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Abstract. - To model isotropic homogeneous quantum turbulence in superfluid helium, we have
performed Direct Numerical Simulations (DNS) of two fluids (the normal fluid and the superfluid)
coupled by mutual friction. We have found evidence of strong locking of superfluid and normal
fluid along the turbulent cascade, from the large scale structures where only one fluid is forced
down to the vorticity structures at small scales. We have determined the residual slip velocity
between the two fluids, and, for each fluid, the relative balance of inertial, viscous and friction
forces along the scales. Our calculations show that the classical relation between energy injection
and dissipation scale is not valid in quantum turbulence, but we have been able to derive a
temperature–dependent superfluid analogous relation. Finally, we discuss our DNS results in
terms of the current understanding of quantum turbulence, including the value of the effective
kinematic viscosity.

Motivation and aim. – The low temperature phase
of liquid helium 4He (He II) consists of two co–penetrating
fluids [1]: an inviscid superfluid (associated to the quan-
tum ground state) and a gas of thermal excitations which
make up the viscous normal fluid. Quantum mechanics
constrains the rotational motion of the superfluid to dis-
crete, quantised vortex filaments of fixed circulation κ;
these vortices scatter the thermal excitations, thus induc-
ing a mutual friction force between the two fluids [2]. Me-
chanical [3–6] or thermal driving [7] can easily excite tur-
bulence in both fluids. The resulting state of quantum
turbulence at temperatures 1 above 1 K and its similarities
with ordinary turbulence is a problem which is attracting
interest, and is the subject of this investigation.

According to experimental, theoretical and numerical
results (for a review see [9]), at sufficiently large scales in
the inertial range, the superfluid and normal fluid veloc-
ities are matched (vs ≈ vn) and their spectra obey the
classical Kolmogorov scaling k−5/3 (where k is the magni-
tude of the three–dimensional wavenumber). Our aim is to
go beyond this first order description and explore the con-
sequences of the finiteness of the mutual coupling between
the two fluids in the inertial and dissipative ranges of the
turbulent cascade. In particular we want to know if the
inter–fluid locking remains efficient at different tempera-

1In the zero-temperature limit, the normal fluid, hence the mu-
tual friction, is negligible, and the quantum turbulence problem be-
comes different

ture, what is the residual slip velocity between the two
fluids and how the energy transfer between the two flu-
ids affects the classical formulae from ordinary turbulence
theory which relate injection and dissipation to Reynolds
number. To answer these questions we introduce a nu-
merical model based on the traditional direct numerical
simulation (DNS) of the Navier–Stokes equation.

Numerical model. – Our model is inspired by the
HVBK equations [10, 11], which describe the dynamics of
He II in the continuum limit using a Navier–Stokes equa-
tion (for the normal fluid) and an Euler equation (for the
superfluid) coupled by a mutual friction force. The HVBK
equations have been used with success to describe vortex
waves in rotating helium [12] and to predict the observed
instability of the Taylor–Couette flow of He II between two
rotating concentric cylinders in the linear [13,14] and non-
linear regimes [15]. The key aspect of the HBVK equations
is that they smooth out the discrete nature of superfluid
vortex lines by introducing a “coarse–grained” superfluid
vorticity field ωs. The advantage of the HVBK approach
is that it allows us to account for the fluid motion on scales
larger than the typical inter–vortex spacing ℓ in a dynam-
ically self–consistent way, that is to say, the normal fluid
determines the superfluid and vice versa. The disadvan-
tage in the context of turbulence is that vortex filaments
which are randomly oriented and Kelvin waves of wave-
length smaller than ℓ do not contribute to ωs; hence, if we
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define the vortex line density (vortex length per unit vol-
ume) as L = |ωs|/κ, we underestimate its actual value. In
other words, the HVBK approach only captures the “po-
larised” contribution of the superfluid vortex tangle [16].

For reference, we note that a numerical simulation of
quantum turbulence with friction coupling acting (self–
consistently) on both fluids has already been reported us-
ing Large Eddy Simulation [17]. The self–consistent cou-
pling of Schwarz’s vortex filament method [18] for the su-
perfluid (which models the motion of individual vortex
lines) and a Navier–Stokes equation for the normal fluid
has been implemented only for the case of a single vortex
ring [19]. Modifications of Schwarz’s method which are
not dynamically self–consistent (in which the normal fluid
affects the superfluid vortices but not vice versa) have also
been proposed [20–23].

The model which we propose differs from the HVBK
equations in two respects. Firstly, we introduce an arti-
ficial superfluid viscosity νs as a “closure” to damp the
energy at the smallest scales and prevent possible numer-
ical instabilities and numerical artifacts; this feature also
greatly simplifies our task, as it allows us to make use of
efficient Navier–Stokes validated codes, optimised to run
on parallel supercomputers. The value of νs is chosen to be
as small as possible, smaller than the normal fluid’s value
νn, so that the artificial damping of the superfluid occurs
at smaller scales than viscous damping of the normal fluid.
Secondly, we simplify the form of the mutual friction force
of the HVBK equations, to allow a more direct interpre-
tation. The resulting equations for the normal fluid and
superfluid velocity fields vs and vn are

Dvn

Dt
= − 1

ρn
∇pn +

ρs

ρ
Fns + νn∇2vn + fext

n , (1)

Dvs

Dt
= − 1

ρs
∇ps −

ρn

ρ
Fns + νs∇2vs + fext

s , (2)

where the indices n and s refer to the normal fluid and
superfluid respectively, fext

n and fext
s are external forc-

ing terms, ρn and ρs are the normal fluid and super-
fluid densities, ρ = ρn + ρs, pn = (ρn/ρ)p + ρsST and
ps = (ρs/ρ)p− ρsST are partial pressures, S, T and p are
specific entropy, temperature and pressure, and vn and
vs satisfy the incompressibility conditions ∇ · vn = 0 and
∇ · vs = 0. For simplicity the mutual friction force is
written as

Fns =
B

2
|ωs|vns, (3)

where vns = vn − vs is the slip velocity and ωs = ∇× vs

is the superfluid vorticity.
Our numerical code for two–fluids DNS has been

adapted from an existing single–fluid DNS code (used for
example in [24]). Here it suffices to say that it is based on a
pseudo–spectral method with 2nd order accurate Adams–
Bashforth time stepping; the computational box is cu-
bic (size 2π) with periodic boundary conditions in the
three directions and the spatial resolution is 2563. Val-
idation of the code includes checking the preservation of

the solenoidal conditions and of the correct balances of the
energy fluxes (injected, exchanged between the two fluids
and dissipated).

Calculations were performed with density ratios ρn/ρs

10, 1 and 0.1, corresponding respectively to T = 2.157 K
(hereafter referred to “high temperature”), T = 1.96 K
(“intermediate temperature”) and T = 1.44 K (“low tem-
perature”) [25] In this range of temperatures the friction
coefficient B changes only by a factor of two, thus, to fa-
cilitate the interpretation of the results, we set B = 2 con-
stant in all calculations. At each temperature, we set the
artificial kinematic viscosity of the superfluid to be four
time smaller than the normal fluid kinematic viscosity,
νn/νs = 4. One extra calculation, performed at high tem-
perature with νn/νs = 100, will be hereafter referred to as
the “Quasi-Euler” superfluid case, because energy dissipa-
tion by the superfluid viscosity is negligible2. A random
forcing (acting in the shell of wave-vectors 1.5 < |k| < 2.5)
was imposed on the normal fluid alone at high and inter-
mediate temperatures, and on the superfluid alone at low
temperature. The intensity of this forcing was such that
the total energy injected per unit mass of fluid was con-
stant over time, and was kept the same at all tempera-
tures.

Results. –

The locking of the two fluids. Figure 1 shows the local
superfluid and normal fluid enstrophies |ωs|2 (left) and
|ωn|2 (right) at the intermediate temperature (ρn = ρs).
Intense vortex regions (“worms”) are highlighted by the
colour scale, which becomes gray above 5 < |ωs|2 > and
opaque white above 10 < |ωs|2 >, where the symbol <
· · · > indicates volume averaging 3. The figure clearly
shows that the vorticity structures of the two fluids are
very similar. The degree of similarity can be quantified by
the correlation coefficient

c1 =
< ωsωn >√

< ωs

2 >< ωn

2 >
, (4)

We find that c1 is larger than 97% at all three tempera-
tures explored, in agreement with recent numerical calcu-
lations [23] of a superfluid vortex tangle driven by a turbu-
lent normal fluid at high temperature (ρn/ρs ≃ 3). Unlike
our work, these simulations ignored the back–reaction of
the vortex tangle onto the normal fluid.

The plot on the right side of Fig. 1 compares the spectral
coherence function

c2(k) =
|vn(k).vs(k)|2
|vn(k)|2.|vs(k)|2 (5)

of superfluid and normal fluid velocity fields: The fact that
c2(k) is larger than 98% at all scales below kmax/4, where
kmax = 128 is the largest wave vector associated with

2more than 99.8% of the injected kinetic energy was dissipated
by the normal fluid

3This visualisation was generated with “Vapor” freeware, down-
loadable at www.vapor.ucar.edu
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Fig. 1: Left and Center visualisations : local enstrophy (squared vorticity) field of superfluid (left) and normal fluid (center) at
intermediate temperature. The pattern of vorticity structures is the same in both fluids, but is more intense in the superfluid.
The grayscale is defined in the text. Right plot : Spectral coherence function c2(k) of normal and superfluid velocity fields.

our 2563 mesh, means that superfluid and normal fluid
velocity fields are strongly locked along the inertial range,
up to the forcing length scale, where the energy, which is
injected into one fluid only, is redistributed very efficiently
over both fluids. We recall that energy is injected into the
normal fluid only, except at low temperature, where it is
injected in the superfluid only.
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Fig. 2: [colour online] Subplot a : Spectra of the magnitude
of the superfluid vorticity |ωs| vs wavenumber k. From top to
bottom low [green], intermediate [blue] and high [red] temper-
atures. Subplot b / Upper part: Superfluid (thick solid lines)
and normal fluid (thick dashed lines) velocity power spectra
vs wavenumber k at the three temperatures. The thin dashed
line denotes the Kolmogorov k−5/3 scaling. Subplot b / Lower
part: The thin solid lines show the spectra of the slip velocity
at the three temperatures.

The upper set of curves of Fig. 2b presents the super-
fluid and normal velocity power spectra En(k) and Es(k)
(defined by Ei =

∫
Ei(k)dk (i = n, s) where Ei is the total

energy in arbitrary units) at high, intermediate and low
temperature. As expected from the previous figure, the

spectra overlap along the inertial range; around k = 10,
both spectra are compatible with Kolmogorov’s k−5/3 in-
ertial range scaling (illustrated by the thin straight line).
Note also that at each temperature, since νs < νn, for
increasing k the normal fluid becomes damped before the
superfluid. This is consistent with Fig. 1, which shows
that the superfluid enstrophy is indeed stronger than the
normal fluid’s.

The slip between the two fluids. If the two fluids were
perfectly locked, the mutual friction would be zero, which
would inevitably result in the unlocking of the two fluids,
as they would experience different forcing and dissipation
processes. A residual slip velocity vns = vs − vn between
the two fluid must therefore be present. The lower set of
curves in Fig.2b shows the spectrum of vns. The peak
at k ≈ 2 is caused by the forcing, which is applied to a
single fluid, and induces a residual slip at this wavevector.
The striking feature of this spectrum is that it increases
with k in the inertial range, starting at k ∼ 10, and peak-
ing in the dissipation scales, where the dissipation of one
fluid is significantly larger than that of the other. The in-
crease with k of the slip velocity spectrum is remarkably
pronounced in the “quasi-Euler” case.

Energy transfer between the two fluids. We focus on
the high temperature “quasi-Euler” case (νn/νs = 100,
ρn/ρs = 10) because it is expected to mimic He II hydro-
dynamics more closely than other viscosity ratios. The
scale–by–scale energy budget per mass unit for the nor-
mal fluid and superfluid are respectively:

∂En

∂t
(k, t) = −Dn(k, t) − Tn(k, t) − Mn→s + ǫinjδk,2, (6)

∂Es

∂t
(k, t) = −Ds(k, t) − Ts(k, t) − Ms→n, (7)

where Dn and Ds are the viscous dissipation terms in the
normal fluid and superfluid,

Di(k, t) = 2νik
2Ei(k, t) (8)
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Tn and Ts are the energy transfer rates arising from triad
interactions between Fourier modes within each fluid; the
energy flux at wave number k related to the non-linear
interaction is defined by

Fi(k, t) =

∫ k

0

Ti(k
′, t)dk′. (9)

Ms→n and Mn→s result from the exchange of kinetic en-
ergy between the two fluids by mutual friction :

Mn→s(k, t) = −ρs

ρ
(Fns · vn)(k, t), (10)

Ms→n(k, t) =
ρn

ρ
(Fns · vs)(k, t). (11)
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Fig. 3: [colour online] Energy exchange between fluids in the
high temperature “quasi-Euler” case ( ρn/ρs = 10 and νn/νs =
100).

Dissipations, triadic interactions and mutual coupling
terms in k space are shown in Figure 3. As expected
from the stationary of the flow, for each fluid the sum
of all terms is close to zero, except at the lowest k (for
which volume averaging is not performed over enough in-
dependent realisations due to the limited time scale of
integration). In the inertial range and in the near dissi-
pative range, the triadic interaction terms for both fluids
are the same at first order, as expected from vn ≃ vs.
In the normal fluid, the triadic term is roughly compen-
sated by the viscous dissipation. In the superfluid, the
viscous dissipation is νn/νs = 100 times smaller, and
the triadic term is compensated instead by the coupling
term. For consistency, we check that this coupling has a
second order effect on the normal flux budget: we find
|Mn→s/Ms→n| ≃ ρs/ρn = 0.1. We conclude that in the
inertial range at high temperatures: the slip velocity al-
lows energy to leak from the superfluid with a flux which
mimics the normal fluid viscous dissipation, so that both
fluid end up with similar behaviour. This process remains
compatible with a strong locking of the 2 fluids in the limit
of high Reynolds numbers.

The dissipation cut–off in the two–fluids cascade. In
ordinary Navier-Stokes homogeneous turbulence, the vis-
cous cut–off scale η is determined by the energy injection
ǫ at large scale d0 and by the kinematic viscosity ν:

η4 ≈ ν3

ǫ
. (12)

With the exception of the “quasi-Euler” case, the spec-
tra of vn and vs are computed with the same viscosities νn

and νs and the same total energy injected per unit volume
at wavenumber k ≃ 2. The collapse of all spectra onto the
same curve at low k shown in Fig. 2b indicates that the
energy injected is efficiently redistributed between the two
fluids, and that both fluids have the same integral scale
d0 (as evident in Fig.1). Contrary to what happens in
single–fluid Navier-Stokes turbulence, Fig. 2b shows that
the superfluid and normal fluid cutoff–scales are temper-
ature dependent: it is apparent that the lower is T , the
more extended is the inertial range cascade. Therefore,
if one defines the Reynolds number using the classical re-
lation with the ratio of large and small scales of the cas-
cade, Re = (η/d0)

−4/3, one finds that Re is temperature
dependent. Evidently, ordinary turbulent relations such
as Eq.12 are not valid in our two–fluids system.

We now argue that the temperature dependence of η
and Re observed for finite νs will be present in the limit
νs = 0, and will reflect the temperature-dependent effi-
ciency of the energy transfer from the superfluid to the
normal by mutual friction. This process is independent of
νn, and more generally is independent of the dissipation
mechanism in the normal fluid. It can be accounted by a
temperature-dependent effective superfluid viscosity νeff .

As a starting point, we note in Fig. 2b that at small
enough scales |vn| << |vs|. At these small scales the
mutual friction force in the equation for vs simplifies to

−ρn

ρ
Fns = −ρn

ρ

B

2
|ωs|(vn − vs) ≈ α|ωs|vs, (13)

where α = ρnB/(2ρ) [18]. In our model, the prefactor |ωs|
in the mutual friction accounts for the local absolute vor-
ticity of the vortex tangle, which, following Ref. [9], can be
related to the vortex line density by |ωs| = κL. If the vor-
tex lines are smooth on length scales of order ℓ ≈ L−1/2,
the quantity ℓ measures the inter-vortex spacing and cor-
responds to the cut-off scale of superfluid turbulence. We
conclude that at sufficiently small scales

−ρn

ρ
Fns ≈ ακLvs ≈ νeff (

vs

ℓ2
). (14)

where the analogy between vs/ℓ2 and the magnitude of
∇2vs has suggested the introduction of an effective super-
fluid viscosity:

νeff = ακ, (15)
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This effective viscosity is relevant at scales smaller or equal
to l, at which superfluid energy is transferred into the
normal fluid by mutual friction.

When comparing our DNS model to experiments we
must remember that in our continuous model the iden-
tification L = |ωs|/κ neglects random vortex filaments
and Kelvin waves of wavelength shorter than ℓ (which be-
come particularly important at very low temperatures),
thus underestimating the vortex line density. It is there-
fore more proper to relate ℓ not to the total L−1/2 but

to L
−1/2

‖ , defined in our previous paper [16] as the vor-

tex line density associated with the polarised part of the
vortex tangle. Eq. 15 thus becomes

νeff =
L

L‖
ακ (16)

where the ratio L/L‖ > 1 is expected to be of order one
at high temperature and possibly significantly larger than
one in the limit T → 0. This ratio measures the wiggleness
of the tangle at small scale, and can be interpreted as a
measure of its fractal dimension [26].
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Fig. 4: [Colours online]. Effective kinematic viscosity in units
of κ. Isolated symbols: Superfluid effective viscosity defined by
ν′

eff = ǫ/(κL)2 and measured in decaying turbulence experi-
ments; [blue] diamonds [5], [red] circles [27], [green] squares [8]
and triangles [28, 29]. Lines: analytical models; thick [black]
line: present model (Eq.16) with prefactor L/L‖ = 2 ( isolated
bullet [black] for L/L‖ = 30), thin [purple] continuous line:
µ/(ρκ) where µ is the dynamic viscosity of the normal fluid;
dashed [grey] lines: microscopic model Eq. 66 from Ref. [9]
computed with prefactor R0/a0 = 106 and 104

An alternative derivation of an effective superfluid vis-
cosity has been proposed in Ref. [9] (page 216) from the
more microscopic point of view of the friction of individual
vortex lines. Fig.4 shows that our macroscopic model of
νeff (thick black line) is in excellent agreement with the
microscopic model of Ref. [9](thin grey dashed lines). In
the figure our model is plotted with a wiggleness prefactor
L/L‖ = 2, and the model of Ref. [9] contains a logarithmic

prefactor which has been estimated for two different sets
of parameters for laboratory turbulent flows.

Another (experimental) definition of effective superfluid
viscosity ν′

eff = ǫ/(κL)2 has been proposed in recent
studies of decaying turbulence experiments [5, 8, 27–29].
These values of ν′

eff are shown in Fig.4 as symbols. The
agreement between νeff and ν′

eff is good. Since B is
approximately constant with temperature above 1K, the
strong temperature dependent of the effective viscosity
arises from the temperature dependence of ρn/ρ, which
suggests that the ratio L/L‖ has little temperature de-
pendence above 1K.

Although what happens below 1 K goes beyond the
scope of this study, we remark that there is a qualitative
good agreement between experimental data below 1K and
the low temperature extrapolation of the predicted effec-
tive viscosity. A wiggliness prefactor L/L‖ ≃ 30 would
allow to account for the measured effective viscosity down
to 750 mK typically. This suggests that the cross-over be-
tween zero-temperature and finite temperature quantum
turbulence occurs at a lower temperature than the usual
estimation of 1 K based on phonon (normal fluid) mean
free path considerations. In other words, it suggests that a
relative small concentration of normal fluid (significantly
lower than 1 percent) still produces a dissipation which is
comparable to other effects (Kelvin waves cascade, vortex
reconnections) which are specific of the superfluid. Al-
though our continuous model is no longer justified for the
normal fluid below 1 K, this observation is not inconsistent
with it, because νeff is derived regardless of the normal
fluid dynamics.

Finally, we speculate on the form of the classical Eq.12
for superfluids. Following the analogy between the mutual
friction at small scale and the viscous dissipation (Eq.14),
the kinetic energy which is “removed” from the superfluid
at small scales is

ǫ ≈ νeff (
v2

s

ℓ2
). (17)

Substituting vs ≈ κ/ℓ. into Eq.17, we recognise the al-
ternative definition ν′

eff . Combining Eq.17 and Eq.16, we
obtain the following superfluid counterpart of the classical
Eq.12:

ℓ4 = (
ρn

ρ

B

2
)
κ3

ǫ

L

L‖
=

ακ3

ǫ

L

L‖
, (18)

where the wiggleness parameter L/L‖ is of order one for
T > 1 K and possibly larger at lower temperatures. Note
that Eq. 18 contains an implicit temperature dependence
through B and ρn/ρ (and possibly through L/L‖ in the
low temperature limit).

A quantitative comparison of Eq. 18 with our numer-
ical simulations is impossible due to the finiteness of νs

in particular, but we find a good qualitative agreement.
Eq. 18 allows us to predict the temperature dependence
of the depth of the turbulent cascade, and to define a ”su-
perfluid Reynolds number” using the separation of large
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and small scales.

Conclusion and Perspectives. – We have intro-
duced a new two–fluids DNS model to study quantum
turbulence in a self–consistent way. The model is based
on the continuum approximation, and we have discussed
its advantages and limitations. Our numerical results sup-
port the current understanding [9] that in quantum tur-
bulence the superfluid and the normal fluid are strongly
coupled. In addition, our results at high temperature show
the slip velocity peaks in the dissipation scales, and that
whereas in the normal fluid the triadic interaction is bal-
anced by the viscous dissipation, in the superfluid it is
balanced by the mutual friction. We have also found that
the usual turbulence relation (Eq.12) which relates the
cutoff scale to the energy injection at large scale ǫ and
the kinematic viscosity ν is not valid in our two–fluids
system. Finally, we have found that the energy transfer
from the superfluid to the normal fluid does not depend
on the normal fluid’s dissipation, but it can be accounted
by a temperature–dependent effective superfluid viscosity
νeff , which we have calculated and which is in good agree-
ment with other estimates. Using this quantity, we have
obtained the superfluid equivalent (Eq. 18) to the classical
formula (Eq. 12) which relates the energy injection to the
dissipation scale.

In discussing our result we have introduced the wiggle-
ness parameter L/L‖ which is or order one above 1 K but
may be larger at smaller temperatures. We speculate that
L/L‖ is related to the fractal dimension of the tangle; its
increase in the low temperature limit may explain the sat-
uration of νeff for T → 0. Further work will solve this
issue.

In two recent experiments [6, 30], the spectrum of vor-
tex line density in turbulent superfluids was found to dif-
fer from its classical counterpart: the spectrum of local
enstrophy. A proposed interpretation assumes that only
the “polarised” contribution of the vortex tangle mimics
the classical enstrophy [16]. The present numerical model,
which only accounts for the polarised contribution, gives
results consistent with this picture : the spectrum of the
superfluid vorticity |ωs| (Fig. 2a) is indeed similar to cor-
responding spectra in classical fluids.

Future work will also attempt to test further the pro-
posed interpretation [16] by adding to the current DNS
two–fluids model an equation for a scalar field field ac-
counting for the density of the unpolarised contribution
of the vortex tangle. Another important problem to ad-
dress is the decay of turbulence, which is receiving much
experimental attention.
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