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INTRODUCTION

The state and parameter uncertainties in the model of the rigid robotic manipulators, considered as MIMO non-linear systems, as well as the deviations of the parameters from their nominal values and external disturbances lead to some problems in parameter identification and state estimation. All that makes absolutely necessary the design of the controller and/or the observer such as the closed loop robustness is achieved, stability with small tracking and estimation errors. It is well known that the robustness to model parameter uncertainties and external disturbances of the closed loop can be achieved with a variable structure controller. Maintaining the system on a sliding surface, weakens the influence of the uncertainties in the closed loop performances and quickly leads to an equilibrium point. [START_REF] Filipescu | Smooth variable structure observer-controller with adaptive gains[END_REF], an adaptive variable structure control with parameterized tangent hyperbolic as switching function (denoted k -tanh) with adaptive modifications of its magnitude (denoted as λ -modification) is used, instead of a pure relay one with constant gain.

*corresponding author

In this paper is used also the parameterized tangent hyperbolic function (denoted k -tanh) is used as a switching function in order to alleviate, or/and eliminate chattering. Decreasing the parameter k in the switching function makes the gain around zero smaller and the un-modelled dynamics are excited in a smaller measure at high frequency. Also, the delay due to the control input calculus and the finite rate of switching can lead to chattering. Using the λmodification into the gain of k -tanh switching function, smoothes the response and increases the robustness to structural uncertainties. The adaptive gain is time depending, with the norm of the corresponding sliding surface, as input. Based on a time-varying parameters identification technique presented in [START_REF] Xu | Parameter identification methodology based on variable structure control[END_REF], [START_REF] Xu | VSS theorybased parameter identification scheme for MIMO systems[END_REF] and [START_REF] Xu | A VSS identification scheme for time-varyng parameters[END_REF], we extend the scheme, by introducing, the observer, smooth switching function and adaptive gains. It is then applied to a general model of the robotic manipulator dynamics. The physical robot may have inside the joint, gears and clutches, through the torque supplied by the DC motor is transmitted in order to move the link. For this reason, the general model of the robotics manipulator is involved. We develop a variable structure observer-controller based on the work of [START_REF] Sanchis | Sliding Controller-Sliding Observer Design for Nonlinear Systems[END_REF]. Extensions of sliding control to MIMO non-linear uncertain systems have been made in [START_REF] Khalil | Nonlinear systems[END_REF] and [START_REF] Utkin | Sliding modes in control and optimisation[END_REF]. Several applications of the variable structure control to robotic manipulator controlling point out the robustness to uncertainties and external disturbances of the closed loop [START_REF] Slotine | Tracking control of non-linear systems using sliding surfaces, with applications to robot manipulator[END_REF][START_REF] Canudas De Wit | Sliding observers for robots manipulators[END_REF]. With the ktanh switching function and the λ -modification in the observer-controller gains, the closed loop behaves like an approximate sliding mode, in the neighbourhood of the corresponding sliding surface.

The main contributions of this paper are concerned with: the adaptive smooth sliding observer-controller, the updating law of the variable structure gains, and finally the identification of the time-varying parameters and external disturbances.

The paper is organized as follows. In the Section 2, a general model for the n -degree of freedom robot manipulator and the sliding observer are presented. The smooth sliding observer is designed, the gain updating law is presented and a bound for the estimate error is computed. The design of the adaptive gain smooth sliding controller is performed in Section 3. An upper bound of the tracking error is provided, too. In Section 4, a stable identification scheme of time-varying parameters and external disturbances applied to a n -DOF robotic manipulator is presented. A 2-DOF vertical robotic manipulator, together with closed loop simulation results are presented in the Section5. Some conclusion remarks can be found in Section 6.

ADAPTIVE GAIN SMOOTH SLIDING OBSERVER

A very general model of the robotic manipulator can be expressed as a square non-linear MIMO model

( ) ( ) ( ) [ ] , , , , , , , , , , 1 2 2 1 2 1 1 1 2 1 2 1 p n n n n ℜ ∈ = ℜ ∈ ℜ ∈ + = ℜ ∈ = - p x y u x u p x x g p x x f p x h x x x x & &
(1) where only the vector 1 x is available for measurement, u and y are control input and measured output, respectively. The state space dimension is n 2 and

[ ] n T T T 2 2 1 ℜ ∈ = x x x
is the state vector. , then the system may be feedback linearisable. Let choose as the observer sliding surface as

n o 0 x x S = - = 1 1
ˆ, the observer can be written as

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) [ ] , , , , , , , , ˆk tanh t ˆ, k tanh t ˆ2 1 2 1 2 1 1 1 o o 2 1 1 2 2 2 o o 1 1 1 1 1 p x x u p x x g p x x f p x h S Θ x x Γ x x S Θ x x Γ x + + + - - = + + - - = - & & (2) where [ ] n 1 11 1 diag γ γ = L Γ , [ ] n 2 21 2 diag γ γ = L Γ with 2 , 1 , 0 = > γ i ij and n j , 1 = . 0 > o k
is a design parameter.

The gains

[ ] n 1 11 1 diag θ θ = L Θ , [ ] 21 21 2 diag θ θ = L Θ
, are time-varying and defined by ( λ -modification is included)

( ) ( ) [ ], diag 1 1 11 11 1 1 1 1 n n x x x x t t - - - - = L & ρ Θ λ Θ (3) ( ) ( ) [ ], diag 1 1 11 11 2 2 2 2 n n x x x x t t - - - - = L & ρ Θ λ Θ (4) where [ ] n 1 11 1 diag λ λ = L λ , [ ] n 2 21 2 diag λ λ = L λ , [ ] n 1 11 1 diag ρ ρ = L ρ , [ ] n 2 21 2 diag ρ ρ = L ρ , with i 1 λ , i 2 λ , i 1 ρ , i 2 ρ , n i , , 1 L = positive constants.
Remark 1: The dynamics (3) and (4) of the switching force the matrices 1 Θ and 2 Θ to the negative values. They are almost zero when the observer is in the neighbourhood of sliding surface. In order to satisfy the attractiveness condition

n i S S oi oi , , 1 , 0 K & = <
, the gain 1 Θ must be chosen such that

( ) ( ) ( ) [ ). 0 , , , 1 , ˆ2 2 1 ∞ ∈ ∀ = - > θ - t n i t x t x t i i i K (5)
By an appropriate choice of the matrices 1 λ and 1 ρ , the above condition at 0 = t remains satisfied for any 0 > t .

If the active torque delivered by the joint DC-motor is considered as the control input, the model of the n -DOF robotic manipulator is

( ) ( ) ( ) , m , m , , m , p p p d u q G q F q q q C q q H + = + + + [ ] T n q q K 1 = q
is the vector of link 

K = = x q , [ ] T n x x 2 21 2 K & = = x q
be the angular positions and velocity vectors, respectively. The measurements only concern the link positions 1 x y = . The robot state space representation can be written as

( ) ( ) ( ) . m , m , , m , 2 P 1 2 p 2 1 1 p 1 2 2 1         - - + + - = = - d u Fx x G x x x C x H x x x & & (7)
Taking into account the uncertainties, one can define:

( ) ( ) ( ) , , ˆ1 2 1 1 1 p p m m x H x H x H + = (8) ( ) ( ) ( ) , , , , , ˆ2 1 2 2 1 1 2 1 P p m m x x C x x C x x C + = (9) ( ) ( ) ( ) , , ˆ1 2 1 1 1 p p m m x G x G x G + = (10) 
as the estimates of function matrices:

( ) p m , 1 x H , ( ) p m , , 2 1 x x C , ( ) p m , 1 x G
. Without loss of the generality, the friction is considered as a positive constant uncertain diagonal matrix F ˆ.

The following assumptions have to be done: With the above notations the model (6) can be rewritten as

. 2 1 2 1 n 2 1 n       + +       -             -             - =             d u 0 G 0 x x F 0 0 0 x x C 0 I 0 x x H 0 0 I & & (11) 
The smooth sliding observer ( k -tanh as switching function), with gains adaptively updated ( λmodification, as in ( 3) and ( 4), is included), is given by the equations

( ) ( ) ( ) ( ) ( ) ( ) [ ] . ˆk tanh t ˆk tanh t ˆ2 2 1 o o 2 1 1 2 2 2 o o 1 1 1 1 1 u G x F x C H S Θ x x Γ x x S Θ x x Γ x - + + - + - - = + + - - = - & & (12)
The smooth switching function allows to consider that the approximate conditions:

0 , 0 ≈ ≈ o o S S
& are satisfied during sliding.

(

)

o o k S tanh
can be expressed from the first equation of ( 12) and replaced in the second. Hence, the estimate error equation can be written as

[ ] [ ] d u G Fx Cx H u G x F x C H x Θ Θ x - - + + + - + + - - = - - - 2 2 1 2 2 1 2 1 1 2 2 & . (13) 
Above equation assures the stability of the observer and exponential convergence rate as how is proofed in [START_REF] Sanchis | Sliding Controller-Sliding Observer Design for Nonlinear Systems[END_REF]. Let nxn ℜ ∈ Q be the time varying positive definite matrix defined as

( ) ( ) ( ) ( ) ( ) F x x Θ Θ x H Q , , ˆ2 1 1 1 2 1 + ϑ + = -t t m t p , (14) where ( ) ( ) [ ] 2 2 2 2 1 2 2 1 , , , x x x x x C x x x = ∂ ∂ = ϑ p m , ( 15 
) ( ) ( ) ( ) 2 2 1 2 2 1 2 2 1 , , , , , ˆx x x x x x C x x x C ϑ + = p p m m .
(16) Choosing large eigenvalues of Q , the observation error can be globally ultimately bounded (Corollary 5.3 from [START_REF] Khalil | Nonlinear systems[END_REF]. The matrix Q determines the robustness of the observer to the parameter uncertainties. Taking 2 V as a Lyapunov function candidate

( ) 2 1 2 2 , 2 1 x m V p T x H x = , ( 17 
)
the derivative can be expressed as

[ ]           - - + + + - - - + ϑ + - = + = - - d u Fx Cx G H H F x C G x F x x Θ Θ H x x H x x H x x ~2 1 Ṽ 2 2 1 2 2 2 2 2 1 1 2 T 2 2 T 2 2 T 2 2 & & & (18)
using the robot equations property ( )

n 2 2 2 1 T 2 , 0 , 2 ˆℜ ∈ ∀ =       - x x x x C H x & (19) 
and the notations:

1 1 1 ˆ-- - - = H H H , (20) 
( ) ( ) ( ) p p m m , , , , , ~2 1 2 1 2 1 x x C x x C x x C - = , (21) 
G G G - = ˆ, F F F - = ˆ. ( 22 
)
Let define the vector ( )

2 2 1 , , x x x µ µ = as [ ] 2 2 1 2 2 ˆFx d u Cx G H H x C x F G µ + - - + - - - - = - (23)
and assume that µ is linearly bounded by 2

x :

0 , ~2 > ∀ γ + β ≤ t x µ . ( 24 
)
for some 0 , > γ β

, then the derivative of the Lyapunov function is bounded by

( ) 2 2 2 2 2 min 2 2 2 min 2 Ṽ x x x µ x x Q Q ε - ≤ β + γ + λ - ≤ + λ - ≤ & , ( 25 
)
where ε is a positive constant satisfying

γ - λ ≤ ε Q inf . ( 26 
)
If at 0 = t , the switching gain 1 Θ satisfies (5), both gains 1 Θ , 2 Θ follow the adaptation laws (3) and ( 4), respectively, and the vector µ is bounded, then there exists 0 1 ≥ t such that the velocity estimation error satisfies the inequality ( ) ( )

1 2 2 min max 2 , 0 ~max t t e t t < ∀ λ λ ≤ λ ε - H x x H H . ( 27 
)
More, in finite time, the estimation error enters into the ball ( )

r , 0 B
. That means ( )

1 min min max 2 , ~t t r t ≥ ∀ ≤ ε - γ - λ β λ λ ≤ Q H H x , ( 28 
)
where the ball radius satisfies the inequality

ε - γ - λ β λ λ ≥ Q H H min min max r . ( 29 
)
Remark 2: The adaptation law (3), starting from nonzero initial condition, assures the non-singularity of the gain matrix 1 Θ during sliding. Hence, the matrix Q can be computed all the time using the expression (14). The ultimate bound r satisfying (29) is smaller if

Q min λ
is greater, i.e., if the initial value of 1 Θ is chosen smaller than 2 Θ .

ADAPTIVE GAIN SMOOTH SLIDING CONTROLLER

The controller is defined assuming only that the state 1

x is known and that the state 2 x is provided by the observer. Corresponding to the n -dimensional control input, the controller sliding surface is defined as

( ) ( ) ( ) ( ) ) ( ) t t t t r r c y x ψ y x x x S - + - = 1 2 2 1 , ˆ& , (30) 
where

( ) t r y
represents the trajectory to be tracked. The matrix

[ ] n ψ ψ = K 1 diag ψ , with positive constants, n i i , , 1 , L = ψ
, determines the dynamics during sliding. The sliding surface is attractive if the following condition holds

n i S S ci ci , , 1 , 0 ˆK & = < . ( 31 
)
The time derivative of the sliding surface can be written as

( ) ( ) ( ) ( ) ( ) [ ] ( ) r 2 r 2 1 2 1 2 1 1 p 1 r 1 2 r 1 2 c , , , , , , ˆm , ˆy x ψ y p x x u p x x g p x x f x h y x ψ y x - + - + = - + - = - (32)
If k -tanh is used as the switching function and if the diagonal matrix

[ ] n η η = L 1 diag η is taken time depending, including the λ -modification, ( ) ( ) [ ] cn c c c S S t t diag 1 L & ρ η λ η - - = , (33) 
the controller which fulfils the sliding

condition 0 ˆ= c S &
can be expressed as

( ) ( ) ( ) ( ) ( ) ( ) [ ] r 2 r c c c 1 2 1 1 2 1 k tanh t ˆ, , , , , ˆy x ψ y S η S ψ p x h p x x g p x x f u & & & - - + + - + - = - , (34) 
where the matrices:

[ ] cn c c λ λ = L 1 diag λ , [ ] cn c c ρ ρ = L 1 diag ρ are positive definite. The term c S ψ -
is introduced for reducing the controller to classical feedback linearization one [START_REF] Marino | Non-linear control design[END_REF] if the switching term is set to zero.

Despite the calculus of the control input for n -DOF robotic manipulator, to fulfil the attractiveness condition (31), it is necessary to express the derivative of the sliding surface (30)

( ) ( ) ( ) ( ) [ ] ( ) r 2 r p 1 2 2 p 2 1 1 p 1 r 2 r 2 c ˆm , x m , , ˆm , ŷ x ψ y u x G F x x x C x H y x ψ y x S - + - - + + - = - + - = - . ( 35 
)
Similarly as for the observer, by the using k -tanh as a switching function and the λ -modification into the gain, the sliding condition is fulfilled if the control input is chosen as:

( ) ( ) ( ) ( ) ( ) ( )         - - + + - + + + = r 2 r c c c p 1 p 1 2 2 p 2 1 ˆk tanh t m , ˆm , m , , ˆy x ψ y S η S ψ x H x G x F x x x C u & & & . ( 36 
)
The controller switching gain ( )

t η
is adaptively updated as in (33).

Remark 3: The observer error is nonzero if a k -tanh function is used as a switching function in the observer equations. The controller sliding surface c S ˆ can still be attractive by choosing sufficiently large initial values for the switching gains 1 Θ and 2 Θ . Moreover, the tracking error does not go to zero on controller sliding surface, because the smooth controller is used ( k -tanh switching function).

Remark 4: In order to reduce the influence of velocity estimation error in the control input, the relative weight of the states 2

x in the definition of the sliding surface should be decreased. This explains the introduction of the supplementary term c S ψin the control input. The increasing of the parameter ψ is limited by the switching frequency and possible measurement noise.

By the using (13), the derivative of the sliding surface (30) can be expressed as

( ) ( ) ( ) ( ) ( ) 2 1 1 2 c c c c t t k tanh t ˆx ψ Θ Θ S ψ S η S - + - = - & . ( 37 
)
If the gain ( )

t η satisfies the inequality ( ) ( ) ( ) ( ) [ ] n 1 i , t , x t t t S ˆi 2 1 1 2 i ci i K = ∀ ψ - Θ Θ ≥ η - ψ - , (38) 
then the attractiveness condition is verified. Because 1 Θ and 2 Θ are diagonal matrices, the inequality (38) can be written as

( ) ( ) ( ) n 1 i , t , x tt t S ˆi 2 i i 1 i 2 i ci i K = ∀         ψ - θ θ ≥ η - ψ .( 39 
)
Remark 5: The initial value of the switching controller gain must be defined to guarantee the sliding condition after convergence of the observer, when the error in state estimates is bounded by (28).

The term c S ψ ˆ maintains the sliding variable bounded during the observer transient. This leads to

( ) ( ) ( ) ( ) γ - λ β λ λ ψ - θ θ ≥ η - Q H H min min max 1 2 i o i o i o i t t t . (40) 
By an appropriate choice of c λ and c ρ with respect to 1 λ , 2 λ , 1 ρ and 2 ρ , the above condition can be satisfied all the time.

Expressing the control input sliding condition as ( )

2 1 2 x y x ψ y x - = - + - r r & , (41) 
where the true velocity state is introduced, and taking into account (28), a bound of the tracking error can be obtained ( )

1 min min max , 1 t t y x i ri i > ∀ γ - λ β λ λ ψ ≤ - Q H H . ( 42 
)
Remark 6: The actual value of 1 t depends on the convergence rate of the observer, and on the time defined by the gain matrix ψ . The, observer and the controller, both of them into a smoothed form, can achieve high performance. By choosing the value of the constant o k greater than c k , the smooth switching function of the observer is closer to a pure relay than the smooth switching function of the controller. Therefore, the observer converges faster than the controller with small estimate error. The state estimates could be chattering-free, independent by of the value of the gains 1 Θ and 2 Θ . More, by choosing the matrices 1 Θ and 2 Θ adaptively updated as in ( 3) and ( 4), the magnitudes of the switching function go to small values while link position errors go to small values.

Remark 7: During sliding, the error . ˆ1 1 x x S -= o is approximately zero. The derivate is not exactly zero, but it is a high frequency signal of average approximately zero, with an amplitude depending of 1 Θ . If the gain 1 Θ goes to zero, the derivative of the velocity estimation error goes to zero or becomes very small. That means a reduced observation error even in the presence of parameter uncertainties. Also, the behaviour of the controller is similar with that of the full state measurements if its switching is based on a smooth variable. The smooth controller means a reduced or free chattering for the control input law and/or the output.

PARAMETER IDENTIFICATION BASED ON SMOOTH SLIDING OBSERVER-CONTROLLER

The way followed for the time-varying parameter identification is quite different from that proposed by [START_REF] Xu | A VSS identification scheme for time-varyng parameters[END_REF]. Firstly, it is based on the state estimates and on the faster convergence of the observer than the controller. Secondly, it is based on smooth sliding observer-controller, both of them having adaptive switching gain. Zero or small state estimate error leads to zero or small tracking error and small gains of the corresponding switching function. Consequently, during sliding the weight of the switching term is negligible with respect to the compensation part. Define as the parameter vector estimate with p ˆ. If the functions f , g and h are linear in time-varying parameters, each term of the system (1) can be expressed as follows:

( ) ( ) ( ) ( ) ( ) ( ) t ˆ, ˆ1 1 n nx 2 1 2 1 n nx n 2 1 1 1 2 1 1 nxn nxn n p p p x x h 0 0 x x h x x x p x h 0 0 I         ϕ +       =             - ( ) ( ) ( ) ( ) ( ) ( ) t , ˆ, ˆ, , ˆˆ2 1 n nx 2 1 2 1 n nx n 2 1 1 2 2 1 2 p p p x x f 0 0 x x f x p x x f x         ϕ +       =       - - , (44) 
( ) ( ) ( )( ) t , , , , , , ˆ2 1 3 2 1 1 n n 2 1 nxn nxn n p u x x Φ u x x g 0 u 0 p x x g 0 0 I +       =             (45)
Define the followings matrices and vectors:

( ) ( )       = p x h 0 0 I p x H , , ˆ1 1 0 nxn nxn n , ( 46 
) ( ) ( )       = 2 1 1 1 2 1 2 1 0 , , , ˆx x h x x x x x h ( ) ( ) ( ) ( )         ϕ = - - 1 1 2 1 2 1 2 1 2 1 1 , , , ˆp p n nx n nx n x x h 0 0 x x x x ( ) ( )       = p x x f x p x x f , , ˆ, , ˆ2 1 2 2 1 0 , ( ) ( )       = 2 1 1 2 2 1 01 , ˆ, ˆx x f x x x f , ( 49 
) ( ) ( ) ( ) ( )         ϕ = - - 2 1 2 1 2 1 2 1 2 , , ˆp p n nx n nx n x x f 0 0 x x Φ , ( 50 
) ( ) ( )       = p x x g 0 0 I p x x G , , , , ˆ2 1 2 1 0 nxn nxn n , ( 51 
) ( ) ( )       = u x x g 0 u x x g , , , , ˆ2 1 1 2 1 n o , ( 52 
)
In the relationships ( 46),…,(52

), 0 Ĥ , 0 Ĝ are n nx2 2 matrices, 1 Φ , 2 Φ , 3 Φ are p nxn 2 matrices
and 0 f , 01 f , 0 ĝ , 0 ĥ are n 2 vectors. With the above notations the robot model can by expressed compactly by:

( ) ( ) ( ) 0 2 1 0 2 1 0 1 0 , , , , ˆu p x x G x x f x p x H + = & , (53) 
where

[ ] T T T n u 0 u 0 = .
Assumption 4: To each element 

i i i p p p ≤ ≤ . ( 54 
)
Assumption 5: There exist bounding functions ( )

1 x α ,
( )

1 ˆx α such that ( ) ( ) ( ) ( ) ( ) ( ) [ ] [ ). 0 t , p p p , , , , , ˆ, , , min min p i i i n n 1 1 1 1 0 1 1 1 1 1 0 1 1 ∞ ∈ ∀ ∈ ∀ ℜ ∈ ∀ ℜ ∈ ∀ α ≤ ≤ α ≤ ≤ - - - - p x x p x H p x h x p x H p x h (55)
Assumption 6: There exist n nx2 2 function matrices, structured as follows:

( ) ( )       = 2 1 01 2 1 01 , , ˆx x g 0 0 I x x G nxn nxn n (56)
of full rank, and

( ) ( )       = p x x g 0 0 0 p x x G , , , , ˆ2 1 02 2 1 02 nxn nxn nxn , ( 57 
) with ( ) ( )p x x p x x , , , 2 1 02 2 1 02 ij ij g g = , such that ( ) ( ) ( ) [ ] p x x G I x x G p x x G , , , ˆ, , ˆ2 1 02 n 2 2 1 01 2 1 0 + = . ( 58 
)
Assumption 7: There is a positive constant σ such that

n T ℜ ∈ ∀ σ ≥ - v v v g h v , ˆ2 1 . ( 59 
)
Define the matrix ( )

3 2 1 2 1 2 1 , , , , ˆΦ Φ Φ u x x x x Φ + + - = & & ( 60 
)
and the vector ( )

0 0 0 2 1 2 1 , , , , ˆg f h u x x x x ω - - = & & (61) of p nxn 2
and n 2 -dimension, respectively. Suppose that Φ Φ T is a nonsingular matrix, then the parameter estimate p ˆ can be computed as the minimum residuum solution of the system

ω p Φ ) = ˆ. ( 62 
)
In order ensure the boundedness of p ˆ, the following scheme is used for computing the parameter estimate

( ) ( ) ( ) ( ) [ ] ( )                  >       ∈             <       = - - - - . p îf p , p p îf ˆ, p îf p t p ˆmax max min min min min i i T 1 T i i i i T 1 T i T 1 T i i T 1 T i i ω Φ Φ Φ ω Φ Φ Φ ω Φ Φ Φ ω Φ Φ Φ (63)
With the observer (2) and the control law (34), both of them having smooth switching term and gains adaptively updated, the neighborhood of the controller sliding surface (30) can be reached in finite time.

The following Lyapunov function has been chosen

2 ˆc T c V S S = . ( 64 
)
The controller sliding surface (30) depends on the tracking error vector (reference tracking and velocity tracking)

( ) ( ) [ ] T T r T r r 2 1 x y x y x x e - - = - = & . ( 65 
)
The derivative of the Lyapunov function can be expressed as

( )

x y e S S e e S S S S -

∂ ∂ = ∂ ∂ = = r c T c c c c T c V . ( 66 
)
Using the equality (53), the above derivative function can be written as

( ) u G H f H y e S S 0 1 0 0 1 0 - - - - ∂ ∂ = r c T c V & & . ( 67 
)
The smooth sliding controller (32) can be expressed as the sum of two terms,

s c u u u + = , (68) 
where

( ) ( )( ) ( ) [ ] r 2 r c 1 2 1 1 2 1 c ˆ, , , , , ˆy x ψ y S ψ p x h p x x g p x x f u - - + - + - = - (69)
is the compensation part, and

( )( )( ) ( ) c c s k t S η p x h p x x g u tanh , , , ˆ1 2 1 1 - = (70) 
is the switching part. Using (58) and the block diagonal form of the matrices, the compensation part can be further expressed as

[ ] [ ] ( ) [ ] p Φ Φ x h f y g I g u 2 1 2 2 2 1 1 r 1 02 n 01 c - - + - + = , (71) 
where

( ) ( )      ϕ = - 1 1 2 1 2 2 1 ˆp n nx x x h Φ & , ( ) ( )      ϕ = - 2 1 2 1 2 2 2 , ˆp n nx x x f Φ are p nxn matrices
which hold the second block row of the matrices 1 Φ and 2 Φ , respectively.

In order to re-write the variable structure term, the c c k S tanh whilst the system evolution is in a neighbourhood of the sliding surface, the attractiveness condition is satisfied, the switching gain ( ) 

- - = L π (72) 
and using the relationships ( 64), (55), and ( 59), there exists a positive constant ξ such that

( ) ( ) ( ) ( ) ( ) ( ) [ ] ( ) [ ) ∞ ∈ ∀ σ ξ + α ≤ - 0 t , k tanh k tanh k tanh ˆt , , , ˆc c T c c c c 1 2 1 1 S S S π Φ η p x h p x x g . ( 73 
)
The variable structure part can be re-expressed as

( ) ( ) ( ) [ ] ( ) ( ) c c c c T c c c c s k k k k S S S S π Φ u tanh tanh tanh tanh σ ξ + α = . (74) 
With these components of the controller, taking into account the particular structure of the function matrices and vectors ( 46)…( 52), the derivative of the Lyapunov function may be expressed as 

( ) [ ] [ ] [ ] ( ) [ ] ( ) [ ] ( ) [ ] [ ] [ ] [ ] ( ) [ ] ( ) [ ] [ ] ( ) ( ) ( ) ( ) [ ] ( ) ( ) [ ] ( ) ( ) ( ) ( ) ( ) [ ] ( ) ( ) [ ] ( ) ( ).
g I g p Φ Φ f x h h S u g h S u g I g p Φ f p Φ x h h S ξ - ≤ σ ξ + α - α ≤ σ ξ + α - - - + = -         - + + - - + - = -         + - - - + = - - - - - - - (75) Defining the set       ≤ c c k 1 Ŝ
, we can say that there exists some 0 ≥ T such that

[ ) T t , 0 ∈ ∀ , ( ) c c k t 1 ˆ> S and ( ) t c S ˆ
will be strictly decreasing until it reaches the set in finite time and remains inside thereafter (for T t ≥ ).

Particularizing the above relationships for n -degree of freedom robot manipulator, considering the estimates of the velocities and the uncertainties in the parameters, the robot model (11) becomes

      +       +       + -       + + - =       +       d 0 u 0 G x C 0 G x F x C x H 0 x H x n n p 2 2 2 n 1 2 2 1 2 p 2 n 2 1 1 m ˆm & & . (76)
Define the n nx2 2 matrices and n 2 vectors, respectively

      = H 0 0 I H 0 nxn nxn n ,       = 2 1 1 0 x H x h & & , (77) 
( ) ( )        = - - 1 2 2 1 1 ˆp p n nx n nx n 0 x H 0 0 Φ & , ( 78 
)       - - - = G x F x C x f 2 2 2 0 ,       - - - = 1 2 2 1 2 01 Ĝ x F x C x f , (79) ( ) ( )        - - = - - 1 2 2 2 1 2 ˆp p n nx n nx n 1 G x C 0 0 Φ , ( 80 
)       = n nxn nxn n I 0 0 I G 0 ˆ, ( )       = u 0 u x x g , , ˆ2 1 0 n , ( 81 
) ( ) ( )         = - - 1 1 3 ˆp p n nx n n nx nxn 0 0 0 0 Φ . ( 82 
)
This allows to rewrite as

u G f x x H 0 0 2 1 0 + =       & & (83) 
or equivalently as

p Φ g p Φ f p Φ h 3 0 2 01 1 0 + + + = + . (84) 
Remark 8: The smooth sliding controller allows the using of the compensation part as equivalent control input signal during sliding. The adaptive gain of the controller switching term goes to zero or becomes very small, depending on the error in the state estimate. Therefore, the influence of the noise induced by control input acquisition is very small in the parameter estimate.

Remark 9: In closed loop, the robustness to uncertainties makes insensitive the stability to phase lag induced by the filters used to compute the derivatives of the state estimate.

Remark 10: As emphasized in [START_REF] Xu | A VSS identification scheme for time-varyng parameters[END_REF], the reference signal has to be chosen in order to avoid the singularity of the matrix Φ Φ T .

CLOSED LOOP SIMULATION

A two degree of freedom vertical robot with two rigid revolute joints, two rigid links, a time varying payload ( ) t m p and an additive disturbance ( ) 

+ + + +       + + + = x H , (86) ( ) ( )                     - - - +       - -
+ + + +       + + + = x G (88) [ ] 10 10 diag = F , (89) 
( ) [ ] ( ) [ ] ( ) [ ]                   + + + + + = 22 
( ) [ ] ( ) [ ] ( ) [ ]             + + + + + = 0 cos 1 0 cos 1 cos 2 2 0 0 0 0 22 21 12 22 12 21 12 1 x x x x x x x ( ) ( ) ( ) ( ) ( ) ( ) ( )                               - + - - - + - - + + =
( ) ( ) ( ) ( ) ( ) ( ) ( )                     + - - + - - + + =

  1, the closed loop simulated manipulator response is shown. Adaptive gains, smooth sliding observer-controller and time varying parameter have been introduced into the loop. Small parameter uncertainties (5%) have been considered. By choosing o k greater than c k , a faster sliding observer convergence than that of the sliding controller has been obtained. The response is free of chattering, although limitations have been introduced into reference signal was chosen in order to avoid the singularity of the matrix Φ Φ T . In order to compute the derivatives of the state estimate the first order numerical difference has been used. The phase lag does not lead to instability and fluctuation in the parameter estimates.

Fig. 1 .Fig. 2 .

 12 Fig. 1. Closed loop robot response, smooth sliding observer and controller, parameterized tangent hyperbolic switching function 10 = o k , 1 = c k .

& & & & &(6)where

& & & & & & & &

& & & & & , (43)

& & & & ,(47)

& & & ,(48)

& & & & &

& & &

& & &

& & &

& & & &

& & & Φ(91)