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Abstract—We study the network spectral efficiency of de-
centralized vector multiple access channels (MACs) when the
number of accessible dimensions per transmitter is strategically
limited. Considering each dimension as a frequency band, we
call this limiting process bandwidth limiting (BL). Assuming that
each transmitter maximizes its own data rate by water-filling
over the available frequency bands, we consider two scenarios.
In the first scenario, transmitters use non-intersecting sets of
bands (spectral resource partition), and in the second one, they
freely exploit all the available frequency bands (spectral resource
sharing). In the latter case, successive interference cancelation
(SIC) is used. We show the existence of an optimal number of
dimensions that a transmitter must use in order to maximize the
network performance measured in terms of spectral efficiency.
We provide a closed form expression for the optimal number of
accessible bands in the first scenario. Such an optimum point,
depends on the number of active transmitters, the number of
available frequency bands and the different signal-to-noise ratios.
In the second scenario, we show that BL does not bring a
significant improvement on the network spectral efficiency, when
all transmitters use the same BL policy. For both scenarios, we
provide simulation results to validate our conclusions.

I. I NTRODUCTION

In a vector multiple access channel (MAC), a large set of
transmitters share a limited set of frequency bands (channels)
to communicate with a unique receiver [1]. When there exists a
central controller (normally the receiver) a capacity achieving
power allocation can be implemented by using an iterative
water-filling algorithm [2], [3]. In this case, the central con-
troller knows the transmission parameters and instantaneous
channel realizations of each transmitter over each channel.
Thus, it is able to solve the global optimization problem and
feed back the optimal power levels to each transmitter. How-
ever, in the absence of a central controller or the impossibility
to interchange signaling messages between the transmitters
to obtain a complete information of the network, achieving
capacity becomes a non-trivial task [4]. Here, game theory has
played a remarkable role, but solutions remain being highly
suboptimal due to the lack of global information [5].

To overcome this sub optimality, imposing orthogonal com-
munications between transmitters using only a single channel
has been a well-accepted solution, e.g., IEEE802.11 networks.

In this case, transmitters reduce the mutual interference and
only overcome the interference of transmitters sharing the
same channel. Nonetheless, up to the knowledge of the au-
thors, the choices of the total number of available channels
[6] as well as limiting the bandwidth to a single channel
have been done in an ad hoc manner. This paper provides
an analysis of the benefits of bandwidth limiting (BL), i.e.,
reducing the number of channels each transmitter can use
in vector MAC. More specifically, we provide an answer to
the following question: is it worth to limit the number of
channels each transmitter might use regarding the network
spectral efficiency?

We consider two scenarios. In the first scenario, transmitters
have to use non-intersecting sets of channels. In the second
one, transmitters can freely exploit all the available channels.
In the second case, the receiver implements multiuser decoding
and successive interference cancelation (SIC). Here, each
transmitter is aware of both the decoding order and its respec-
tive noise plus interference levels. Under these conditions, the
optimal decentralized policy for each transmitter to maximize
its own data rate is to use a water-filling power allocation
scheme considering the multiple access interference as noise
[2].

Our work is motivated by the following reasoning. In the
first scenario, the fact that a transmitter uses several channels
significantly reduces the total number of active transmitters.
For instance, in the high signal to noise ratio (SNR) regime
and considering a finite set of channels, few transmitters might
occupy all the available channels. Following a water-filling
power allocation, a given transmitter allocates the highest
power levels to the channels with the highest gains. Then,
the channels being used with low powers might have a
negligible impact on its individual data rate. However, no other
transmitter can access the spectrum, even though, a higher rate
can be obtained by another transmitter. In the second scenario,
having a transmitter using several channels does not reduce
the number of active transmitters since they can co-exist in
the same channels. However, the multiple access interference
produced by the transmitters decoded in the last places might
significantly reduce the data rates of those decoded in the first
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places. More specifically, the gain in data rate obtained by
transmitters decoded in last places on certain channels, might
not compensate the loss of the transmitters decoded in first
places.

In both cases, this effect stems from the fact that transmitters
maximize its own spectral efficiency independently of the
others. This resulting suboptimal usage of the spectrum recall
us the dilemma presented in [7], known asthe tragedy of
the commons. Therein, it is shown how multiple individuals
acting independently in their own self-interest can ultimately
destroy a shared limited resource even when it is clearly not
in anyone’s long term interest. One of the solutions for these
dilemma is to introduce regulation by an authority. In this
paper, we analyze this point of view and try to find the rules
(in terms of BL) each transmitter must follow to maximize the
network spectral efficiency.

We show the existence of an optimal BL point in the
first scenario. Such optimal number of channels is a function
of the total number of active transmitters, the total number
of channels, and the different signal to noise ratios (SNR).
We present simulations where we observe a significant gain
in terms of spectral efficiency. In the second scenario, we
show that BL does not bring a significant improvement if all
transmitters use the same BL parameter, i.e., all transmitters
are limited to use the same number of channels.

II. SYSTEM MODEL

Consider a setK = {1, . . . ,K} of transmitters communi-
cating with a unique receiver using a setN = {1, . . . , N} of
equally spaced frequency bands (channels) as shown in Fig.
1. In the information theory jargon, this network topology is
known as vector MAC or parallel MAC [1]. Transmitters arrive
sequentially to the network. Their index in the setK shows
the order of arrival. All the radio devices are equipped witha
unique antenna. Transmitterk ∈ K is able to simultaneously
transmit over all the channels subject to a power-limitation,

∀k ∈ K,
1

N

N∑

n=1

pk,n 6 pk,max, (1)

wherepk,n andNpk,max denote the transmit power over chan-
nel n and the maximum transmittable power of transmitterk.
Without any loss of generality, we assume that all transmitters
are limited by the same maximum transmittable power level,
i.e., ∀k ∈ K and∀n ∈ N , pk,max = pmax.

We denote the channel coefficients in the frequency domain
between the receiver and transmitterk over channeln by hk,n.
We assume that for the whole transmission duration, all the
channel realizations remain constant. For alln ∈ N and for
all k ∈ K, hk,n is a realization of a complex random variable
h with independent and identically distributed (i.i.d) Gaussian
real and imaginary parts with zero mean and variance1

2 . The
channel gain is denoted bygk,n = ||hk,n||

2. Then, the channel
gains can be modeled by realizations of a random variableg

with exponential distributions with parameterρ = 1, whose
cumulative distribution function (c.d.f) and probabilitydensity
function (p.d.f) are denoted byFg(λ) = 1− e−λ andfg(λ) =
e−λ, respectively. The received signals sampled at symbol rate

h1

h2 h3

hK

Tx1

Tx2
Tx3

TxK

Fig. 1. Vector multiple access channel withK transmitters andN available
channels withhk =

`

hk,1, . . . , hk,N

´

for all k ∈ K.

can be written as a vectory = (y1, . . . , yN ) where the entries
yn for all n ∈ N represent the received signal over channel
n. Hence,

y =
K∑

k=1

Hksk + w, (2)

where Hk is an N -dimensional diagonal matrix with main
diagonal (hk,1, . . . , hk,N ). The N -dimensional vectorsk =
(sk,1, . . . , sk,N ) represents the symbols transmitted by trans-
mitter k over each channel. The power allocation profile of
transmitterk, the vector(pk,1, . . . , pk,N ), is the diagonal of
the diagonal matrixP k = E

[
sksH

k

]
. The N -dimensional

vector w represents the noise at the receiver. Its entries,wn

for all n ∈ N , are modeled by a complex circularly symmetric
additive white Gaussian noise (AWGN) process with zero
mean and varianceσ2.

Regarding the channel state information (CSI) we assume
that each transmitter perfectly knows its own channel coeffi-
cients and the noise plus interference level at each channel.
This is the case when transmitters are able to sense its
environment or the receiver feeds back this parameter as a
signaling message to all the transmitters.

We denote the set of channels being used by transmitterk

by Lk, i.e.,∀k ∈ K and∀n ∈ Lk, pk,n 6= 0, and∀m ∈ N \Lk,
pk,m = 0. Depending on the conditions over each setLk, for
all k ∈ K, we consider two different scenarios.

A. Scenario 1: Spectral Resource partition

In this scenario, a given channel cannot be used by more
than one transmitter. Thus, this is equivalent to define the sets
Lk for all k ∈ K as a partition of the setN , i.e.,

• ∀(j, k) ∈ K2 and j 6= k, Lj ∩ Lk = ∅,
• ∀(j, k) ∈ K2 and j 6= k, Lj ∪ Lk ⊆ N ,
• ∀k ∈ K, |Lk| > 0.

Due to the asynchronous arrival of the users, we assume that
there exists an order to access the set of channelsN . We index
the transmitters such that transmitterk ∈ K arrives in thekth

position.
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B. Scenario 2: Spectral Resource Sharing

In this scenario we allow several transmitters to use the
same channels. Thus, this is equivalent to define the setsLk

for all k ∈ K as a cover of the setN , i.e.,

• ∀k ∈ K, Lk ⊆ N ,
• ∀k ∈ K, |Lk| > 0.

We assume that the receiver performs multiuser decoding
and successive interference cancelation (SIC) at each channel.
The decoding order is the same in all channels and it is related
to the arrival order. Here, transmitterk ∈ K, arriving in the
kth position, is decoded in theK − k + 1 position.

To make a difference between scenario1 and2, we use the
super index(i) with i ∈ {1, 2} for all the sets and variables
associated with each of them. The noise plus multiple access
interference (MAI) for transmitterk over channeln is denoted

by α
(i)
k,n, where α

(1)
k,n = σ2 and α

(2)
k,n = σ2 +

k−1∑

j=1

pj,ngj,n,

where, for alln ∈ N , p0,n = 0 and g0,n = 0. The SINR
for transmitterk over channeln is denoted byγ(i)

k,n and∀k ∈
K and∀n ∈ N ,

γ
(i)
k,n =

pk,ngk,n

α
(i)
k,n

. (3)

In both scenarios each transmitterk ∈ K aims to maximize
its own data rateRk(γk)(i), i.e.,

Rk(γk)(i) =

N∑

n=1

log2

(

1 + γ
(i)
k,n

)

, (4)

with γ
(i)
k = (γ

(i)
k,1, . . . , γ

(i)
k,N ) subject to its power limitations

and independently of the data rate of the other devices. We
explain this process in the next section.

III. I NDIVIDUAL SPECTRAL EFFICIENCY

Assuming that each channel bandwidth is normalized to1
Hz, a given transmitterk sets out its transmit power levels
pk,n, ∀n ∈ N by solving the optimization problem (OP)

max
pk,n, ∀n∈Z

(i)
k

∑

n∈Z
(i)
k

log2

(

1 + γ
(i)
k,n

)

s.t. 1
N

∑

n∈Z
(i)
k

pk,n 6 pmax,
(5)

where, for allk ∈ K, the setZ(1)
k = N \ L1 ∪ . . . ∪ Lk−1,

with L0 = ∅, andZ(2)
k = N . Thus,Z(i)

k is the set of channels
available for userk in scenarioi.

The solution to the OP in (Eq. 5) is given in [1] and thus, we
only provide the solution hereafter;∀k ∈ K and∀n ∈ Z

(i)
k ,

pk,n =

[

β −
α

(i)
k,n

gk,n

]+

, (6)

and,∀k ∈ K and∀n ∈ N \ Z
(1)
k ,

pk,n = 0. (7)

Here, the operator[.]+ is the same asmax (0, .). Given the
setsA, B and the complement of the latter,B′, in a given

universal set, the operationA \ B = A ∩ B′. The termβ is a
Lagrangian multiplier, known as water-level, chosen to satisfy
(Eq. 1). The transmit power levels in (Eq. 6) can be iteratively
obtained by using the water-filling algorithm described in [1].
From expression (Eq. 6), it can be implied thatL

(i)
k ⊆ Z

(i)
k .

Once the OP in (Eq. 5) has been solved, the data rate per
channel of transmitterk ∈ K, is

R̄k(γk)(i) =
1

|Z
(i)
k |

∑

n∈Z
(i)
k

log2

(

1 + γ
(i)
k,n

)

, (8)

and then, its spectral efficiencyΦk is

Φ
(i)
k =

|Z
(i)
k |

N
︸ ︷︷ ︸

Ω
(i)
k

R̄k(γk)(i), (9)

where,Ω(i)
k represents the fraction of spectrum accessible for

transmitterk. Note that due to the decentralized nature of
the network, the individual spectral efficiency is maximized
independently by each transmitter. As described in [7], it might
lead to significant losses in the network spectral efficiency. We
study this effect in the next section.

IV. N ETWORK SPECTRAL EFFICIENCY

We define the network spectral efficiency (NSE)Φ(i) as

Φ(i) =

K∑

k=1

Φ
(i)
k

Φ(i) =
K∑

k=1

Ω
(i)
k R̄

(i)
k , (10)

for both scenarios, spectral resource partition (scenario1) and
spectral resource sharing (scenario2). We analyze the NSE in
the asymptotic regime, i.e., we assume that both the number
of channels (N ) and the number of transmitters (K) grow
to infinity at a constant ratioN

K
= α < ∞. Under these

conditions, we determine the NSE in the absence of bandwidth
limiting and we provide closed form expressions in both cases.
Later, we determine the NSE using BL and provide closed
form expressions.

A. NSE Without BL

A first result on the analysis of NSE in the absence of BL for
the case of spectral resource partition is presented in [8],[9].
We revisit those results and extend it to the case of resource
sharing.

1) Scenario 1: Spectral Resource Partition: Following the
same line of the analysis presented in [8], we have that in
the asymptotic regime the data rate per channel for a given
transmitterk is

R̄k(γk)(1)
N→∞
−→

∫ ∞

0

log2

(

1 +
pk(λ)λ

σ2

)

dFg(λ)

︸ ︷︷ ︸

R̄
(1)
k,∞

(11)

where the functionspk(λ) for all k ∈ K, satisfy the power
constraints, ∫ ∞

0

pk(λ)dFg(λ) = pmax. (12)
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The functionpk(λ), ∀k ∈ K, which maximizes expression
(Eq. 11) subject to expression (Eq. 12) is also a water-filling
solution, i.e.,

pk(λ) =

[

βk −
σ2

λ

]+

. (13)

Note that since all the channel coefficients are drawn from
the same probability distributionfg(λ) described in Sec. II
and all the transmitters have the same maximum transmittable
power level, we can write that∀k ∈ K, R̄

(1)
k,∞ = R̄

(1)
∞ . Hence,

the water-levelβk satisfying the condition (Eq. 13) is the same
for all the transmitters. By combining expression (Eq. 13) and
(Eq. 12), we obtain the water-levelβk = β∗, ∀k ∈ K in the
asymptotic regime by solving the equation

∫ ∞

β∗

σ2

(

β∗ −
σ2

λ

)

dFg(λ) − pmax = 0. (14)

The fractionΩ
(1)
k , for all k ∈ K, can be approximated in

the asymptotic regime byΩ(1)
k,∞ [8]

Ω
(1)
k,∞

N→∞
−→

(

Ω(1)
∞

)k−1

where,

Ω(1)
∞ = Pr

(

β∗ <
σ2

λ

)

=

∫ β∗

σ2

0

dFg(λ) 6 1. (15)

Then, the NSE (Eq. 10) in the asymptotic regimeΦ
(1)
∞ is

Φ(1)
∞ =

K∑

i=1

(

Ω
(1)
k,∞

)i−1

R̄(1)
∞ =

1 −
(

Ω
(1)
∞

)K

1 − Ω
(1)
∞

R̄(1)
∞ . (16)

2) Scenario 2: Spectral Resource Sharing: In the asymp-
totic regime, we can approximate the data rate per channel of
transmitterk ∈ K as

R̄k(γk)(2)
N→∞
−→

∫ ∞

0

...

∫ ∞

0

Γ′
k(λk)dFg(λk)..dFg(λ1)

︸ ︷︷ ︸

R̄
(2)
k,∞

(17)
with λk = (λ1, . . . , λk) and

Γ′
k(λk) = log2










1 +
pk(λk)λk

σ2 +

k−1∑

j=1

pj(λj)λj










, (18)

wherep0(λ0) = 0 for all λ0 ∈ R. Additionally, for all k ∈ K,
the functionspk(λk) satisfy the power constraints shown in
(Eq. 12). As shown in the previous section, the maximization
of (Eq. 17) is a water-filling solution. For transmitterk = 1,
it yields expression (Eq. 13) and for all1 < k 6 K,

pk(λk) =

[

β∗
k −

β∗
k−1λk−1

λk

]2

. (19)

Now, by plugging expression (Eq. 19) in (Eq. 17), we obtain
that for all 1 < k 6 K,

R̄
(2)
k,∞ =

∫ ∞

σ2

β∗

1

∫ ∞

β∗

1 λ1
β∗

2

...

∫ ∞

β∗

k−1
λk−1

β∗

k

Γk(λk)dFg(λk)...dFg(λ1)

(20)

with Γk(λk) = log2

(
β∗

kλk

β∗

k−1λk−1

)

, whereas for transmitterk =

1, the asymptotic data rate is given by expression (Eq. 11).
The water-levelsβ∗

k in (Eq. 20) for allk ∈ K are the solution
to expression (Eq. 14) in the casek = 1, and

pmax =

∫ ∞

σ2

β∗

1

∫ ∞

β∗

1 λ1
β∗

2

...

∫ ∞

β∗

k−1
λk−1

β∗

k

pk(λk)dFg(λk)...dFg(λ1),

(21)
in the casek ∈ K \ {1}. Thus, the spectral efficiency of
transmitterk ∈ K is equivalent to its data rate per channel,
i.e.,

Φ
(2)
k,∞ = R̄

(2)
k,∞. (22)

Here, the factorΩ(2)
k in (Eq. 10), isΩ

(2)
k = 1 for all k ∈ K.

This is because each transmitter can access all the channels
regardless of its order of arrival.

By developing expression (Eq. 21) and (Eq. 20) using the
p.d.f of the channel gainsfg(λ) described in Sec. II, we arrive
to the following conclusions,

∀k ∈ K \ {1}, β∗
k−1 6 β∗

k , (23)

and
∀k ∈ K \ {1}, R̄

(2)
k−1,∞ > R̄

(2)
k,∞, (24)

respectively. Then, the NSE (Eq. 10) in the asymptotic regime
Φ

(2)
∞ is

Φ(2)
∞ =

K∑

k=1

R̄
(2)
k,∞. (25)

In Sec. VI, we compare both asymptotic and non-asymptotic
expressions to validate our statements.

B. NSE With BL

Now, we limit the number of channels each transmitter can
use. For the ease of calculations, we keep the conditions that
bothK andN grow to infinity at the same rate, i.e.,N → ∞,
and K → ∞, and N

K
= α < ∞. To provide at least one

channel to each user, we assume thatα > 1.
1) Scenario 1: Spectral Resource Partition: When the num-

ber of accessible channels for transmitterk ∈ K is limited to
L ∈ N channels, the fraction of accessible spectrumΩ

(1,BL)
k

for each transmitter is

Ω
(1,BL)
k,∞ = min

{

Pr

(

β∗ <
σ2

λ

)

,
L

N

}

. (26)

Then, BL has an effect if and only ifL
N

< Pr
(

β∗ 6
σ2

λ

)

.
This condition is equivalent to state that we should limit
the transmitters to use a smaller number of channels of that
used on the absence of BL. Hence, under the asymptotical
assumptions, we have that

Ω
(1,BL)
k,∞ =

L

N
, (27)

and

Φ(1,BL)
∞ =

K∑

i=1

Ω
(1,BL)
k,∞ R̄∞ =

KL

N
R̄∞. (28)
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2) Scenario 2: Spectral Resource Sharing: In this scenario,
each transmitter can access all the channels and thus,Ω

(2)
k,∞ =

1. When we limit the bandwidth for transmitterk we impose
that Ω(2),BL

k,∞ 6 Ω
(2)
k,∞. Then, the NSE under BL is

Φ(2),BL
∞ =

K∑

k=1

Ω
(2),BL
k,∞ R̄

(2),BL
k,∞ . (29)

We have provided expressions for the NSE in both absence
and presence of BL in the asymptotic regime. Now, it remains
to determine the conditions over which BL brings benefits to
the network in terms of spectral efficiency.

V. OPTIMAL BANDWIDTH L IMITING

In this section, we investigate the existence of an optimal
BL point, i.e., optimal values of the fractionsΩ(i,BL)

k , with
i ∈ {1, 2} such thatΦ(i),BL

∞ > Φ
(i)
∞ .

3) Scenario 1: Spectral Resource Partition: To improve
the NSE by introducing BL in the network, the following
condition must be met,

Φ(1)
∞ 6 Φ(1),BL

∞

1 −
(

Ω
(1)
∞

)K

1 − Ω
(1)
∞

R̄∞ 6
KL∗

N
R̄∞

L∗
>

N

K

1 −
(

Ω
(1)
∞

)K

1 − Ω
(1)
∞

(30)

In expression above we show that the optimal BL parameterL∗

depends mainly on the network load (transmitters per channel,
K
N

) and the SNR of the transmitters. Note that the factorΩ
(1)
∞

is a function ofpmax, σ2 and the probability distribution of
the channels gainsfg(λ) described in (Eq. 15).

4) Scenario 2: Spectral Resource Sharing: Following the
same reasoning as in scenario1, we improve the NSE by using
BL, if

Φ
(2)
k,∞ 6 Φ

(2),BL
k,∞ . (31)

However, under BL we have thatΩ(2),BL
k,∞ 6 Ω

(2)
k,∞ and thus,

K∑

k=1

Ω
(2)
k,∞R̄

(2)
k,∞ >

K∑

k=1

Ω
(2),BL
k,∞ R̄

(2),BL
k,∞ . (32)

Then, we have shown that in the asymptotic regime, any kind
of BL does not bring any improvement on the NSE. On the
contrary, it might introduce significant losses of NSE.

VI. SIMULATION RESULTS

In this section, we provide numerical results of our mathe-
matical model. First, we compare the asymtotical expressions
of the NSE with those obtained by simulations, for both
scenarios. In Fig. 2, we plot the NSE of a network with2
transmitters. Therein, we observe that our asymptotic model
perfectly describes the system in the finite case i.e., whenK

andN are small numbers.
We present also simulations of the NSE obtained in both

scenarios as a function of the BL parameterL for different
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Fig. 2. Data rate per channel in bps/Hz as a function of the number
of available channels in the scenario2. Dashed lines are obtained from
simulations considering10 log10( pmax

σ2 ) = 20dB for transmitter1 and 2.
Straight lines are obtained from expression (Eq. 11) for transmitterk = 1
and expression (Eq. 20) fork = 2.

network loads. In Fig. 3, we observe the existence of an
optimum BL point for scenario1. Conversely, in the second
scenario, the existence of such optimal is not evident, as at
a certain point, the NSE is invariant with respect of the BL
parameterL.

We compare the optimal BL parameterL obtained from
simulations with that obtained from expression (Eq. 30). In
Fig. 4 we plot both results. Therein, we show that the asymp-
totical approximation (Eq. 30) is a precise approximation of
the optimal number of channels each transmitter must use to
maximize the NSE.

Finally, we show in Fig. 5 the NSE obtained with absence
and presence of BL. In the first scenario, we observe a
significant gain in NSE when BL is used. This gain is more
important for non-overloaded networks, whereas for quasi full-
loaded or overloaded networks (K > N ), the gain obtained
by BL approaches that of limiting the transmitters to use a
unique channel. In the same figure, we observe that the NSE
appears to be constant for certain intervals. This is due to
the fact that inside those intervals the optimal BL parameter
remains constant, as shown in Fig. 4. Moreover, the gain in
NSE is very significant at high SNR (SNR = pmax

σ2 ) levels.
On the contrary, for low SNR levels, small gains in NSE are
obtained when the network is low loaded. In Fig. 6 we plot
the NSE for several values of SNR in the second scenario. In
any case, we observe that there is not significant gain when
all transmitters use the same BL parameterL.

VII. C ONCLUSIONS

We have shown, that in a decentralized vector MAC where
each transmitter aims to maximize its own data rate by using
water-filling based power allocation, the network sum-ratecan
be improved by limiting the number of available channels for
each transmitter (bandwidth limiting). We provide closed form
expressions for the optimal maximum number of channels
each transmitter must access in the case where transmitters
use non-intersecting sets of channels. In this case, such an
optimum operating point depends mainly on the network load
(transmitters per channel) and the different signal to noise
ratios. Contrary to the first scenario, in the case of spectrum
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Fig. 3. Network Spectral Efficiency (Eq. 10) in bps/Hz as a function of
the maximum number of accessible channelsL. Total number of available
channelsN = 50, and10 log
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= 10dB.
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Fig. 4. Optimal BL parameterL (Eq. 30) for scenario1 as a function of
the network load,(K

N
). Total number of available channelsN = 50, and
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”

= 10dB.

resource sharing, we show that when all transmitters use the
same BL policy, BL does not bring a significant improvement
on the network spectral efficiency. Further studies will focus
to the case when transmitters have different channel statistics,
since it might lead to the usage of different BL policies for
each transmitter.
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