two nets are already the same. This is the �rst of the exceptioncases of the lemma.� rule n1 : [i=N; j]k �! k if i > kThe typing environment can be split in �ve parts �, A, �0, �, �, where i is the lengthof � plus the length of �0 plus 1, j is the length of � and k (k < i) is the length of �.The typing judgment of [i=N; j]k ends with�;� ` N : B �; A;�0; B;� ` k : A Axiome�; A;�0;�;� ` [i=N; j]k : A Substand its translation is the proof net

C�W ?B�?W !B�B� �� ���
T(N)�W �0W ?A�?DA�? A�

The typing judgment of k must end with:�; A;�0;�;� ` k : Aand its translation is the proof net 32



�W �W�W �0W ?A�?DA�? A�To reduce the �rst proof net into the second one it is enough to eliminate the w � bcut and to apply the wc rule.� rule n2 : [i=N; j]i �! hiiNThe typing environment can be split in three parts �, �, �, where i is the length of� and j is the length of �. The typing judgment of [i=N; j]i ends with�;� ` N : A �; A;� ` i : A Axiome�;�;� ` [i=N; j]i : A Substand its translation is the proof net
C�W !A�A� �� ���

T(N)�W ?A�?DA�? A�
The typing judgment of hiiN must end with:�;� ` N : A�;�;� ` hiiN : A Weakand its translation is the proof net

�W A� � �T(N)Starting from the �rst proof net, we eliminate the d � b cut, then the Ax � cut cut,and we apply the wc rule to obtain the desired proof net.� rule n3 : [i=N; j]k �! j+k-1 if i < kThe typing environment can be split in �ve parts �, �, �, A, �0, where i is the lengthof �, j is the length of � and k (k > i) is the length of � plus the length of � plus 1.33



The typing judgment of [i=N; j]k ends with�;�; A;�0 ` N : B �; B;�; A;�0 ` k : A Axiome�;�;�; A;�0 ` [i=N; j]k : A Substand its translation is the proof net

?A�? �0�C CC
�W ?B�?W !B�B� ���W �0W ?A�?DA�? A� T(N)�� ?A�??A�? �0�0

The typing judgment of j+k-1 must end with:�;�;�; A;�0 ` j+k-1 : A Axiomeand its translation is the proof net
�W �W�W �0W ?A�?DA�? A�As for the n1 rule, we eliminate the w � b cut, then we apply three times the wc ruleto achieve the desired result.� rule c1 : [i=N; j][k=P; l]M �! [k=[i� k=N; j]P; j + l � 1]M if k � i < k + lThe typing environment can be split into �ve parts �, �0, �, �, �0, where i is thelength of � plus the length of �0, j is the length of �, k (k � i) is the length of � andl (k + l > i) is the length of �0 plus the length of � plus 1. The typing judgment of[i=N; j][k=P; l]M ends with�;�;�0 ` N : B �0; B;�;�0 ` P : C �; C;�0 `M : A�;�0; B;�;�0 ` [k=P; l]M : A Subst�;�0;�;�;�0 ` [i=N; j][k=P; l]M : A Substand its translation is the proof net 34



�0 C�0
C C�0 A�T(M)� ?C�? !C�C� �0�0T(P) �0�0�� ?B�??B�? !B�B� ��T(N) �0�0���

The typing judgment of [k=[i� k=N; j]P; j + l � 1]M must end with:�;�;�0 ` N : B �0; B;�;�0 ` P : C�0;�;�;�0 ` [i� k=N; j]P : C Subst �; C;�0 `M : A�;�0;�;�;�0 ` [k=[i� k=N; j]P; j + l � 1]M : A Substand its translation is the proof net

�0C
CC�0 A�T(M)� ?C�? C� �0T(P) �0� ?B�? !B�B� ��T(N) �0�0��

�0!C� ��� �0�0
To reduce the �rst proof net into the second one, we must eliminate the b� b cut, thenapply the equivalence relations A and B.� rule c2 : [i=N; j][k=P; l]M �! [k=[i� k=N; j]P; l][i� l + 1=N; j]M if k + l � iThe typing environment can be split in �ve parts �, �0, �00, �, �, where i is the lengthof � plus the length of �0 plus the length of �00, j is the length of �, k (k+ l � i) is thelength of � and l is the length of �0. The typing judgment of [i=N; j][k=P; l]M ends with35



�;� ` N : B �0;�00; B;� ` P : C �; C;�00; B;� `M : A�;�0;�00; B;� ` [k=P; l]M : A Subst�;�0;�00;�;� ` [i=N; j][k=P; l]M : A Substand its translation is the proof net

C �C
CC

T(M)� �00A� ?B�? ?C�?� !C�C� ��T(P) �00�00�0�0 ?B�??B�? !B�B� ��T(N) ��� ?B�?�00The typing judgment of [k=[i� k=N; j]P; l][i� l + 1=N; j]M must end with:�;� ` N : B �0;�00; B;� ` P : C�0;�00;�;� ` [i� k=N; j]P : C Subst �;� ` N : B �; C;�00; B;� `M : A�; C;�00;�;� ` [i� l + 1=N; j]M : A Subst�;�0;�00;�;� ` [k=[i� k=N; j]P; l][i� l + 1=N; j]M : A Substand its translation is the proof net

C CC�C C
T(M)� �00A� ?B�??C�?� !B�B� ��T(N) �� C� �0T(P) ��00 ?B�? !B�B� ��T(N) ����!C� �0 �00 �

� ��00 36



Starting from the �rst proof net, we eliminate the c � b cut, then the b � b cut, andwe apply the equivalence rules A and B to obtain the desired proof net.� rule d : hiihjiM �! hi+ jiMThe typing environment can be split in three parts �, �, �, where i is the length of� and j is the length of �. The typing judgment of hiihjiM ends with� `M : A�;� ` hjiM : A Weak�;�;� ` hiihjiM : A Weakand its translation is the proof net
�W �W T(N)A� �The typing judgment of hi+ jiM must end with:� `M : A�;�;� ` hi+ jiM : A Weakand its translation is the proof net
�W �W T(N)A� �We notice that the two proof nets are already the same. This is the second of theexception cases of the lemma.4.4 The proof of strong normalization of �lWe are now able to show strong normalization of �l. To achieve this result, we use thefollowing abstract theorem (see for example [11]) :Theorem 4.3 Let R = hO; R1 [ R2i be an abstract reduction system such that R2 isstrongly normalizing and there exist a reduction system S = hO0; R0i, with a translation Tof O into O0 such that a �!R1 b implies T (a)�!+R0 T (b); a �!R2 b implies T (a) = T (b).Then if R0 is strongly normalizing, R1 [ R2 is also strongly normalizing.If we take O as the set of typed �l-terms, R1 as �l � fe2; dg, R2 as fe2; dg, O0 as the setof proof nets and R0 as the reduction RE , then, by the Theorem 4.3 and the fact that thesystem including the rules fe2; dg is strongly normalizing [8], we can conclude :Theorem 4.4 (Strong normalization of �l) The typed �l-calculus is strongly normal-izing. 37



5 The �l-calculus with namesIn this section we present a version of typed �l with named variables. We �rst introduce thegrammar of terms, then the typing and reduction rules, and �nally, we will brie
y discussthe translation of this syntax to PN .The terms of this calculus are given by the following grammar:M ::= x variablej �x:M abstractionj (MM) applicationj �M labelj M [x;M;�;�] substitutionIntuitively, the term �M means that the variables in � are not in M , and the termM [x;N;�;�] means that the variables in � do not appear in N (they only belong to thetype environment of M) and the variables � do not appear in M (they only belong to thetype environment of N).Variables are bound by the abstraction and substitution operators, so that for examplex is bound in �x:x and in x[x;N;�;�].Terms are identi�ed modulo �-conversion so that bound variables can be systemati-cally renamed. Indeed, we have �y:y[x; z; ;; ;] =� �y0:y0[x; z; ;; ;] and �y:y[x; z; ;; ;] =��y:y[x0; z; ;; ;] and �l:y[x; z; flg; ;] =� �l0:y[x; z; fl0g; ;]. We remark that the conditions onindices used in the typing rules given in Section 4.1 are now conditions on sets of variables.The typing rules are given in Figure 3.�; x : A ` x : A Axiom � `M : A � \� = ;�;� ` �M : A Weak� `M : B ! A � ` N : B� ` (MN) : A App �; x : A `M : B� ` �x : A:M : B ! A Lambda�;� ` N : A �; x : A;� `M : B (�; x : A) \� = ;�;�;� `M [x;N;�;�] : B SubstFigure 3: Typing rules for the �l-calculus with named variablesWe remark that whenever � `M [x;N;�;�] is derivable, then � necessarily contains �and �.As expected the �l-calculus with names enjoys the subject reduction property.Theorem 5.1 (Subject Reduction) If 	 `M : C and M �! M 0, then 	 `M 0 : C.Proof. By induction on the structure of terms. If the reduction takes place in an internalposition of M , then we can apply the induction hypothesis. Otherwise, we verify all thepossible cases.� Rule b1. 	; x : A `M : C	 ` �x : A:M : A! C (lamb) 	 ` N : A	 ` (�x : A:M)N : C (app)38



	; x : A `M : C 	 ` N : A	 `M [x;N; ;; ;] : C (sub)� Rule b2. Without loss of of generality we can suppose that 	 = �;�.�; x : A `M : C� ` �x : A:M : A! C (lamb) � = � � \ � = ;�;� ` �(�x : A:M) : A! C (weak) �;� ` N : A�;� ` (�(�x : A:M))N : C (app)Since x is bound in �x : A:M we can suppose that � = � does not contain x, so thatwe obtain �; x : A `M : C �;� ` N : A x : A \ � = ; � = ��;� `M [x;N; ;;�] : C (sub)� Rule f . Without loss of of generality we can suppose that 	 = �;�;� and C = A!C 0.�;� ` N : B �;�; x : B; y : A `M : C 0�;�; x : B ` �y : A:M : C (lamb) (�; x : B) \� = ;�;�;� ` (�y : A:M)[x;N;�;�] : C (sub)Since y is bound in �y : A:M we can suppose that � does not contain y, so that weobtain�;� ` N : B �;�; x : B; y : A `M : C 0 (�; x : B; y : A) \� = ;�;�;�; y : A `M [x;N; (�; x : B);�] : C 0 (sub)�;�;� ` �y : A:M [x;N; (�; x : B);�] : C (lamb)� Rule a. Without loss of of generality we can suppose that 	 = �;�;�.�;� ` N : B �;�; x : B `M : A! C �;�; x : B ` P : A�;�; x : B ` (MP ) : C (app) (�; x : B) \� = ;�;�;� ` (MP )[x;N;�;�] : C (sub)�;� ` N : B �;�; x : B `M : A! C (�; x : B) \� = ;�;�;� `M [x;N;�;�] : A! C (sub)�;� ` N : B �;�; x : B ` P : A (�; x : B) \� = ;�;�;� ` P [x;N;�;�] : A (sub)�;�;� `M [x;N;�;�] : A! C �;�;� ` P [x;N;�;�] : A�;�;� ` (M [x;N;�;�]P [x;N;�;�]) : C (app)39



� Rule e1. Without loss of of generality we can suppose that 	 = �;�;�. We knowalso, by hypothesis, that x 2 �, so that � can be written as x : B;�00;�00, where� = �0;�00, � = �0;�00 and such that the set di�erence � n � is �0 and � n � is t �0.�;� ` N : B �0;�0 `M : C � \ (�0;�0) = ;�;�; x : B ` �M : C (weak) (�; x : B) \� = ;�;�;� ` �M [x;N;�;�] : C (sub)Since �0 � �, then it is evident that � \ �0 = ;, and since �0 � �, then � \ �0 = ;comes from the fact that (�; x : B) \ � = ;. Indeed, (� n x) \ (�0;�0) = ; is aconsequence of � \ (�0;�0) = ;. We thus obtain�0;�0 `M : C (� [ (� n x)) \ (�0;�0) = ;�;�;� ` (� [ (� n x))M : C (weak)� Rule e2. Without loss of of generality we can suppose that 	 = �;�;�. We alsoknow, by hypothesis, that x 62 �, so that � can be written as �00;�00, where � = �0;�00,� = �0;�00 and so �0;�0; x : B;� = �;�; x : B.�;� ` N : B �0;�0; x : B `M : C (�0;�0; x : B) \ � = ;�;�; x : B ` �M : C (weak) (�; x : B) \� = ;�;�;� ` �M [x;N;�;�] : C (sub)�;� ` N : B �0;�0; x : B `M : C �0 = � n � �00 = � n ��;�;�0 `M [x;N;� n �;� [ (� n �)] : C (sub)�;�;� ` (� \ �)M [x;N;� n �;� [ (� n �)] : C (weak)� Rule n1. Without loss of of generality we can suppose that 	 = �;�;�.�;� ` N : B �;�; x : B ` y : C (ax) (�; x : B) \� = ;�;�;� ` y[x;N;�;�] : C (sub)
�;�;�; x : B ` y : C (ax)� Rule n2. Without loss of of generality we can suppose that 	 = �;�;�.�;� ` N : C �;�; x : C ` x : C (�; x : C) \� = ;�;�;� ` y[x;N;�;�] : C (sub)�;� ` N : C � \� = ;�;�;� ` �N : C (weak)40



� Rule c1. Without loss of of generality we can suppose that 	 = �;�;�, where � =�0;�;
. Since x 2 � n �, then � can be written as �0; x : B.�;� ` N : B �0;
; x : B;� ` P : C �; y : A;
;� `M : C (�; y : A) \ (�0; x : B) = ;�0;�;
 = �; x : B;� `M [y; P;�;�] : C (sub) (�; x : B) \� = ;�;�;� `M [y; P;�;�][x;N;�;�] : C (sub)�;� ` N : B x : B;�0;
;� ` P : C (x : B;�0;
) \� = ;�0;
;�;� ` P [x;N;� n �;�] : C (sub)Since y is bound in M [y; P;�;�], then we can suppose that � does not contain y, sothat we obtain�0;
;�;� ` P [x;N;� n �;�] : C �; y : A;
;� `M : C (y : A;�) \ (�;�0) = ;�0;�;
;�;� `M [y; P [x;N;� n �;�];�;� [ (� n x)] : C (sub)� Rule c2. Without loss of of generality we can suppose that 	 = �;�;�, where � =�;�;
. We also have x 62 � [ �.�;� ` N : B �;
; x : B;� ` P : C �; y : A;
; x : B;� `M : C (�; y : A) \� = ;�;�;
 = �; x : B;� `M [y; P;�;�] : C (sub) (�; x : B) \� = ;�;�;� `M [y; P;�;�][x;N;�;�] : C (sub)�;� ` N : B �;
; x : B;� ` P : C (�;
; x : B) \� = ;�;
;�;� ` P [x;N;� n �;�] : C (sub)Since y is bound in M [y; P;�;�], then we can suppose that � does not contain y, sothat we obtain�;� ` N : B �; y : A;
; x : B;� `M : C (�; y : A;
; x : B) \� = ;�; y : A;
;�;� `M [x;N; (� n�) + y;�] : C (sub)�;
;�;� ` P [x;N;� n �;�] : C �; y : A;
;�;� `M [x;N; (� n�) + y;�] : C (�; y : A) \ � = ;�;�;� `M [x;N; (� n�) + y;�][y; P [x;N;� n �;�];�;�] : C (sub)� Rule d. Without loss of of generality we can suppose that 	 = �;�;�.� `M : C � \� = ;�;� ` �M : C � \ (�;�) = ; (weak)�;�;� ` ��M : C (weak)� `M : C (� [�) \ � = ;�;�;� ` (� [�)M : C (weak)41



(b1) (�x : A:M)N �! M [x;N; ;; ;](b2) (�(�x : A:M))N �! M [x;N; ;;�](f) (�y : A:M)[x;N;�;�] �! �y : A:M [x;N;� + y;�] if y 62 FV (N)(a) (MP )[x;N;�;�] �! (M [x; P;�;�]P [x;N;�;�])(e1) �M [x;N;�;�] �! (� [ (� n x))M x 2 �(e2) �M [x;N;�;�] �! (� \ �)M [x;N;� n �;� [ (� n �)] x 62 �(n1) y[x;N;�;�] �! y y 6= x(n2) x[x;N;�;�] �! �N(c1) M [y; P;�;�][x;N;�;�] �! M [y; P [x;N;� n �;�];�;� [ (� n x)] x 2 � n �(c2) M [y; P;�;�][x;N;�;�] �! M [x;N; (� n�) + y;�][y; P [x;N;� n �;�];�;� \ �] x 62 � [ �(d) ��M �! (� [�)MFigure 4: Reduction Rules of the �l-calculus with named variablesWe de�ne the reduction rules only on typed terms, since we are focusing here on anamed version of the typed �l calculus with indices. These rules already give the 
avor ofwhat a general notion of reduction for non-typed terms with names should be, but a preciseformalization of the untyped case is left for further work.The reduction rules of the typed �l-calculus with names are given in Figure 4 (noticethat rule b1 is a particular case of rule b2 with � = ;).As customary in explicit substitutions calculi with names [3], we work modulo �-conversion,so that we can suppose that in the rule Weak the set � does not contain variables that arebound in M . Also, this allows us to restrict rule f , without loss of generality, to the casewhere no variable capture arise.6 Strong normalization of the �l calculus with namesWe now give the translation of the terms of �l with names into proof nets in PN , and theproof of strong normalization of �l.6.0.1 Translation and simulation of �l with namesIn order to translate a term of �l into a proof net, we use exactly the same translationof types that we used in Section 4.2 and we then de�ne the translation of a term M usingthe type derivation of M .The translation is then de�ned in the following way:� If the term is a variable having a type derivation ending with�; x : A ` x : A Axiomeits translation is given by D?A�?A�? A�W?��? 42



� If the term is a �-abstraction having a type derivation ending withx : B;� `M : C� ` �x : B:M : B ! C Lambda
its translation is given by ?B�??��? C�T(M)

?B�? O !C�?��? !C�?B�?� If the term is an application having a type derivation ending with� `M : B ! A � ` N : B� ` (MN) : A App
its translation is given by

C
T(M)

B�?B�? O !A� ?��??��?
A� ?��?

T(N)?��? D!B� ?A�?!B� 
 ?A�?� If the term is a substitution having a type derivation ending with�;� ` N : A �; x : A;� `M : B (�; x : A) \� = ;�;�;� `M [x;N;�;�] : B Subst
its translation is given by ?A�? !A� T(N)T(M)

B�
?��?

?��? ?��?
?��?A� ?��?

?��?C
?��?

� If the term is a label having a type derivation ending with� `M : A � \� = ;�;� ` �M : A Weakits translation is given by ?��? B� ?��?WT(M) 43



We can clearly verify that the translation is identical to that given for �l with de Bruijnindices. This is completely normal since the type derivations are similar in both formalisms.The simulation of the reduction rules of the �l-calculus with names by the reduction REis identical to that given in Section 4.2 for the �l-calculus with indices. We just remark thatrule n3 has no sense in the formalism with names so that the proof has one less case. Wejust state the result without repeating a boring veri�cation:Lemma 6.1 (Simulation of �l with names) If t �l-reduces to t0 in the formalism withnames, then T (t)�!+RE T (t0), except for the rules e2 and d for which we have T (t) = T (t0).We can then conclude the following:Theorem 6.2 (Strong Normalization of �l with names) The typed �l-calculus withnames is strongly normalizing.7 Conclusion and future worksIn this paper we enriched the standard notion of cut elimination in proof nets in order toobtain a system RE which is 
exible enough to provide an interpretation of �-calculi withexplicit substitutions and which is much simpler than the one proposed in [10]. We haveproved that this system is strongly normalizing.We have then proposed a natural translation from �l into proof nets that immediatelyprovides strong normalization of the typed version of �l, a calculus featuring full composi-tion of substitutions. The proof is extremely simple w.r.t the proof of PSN of �l given in [8]and shows in some sense that �l, which was designed independently of proof nets, is reallytightly related to reduction in proof nets.Finally, the fact that the relative order of variables is lost in the proof-net representationof a term lead us to discover a version of typed �l with named variables, instead of de Bruijnindices. This typed named version of �l gives a better understanding of the mechanisms ofthe calculus. In particular, names allow to understand the manipulation of explicit weak-enings in �l without entering into the details of renaming of de Bruijn indices. However,the de�nition of a general notion of reduction for non-typed terms with names remains asfurther work.This work suggests several interesting directions for future investigation: on the linearlogic side, one should wonder whether RE is the de�nitive system able to interpret � reduc-tion, or whether we need some more equivalences to be added. Indeed, there are still a fewcases in which the details of a sequent calculus derivation are inessential, even if we did notneed to consider them for the purpose of our work, like for example` �; B`?A;�; B Weakening`?A;�; !B Box ` �; B` �; !B Box`?A;�; !B WeakeningOn the explicit substitutions side, we look forward to the discovery of a calculus withmultiple substitutions with the same properties as �l, in the spirit of �� .AcknowledgmentsWe would like to thank Bruno Guillaume and Pierre-Louis Curien for their interesting remarks.44



References[1] M. Abadi, L. Cardelli, P. L. Curien, and J.-J. L�evy. Explicit substitutions. Journal of Func-tional Programming, 4(1):375{416, 1991.[2] S. Abramsky and R. Jagadeesan. New foundations for the geometry of interaction. In Proc.of LICS, pages 211{222, 1992.[3] R. Bloo. Preservation of Termination for Explicit Substitution. PhD thesis, Eindhoven Uni-versity of Technology, 1997.[4] R. Bloo and K. Rose. Preservation of strong normalization in named lambda calculi withexplicit substitution and garbage collection. In Computing Science in the Netherlands, pages62{72. Netherlands Computer Science Research Foundation, 1995.[5] V. Danos. La logique lin�eaire appliqu�ee �a l'�etude de divers processus de normalisation (etprincipalement du �-calcul). PhD thesis, Universit�e de Paris VII, 1990. Th�ese de doctorat demath�ematiques.[6] V. Danos, J.-B. Joinet, and H. Schellinx. Sequent calculi for second order logic. In J.-Y.Girard, Y. Lafont, and L. Regnier, editors, Advances in Linear Logic. Cambridge UniversityPress, 1995.[7] V. Danos and L. Regnier. Proof-nets and the Hilbert space. In J.-Y. Girard, Y. Lafont, andL. Regnier, editors, Advances in Linear Logic, pages 307{328. Cambridge University Press,London Mathematical Society Lecture Notes, 1995.[8] R. David and B. Guillaume. The �l-calculus. In Proceedigs of WESTAPP, pages 2{13, Trento,Italy, 1999.[9] R. Di Cosmo and S. Guerrini. Strong normalization of proof nets modulo structural congru-ences. In P. Narendran and M. Rusinowitch, editors, Proc of RTA, volume 1631 of LNCS,pages 75{89, Trento, Italy, 1999. Springer Verlag.[10] R. Di Cosmo and D. Kesner. Strong normalization of explicit substitutions via cut eliminationin proof nets. In Proc of LICS, pages 35{46, Warsaw, Poland, 1997.[11] M. C. Ferreira, D. Kesner, and L. Puel. Lambda-calculi with explicit substitutions preserv-ing strong normalization. Applicable Algebra in Engineering Communication and Computing,9(4):333{371, 1999.[12] J.-Y. Girard. Linear logic. Theoretical Computer Science, 50(1):1{101, 1987.[13] J.-Y. Girard. Geometry of interaction I: interpretation of system F. In R. Ferro, C. Bonotto,S. Valentini, and A. Zanardo, editors, Logic colloquium 1988, pages 221{260. North Holland,1989.[14] G. Gonthier, M. Abadi, and J.-J. L�evy. The geometry of optimal lambda reduction. In Proc.of POPL, pages 15{26, Albuquerque, New Mexico, 1992. ACM Press.[15] B. Guillaume. Un calcul de substitution avec �Etiquettes. PhD thesis, Universit�e de Savoie,1999.[16] J. Lamping. An algorithm for optimal lambda calculus reduction. In Proc. of POPL, pages16{30, San Francisco, California, 1990. ACM Press.[17] P.-A. Melli�es. Typed �-calculi with explicit substitutions may not terminate. In M. Dezani-Ciancaglini and G. Plotkin, editors, Proc of TLCA, volume 902 of LNCS, April 1995.[18] K. Rose. Explicit cyclic substitutions. In Rusinowitch and R�emy, editors, Proc. of CTRS,number 656 in LNCS, pages 36{50, 1992.
45


