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An analytically tractable model for combustion instability
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Abstract— A system of two coupled Van der Pol equations is
considered as a model for combustion instability. This system
is analyzed using the Krylov-Bogoliubov method. The results
of the analysis are compared with simulation results and with
data obtained from a combustion system.

Index Terms— modelling, combustion instability, nonlinear
oscillating systems, Krylov-Bogoliubov method.

I. I NTRODUCTION

Combustion instabilities in gas turbine engines and power
plants are the focus of a significant number of current studies,
see [1] for a recent survey and [2] for an overview of a
recent research program funded by the USA Office of Navy
Research in the area. Major research activities are conducted
inter alia in USA, France and UK [3], [4], [5], [6]. The
heart of the issue is that such engines combust more coolly
and therefore pollute less at low equivalence ratio (fuel-to-air
ratio). As the equivalence ratio,φ, decreases however, a com-
bustion instability appears due to the nonlinear interaction
of heat release with combustion chamber acoustics, and the
appearance of this instability reverses any gain from lower
φ. The instability manifests itself through the occurrence of
a limit cycle in most variables; pressure, heat release rate,
flame surface, etc, producing an audible tone, which leads to
its being calledhowling, hootingor screaming.

Active control has been proposed as a method to deal
with this instability, with the actuation taking place primarily
through modulation of a fraction of the fuel flow into the
combustion chamber [2]. A recent article [7] reports the
successful application of periodic forcing at the limit cycle
frequency with slowly adaptive tuning of the relative phase.
This method does not rely on a model of the system,
only on a structure of the controller. Additionally [2], [8],
experimental reports indicate that non-harmonic (including
sub-harmonic) forcing also can be effective in reducing limit
cycle magnitude, although without much guidance as to how
to select the forcing parameters.

One of the features of active control of combustion in-
stabilities is the difficulty in developing a reliable model
which captures the dominant dynamical effects in realistic
operation. The phenomenon has been scientifically studied
in the laboratory since Rayleigh and Rijke [9], [10] and has
been described much earlier [11]. However, the modelling
still is not fully resolved and certainly has not been resolved
well enough to permit the design of controllers. Part of the
difficulty has been the natural arising of nonlinear delay
differential equations through the transcription of compart-
mental phenomenological models, which capture the known
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Fig. 1. Block diagram of the model [14]

physical subprocesses but are not amenable to tractable ana-
lytical tools other than brute simulation. Our objective in this
paper is to present, motivate and study an alternative for the
widely used model of Perrachio and Proscia [12] and their
descendants based on a coupled Van der Pol Equation. This
latter dynamic system is then analyzed using the methods
of Krylov and Bogoliubov [13], which is amenable to the
development of formal stabilization design studies.

In [14] a model for the combustion instability has been
proposed, which is an extension of [12] through the inclu-
sion of and additional third-harmonic resonance. The block
diagram of the model is shown in Figure 1, wherept is
the downstream pressure perturbation at the burning plane,
qt is the flame heat release rate,ϕ[·] is a static non-linear
mapping,τ is a transport time delay from nozzle to flame
surface,ω is the fundamental acoustic mode of combustor,
ξ is the associated damping ratio and N and M are the
gains of second-order oscillators with the natural radian
frequency equal toω and3ω, respectively. The model arises
by considering the acoustics of the combustion chamber
interacting with the sensitivity of the location of the flame
surface. A number of competing physical explanations are
available for instability phenomenon based on variations in
the length direction alone or in terms of vortex shedding.
Our aim is to find a model suited to control; single-input via
an actuated variable, single output in terms of a measurable
variable (Pressure is one of the few quantities able to be
measured in an environment as hostile as an operating com-
bustion chamber.), manageable complexity, and capturing the
important dynamical phenomena.

The model is characterized by an inherent feedback struc-
ture resulting from the thermo-acoustic feedback [14]. The
feedforward path is characterized by two linear resonators
in feedback with a nonlinear path which create a nega-



tive damping in certain situation leading to the occurrence
of the oscillations. It should be noted that this model is
composed of a strictly linear forward path in feedback
with a memoryless nonlinearity, making it immediately a
candidate for describing function analysis, if one ignores
the infinite-dimensionality introduced by the delay element,
the non-lowpass nature of the forward path, etc. In [14],
[15] computational bifurcation analysis of the nonlinear
delay-differential was performed and shown to extend the
simplified describing function analysis. A rapprochement of
the bifurcation diagram with the experimental evidence led to
a level of confidence in the capacity of this model to reflect
the data.

This delay-differential model is not, however, tractable for
feedback control design and stability analysis. Accordingly,
we seek to replace it by a similarly performing delay-free
nonlinear model based on coupled Van der Pol systems pre-
sented below. The equations governing this system belong to
the class of equations callednear-conservative autonomous
systemswhich are described by equations of the form

d2x

dt2
+ ω2x = ǫf

(

x,
dx

dt

)

, (1)

whereǫ is a small positive quantity andf may be a power
series inǫ whose coefficients are polynomial inx and dx

dt
.

Since in general one cannot find the exact solutions for this
type of differential equation, approximation procedures for
the analysis of this type of equations have to be considered.

The Krylov-Bogoliubov (K-B) method [13], [16], [17],
[18], [19], [20] is without doubt one of the most efficient
procedure of analyzing oscillating systems governed by
equations of the form (1). In brief the K-B method is looking
for solutions of the form

x(t) = a(t) cos ψ(t),

wherea is the time-varying magnitude of the fundamental
oscillation term andψ is the instantaneous total phase. They
obey, in the single resonator case, the differential equations
{

da
dt

= − 1
2ωπ

∫ 2π

0
f(a cos ψ,−aω sin ψ) sin ψdψ,

dψ
dt

= ω − 1
2πωa

∫ 2π

0
f(a cos ψ,−aω sin ψ) cos ψdψ.

Note thatψ can be written in the form

ψ(t) = ωt + θ(t),

whereθ is the instantaneous phase.
It is this approach which will be used for analyzing the

behavior of the model of the combustion instability system.
From the analysis point of view the combustion instability
model presents a number of difficulties among which we
mention :

• Presence of two coupled resonators.
• Complicated dynamics in the nonlinear path due to the

cascade of a differentiator and delay.

This present work will focus on the analysis of the effect
of two-coupled-resonators structure, without the necessity of
their being harmonically related.
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Fig. 2. Combustion instability model based on coupled Van der Pol
equations

The nonlinear term will be approximated by a simpler one,
but nevertheless representative for these type of oscillations.
Specifically the nonlinearity encountered in Van der Pol
equations will be considered. Therefore the model of the
combustion instability will be approached by a system of
two coupled Van der Pol equations (two coupled Van der Pol
generators)
{

d2x1

dt2
+ ω2

1x1 = ǫ d
dt

(

(x1 + x2) −
1
3 (x1 + x2)

3
)

,
d2x2

dt2
+ ω2

2x2 = ǫ d
dt

(

(x1 + x2) −
1
3 (x1 + x2)

3
)

,
(2)

whereω1 andω2 are the natural radian frequencies of the first
and second equations respectively and which can have arbi-
trary values with some modest provisions to be developed,
ǫ is a small positive quantity and the corresponding block
diagram is shown in Figure 2. A study involving a small-
parameter linearized analysis of the Dunstan model operating
with noise excitation in a regime immediately before the ap-
pearance of the limit cycle has been conducted in [14], [21].
This bears strong resemblance to the this Van der Pol model.
At a fundamental level, the presence of the differentiator,
appearing in [12], in the right-hand path has been questioned
from a physical perspective. Because of this uncertainty, the
presence of small loop gainǫ, and the resonant forward path,
the removal of the cascade differentiator followed by a time
delay should be manageable provided the requisite phase
match is preserved.

While this type of system has not yet been studied in the
literature, one can mention that the single resonator Van der
Pol equation has been successfully analyzed using the K-B
method [13], [16], [17], [18], [19], [20].

The system (2) will be analyzed by the K-B method and
systematically compared with the results of the simulation
of system (2). This will allow us to see to what extent, the
K-B method gives results close to the exact solutions. In the
last part of the paper the results obtained will be compared
with the phenomena observed with the combustion instability
in [14].

II. F IRST K-B APPROXIMATION FOR AUTONOMOUS

MULTI -RESONATOR SYSTEMS

Consider a system withn resonators which are be de-
scribed by equations of the form

d2xk

dt2
+ ω2

kxk = ǫfk

(

x,
dx

dt

)

, (k = 1, 2, . . . , n) (3)



wherex = {x1, . . . , xn}, dx
dt

= {dx1

dt
, . . . , dxn

dt
} and ǫ is a

small parameter.
To summarize (for more details see Chapter 2 of [18]),

for the resonatorj, the first K-B approximation proposes the
solution

xj = aj cos(ψj), (4)

where ψj = ωjt + θj , aj and θj are slowly time-varying
functions obeying the equations

{

daj

dt
= − ǫ

2ωj
Hjj(a1, . . . , an, θ1, . . . , θn),

dθj

dt
= − ǫ

2ωjaj
Gjj(a1, . . . , an, θ1, . . . , θn).

(5)

with Hjj andGjj are obtained from the functionfj

(

x, dx
dt

)

by substituting
{

xk = ak cos(ωkt + θk),
dxk

dt
= −akωk sin(ωkt + θk),

(k = 1, 2, . . . , n) (6)

and by setting it in the form

fj (a1 cos(ω1t + θ1), . . . , an cos(ωnt + θn),
− a1ω1 sin(ω1t + θ1), . . . ,−anωn sin(ωnt + θn))

= Hjj sin(ωjt + θj) + Gjj cos(ωjt + θj)

+

r
∑

ωj 6≈ωℓ

(Hℓj sin(ωℓt + θℓ) + Gℓj cos(ωℓt + θℓ)) , (7)

whereωℓ and θℓ are the linear combinations ofω1, . . . , ωn

andθ1, . . . , θn, respectively, andr is the number of possible
linear combinations ofω1, . . . , ωn different from ωj . Fur-
thermore forxj , the coefficients of fundamental term in (7)
are used and the all other terms are eliminated.

III. K-B APPROXIMATION OF TWO COUPLEDVAN DER

POL EQUATIONS

Consider the equations system (2) and the form (3), in this
case

f1 = f2 = f(x1, x2,
dx1

dt
, dx2

dt
)

=
(

1 − (x1 + x2)
2
)

(dx1

dt
+ dx2

dt
). (8)

Introducing
{

xi = ai cos(ωit + θi),
dxi

dt
= −aiωi sin(ωit + θi),

(i = 1, 2)

into (8), one gets

f (a1 cos(ω1t + θ1), a2 cos(ω2t + θ2),

−a1ω1 sin(ω1t + θ1),−a2ω2 sin(ω2t + θ2))

= −
(

1 − (a1 cos(ω1t + θ1) + a2 cos(ω2t + θ2))
2
)

× (a1ω1 sin(ω1t + θ1) + a2ω2 sin(ω2t + θ2)). (9)

To approximate the solution of (2), it is necessary to set (9)
in the form (7). In [22], one gives the details of computation
leading to the expression

f (a1 cos(ω1t + θ1), a2 cos(ω2t + θ2),
−a1ω1 sin(ω1t + θ1),−a2ω2 sin(ω2t + θ2))

= −ω1a1

(

1 −
a2

1

4 −
a2

2

2

)

sin(ω1t + θ1)

− ω2a2

(

1 −
a2

2

4 −
a2

1

2

)

sin(ω2t + θ2)

+ ω1
a3

1

4 sin (3(ω1t + θ1)) + ω2
a3

2

4 sin (3(ω2t + θ2))

+ (2ω1 + ω2)
a2

1
a2

2 sin ((2ω1 + ω2)t + 2θ1 + θ2)

+ (ω1 + 2ω2)
a1a2

2

2 sin ((ω1 + 2ω2)t + θ1 + 2θ2)

+ (2ω1 − ω2)
a2

1
a2

4 sin ((2ω1 − ω2)t + 2θ1 − θ2)

+ (2ω2 − ω1)
a2

2
a1

4 sin ((2ω2 − ω1)t + 2θ2 − θ1) , (10)

from which one can see the existence of the frequency set

W = {ω1, ω2, 3ω1, 3ω2, 2ω1 + ω2, ω1 + 2ω2,

2ω1 − ω2, 2ω2 − ω1} . (11)

This set is very important for finding the possible operation
regimes of the system, i.e. forx1 (respectivelyx2), the
remaining terms from (10) after application of the K-B
approximation will only be the terms with the frequencyω

from W such asω ≈ ω1 (respectivelyω2). Consequently, one
has the following classification, which will be elaborated and
explained shortly :

1) ω1 6≈
{

ω2, 3ω2,
ω2

3

}

-two generators with competitive
quenching

2) ω1 ≈ ω2-mutual synchronization with close frequen-
cies

3) ω1 ≈ 3ω2 (respectivelyω2 ≈ 3ω1)-mutual synchro-
nization with multiple frequencies

A. Two generators with competitive quenching

Consider the case where the frequenciesω1 and ω2

respect Condition1 above. In this case, there is no
interconnection effect between the both frequencies and
the K-B approximation uses only the fundamental os-
cillations terms of f (a1 cos(ω1t + θ1), a2 cos(ω2t + θ2),
−a1ω1 sin(ω1t + θ1),−a2ω2 sin(ω2t + θ2)). Consequently
the approximate solutions of (2) are (for details see [22])

xi = ai cos(ωit + θi), (i = 1, 2) (12)

with






















da1

dt
= ǫa1

2

(

1 −
a2

1

4 −
a2

2

2

)

,

da2

dt
= ǫa2

2

(

1 −
a2

2

4 −
a2

1

2

)

,
dθ1

dt
= 0,

dθ2

dt
= 0.

(13)

Let us find steady-state solutions of (13). In this case, (13)
possesses four steady-state solutions

a1 = 0 anda2 = 0, (14)

a1 = 2√
3

anda2 = 2√
3
, (15)

a1 = 2 anda2 = 0, (16)

a1 = 0 anda2 = 2. (17)

Both former solutions (14) and (15) are unstable, and
both latter solutions (16) and (17) are stable. Therefore,
the amplitudes ofx1 and x2 converge to one of both
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Fig. 3. (A) x1 simulated from (2), (B)x2 simulated from (2), (C)x1

approximated by (12) and (13), (D)x2 approximated by (12) and (13)

possible stationary states (16) and (17). Depending on the
initial condition, one of the generators is excited, while the
oscillations of the other generator are entirely quenched.
Such quenching of the oscillations of one of the generators,
caused by the sufficiently large non-linear coupling between
them, is know ascompetitive quenching.

It was noted that, ifa1(0) > a2(0), x1 is excited and the
oscillations ofx2 are entirely quenched, and the converse
effect occurs whena1(0) < a2(0). Figure 3 presents a
simulation test withω1 = 2, ω2 = 1, ǫ = 0.1, a1(0) = 1.5
anda2(0) = 0.5, the upper part shows the outputs of (2) and
lower part shows the outputs approximated by (12) and (13).
Also, whena1(0) = a2(0) (but not equal to zero), it was
noted that:

• In (13), the magnitudesa1 and a2 converge to 2√
3

and 2√
3

respectively, which correspond to the unstable
steady-state (15).

• In (2), the magnitudesa1 and a2 converge to 2√
3

and
2√
3

respectively, and remain temporarily, but after a long
time (if one compares it to the convergence dynamics)
these the magnitudes will converge necessarily to one
of the steady-states (16) and (17).

This implies that in certain conditions, both frequencies can
coexist for a long time before the entry into the competitive
quenching regime. To illustrate this phenomenon, Figure 4
presents a simulation test withω1 = π, ω2 = 3.5ω1 = 3.5π,
ǫ = 0.1, a1(0) = 1 and a2(0) = 1, the upper part is the
outputx1 of (2) and lower part is the outputx2 of (2).

B. Mutual synchronization with close frequencies

Consider the case where the frequenciesω1 and ω2 are
close. For x1 (respectively x2), the application of K-B
approximation implies the conservation of all coefficients
of sinusoidal terms inf(a1 cos(ω1t + θ1), a2 cos(ω2t + θ2),
−a1ω1 sin(ω1t+θ1),−a2ω2 sin(ω2t+θ2)) with a frequency
close toω1 (respectivelyω2) and the elimination of all other
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Fig. 4. (A) x1 simulated from (2), (B)x2 simulated from (2)

terms. Consequently the approximate solutions of (2) are (for
details see [22])

xi = ai cos(ωit + θi), (i = 1, 2) (18)

with a1, a2, θ1 andθ2 are governed by






































































































da1

dt
= ǫ

{

a1

2

(

1 −
a2

1

4 −
a2

2

2

)

+
[

a2ω2

2ω1

(

1 −
a2

1
+a2

2

4

)

−
a2a2

1

4

]

cos(∆ψ)

+(ω1 − 2ω2)
(

a1a2

2

8ω1

)

cos(2∆ψ)
}

,

da2

dt
= ǫ

{

a2

2

(

1 −
a2

2

4 −
a2

1

2

)

+
[

a1ω1

2ω2

(

1 −
a2

1
+a2

2

4

)

−
a1a2

2

4

]

cos(∆ψ)

+(ω2 − 2ω1)
(

a2a2

1

8ω2

)

cos(2∆ψ)
}

,

dθ1

dt
= −ǫ

{

a2

2

8ω1

(ω1 − 2ω2) sin(2∆ψ) +
[

a2a1

8ω1

(2ω1 − ω2)

+ a2ω2

2a1ω1

(

1 −
a2

2

4 −
a2

1

2

)]

sin(∆ψ)
}

,

dθ2

dt
= ǫ

{

a2

1

8ω2

(ω2 − 2ω1) sin(2∆ψ) +
[

a2a1

8ω2

(2ω2 − ω1)

+ a1ω1

2a2ω2

(

1 −
a2

1

4 −
a2

2

2

)]

sin(∆ψ)
}

,

(19)

where∆ψ = ψ1 − ψ2 = (ω1 − ω2)t + θ1 − θ2.
This result is very important, because in parallel with

differential equation (2), it is possible to compute from (19)
the amplitude and the phase evolutions of the output and to
compare both to signals measured in practice.

The integration and study of stationary solutions of (19)
are very difficult. However, to find the stationary solutions
whenω1 = ω2 = ω, one can adopt the following steps.

Using y = x1 + x2, if we add the both equations of (2)
we obtain

d2(x1+x2)
dt2

+ ω2(x1 + x2) = ǫ
(

1 − (x1 + x2)
2
)

d(x1+x2)
dt

⇒ d2y
dt2

+ ω2y = ǫ
(

1 − y2
)

dy
dt

. (20)

It is seen that (20) corresponds to classical Van der Pol
equation. It is well to known that for the classical Van der Pol
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Fig. 5. (A) x1 simulated from (2), (B)x2 simulated from (2), (C)x1

approximated by (18) and (19), (D)x2 approximated by (18) and (19)

equation, the K-B approximation gives a stationary solution
[19], [13], [16], [17], [18], [20]

y = 2 cos(ωt + θ). (21)

⇒ x1 + x2 = 2 cos(ωt + θ), (22)

whereθ is the arbitrary instantaneous phase, which satisfies

a2
1 + a2

2 + 2a1a2 cos(θ1 − θ2) = 4 (23)

One notes that there exist an infinity of steady-state points
and that the convergence of the amplitude and phase depends
essentially on the initial state ofx1 andx2. Therefore, to get
the same result between (2) and (19), one must initialize (19)
with the appropriate values of initial amplitude and phase.

Figure 5 shows a simulation test withω1 = ω2 = 2π,
a1(0) = 0.4, a2(0) = 1, ǫ = 0.1 and θ1(0) = θ1(0) = π

2 ,
the upper part is the outputs of (2) and lower part is the
outputs approximated by (18) and (19).

C. Mutual synchronization with multiple frequencies

Consider the case where the frequencyω1 is close to3ω2.
In this case the terms with frequenciesω1 and3ω2 are used
for x1 approximation, and the terms with frequenciesω2 and
(2ω2 − ω1) are used forx2 approximation. Therefore, one
finds (for details see [22])

xi = ai cos(ωit + θi), (i = 1, 2) (24)

with






































da1

dt
= ǫ

[

a1

2

(

1 −
a2

1

4 −
a2

2

2

)

−
ω2a3

2

8ω1

cos(∆ψ)
]

,

da2

dt
= ǫ

[

a2

2

(

1 −
a2

2

4 −
a2

1

2

)

+
a1a2

2

8ω2

(2ω2 − ω1) cos(∆ψ)
]

,

dθ1

dt
= ǫ

ω2a3

2

8ω1a1

sin(∆ψ),
dθ2

dt
= −ǫa1a2

8ω2

(ω1 − 2ω2) sin(∆ψ),

(25)

where∆ψ = ψ1 − 3ψ2 = (ω1 − 3ω2)t + θ1 − 3θ2,
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Fig. 6. (A) x1 simulated from (2), (B)x2 simulated from (2), (C)x1

approximated by (24) and (25), (D)x2 approximated by (24) and (25)

Let us find steady-state solution of (25). One stable steady-
state point can be computed analytically from (25)

a1 = 2 and a2 = 0. (26)

Others points need numerical solution of (25). Further-
more, one introduces

p = ω1−3ω2

ω2

. (27)

Whenp = 0 and for any value ofω2 (or ω1), it exist one
other stable steady-state point

a1 = 0.593, a2 = 2.136 and ∆ψ = π. (28)

For p 6= 0, it exists one other stable steady-state point
which depend from the value ofp andω2 (or ω1).

From this, one can see that ifω1 is close to3ω2 (respec-
tively ω2

3 ), it is possible to have two phenomena depending
on the initial condition. In the first phenomenon, the genera-
tor with frequencyω1 is excited and the other generator with
frequencyω2 is quenched. In the second phenomenon, one
has synchronization regime. By a synchronization regime is
meant that the oscillation frequency of the second generator,
which is equal toω2 + θ̇2, is exactly a third of the oscillation
frequency of the first generator, which is equal toω1 + θ̇1.

Figure 6 presents a simulation test withω1 = 3ω2 = 3,
ǫ = 0.1, a1(0) = 0.3, a2(0) = 1 andθ1(0) = θ1(0) = π

2 , the
upper part is the outputs of (2) and lower part is the outputs
approximated by (24) and (25).

IV. SUMMARY OF THE ANALYSIS RESULTS

We have identified the following three situations relating
the proximity of the natural frequencies of the individual
oscillators. From a practical point of view one can say
that the system is characterized in steady state either by a
single oscillating frequency (which correspons to one of the
resonance frequencies of the linear oscillators) or by stable
simultaneous oscillations (which correspond to synchronized
oscillations of both generators).



This single oscillation phenomena which is known as
competitive quenching phenomena, occurs when the ratio
of resonance frequencies of the two resonators are different
from 3, 1 and 1

3 , and occurrence of one of frequencies
(among the two) will depend on the initial conditions.

Stable simultaneous oscillations with two distinct frequen-
cies will occur only whenω1 ≈ 3ω2 or ω2 ≈ 3ω1 and the
initial condition is sufficiently good so that both generators
are excited.

V. COMPARISON WITH EXPERIMENTAL RESULTS

Representative experimental results are discussed in a [23],
[15] which demonstrate salient dynamical phenomena, such
as the simultaneous presence of two sinusoidal components;
a strong dominant tone at 210Hz, and a lesser but persistent
non-harmonic tone at 714Hz. The capacity of a model to
display the coexistence of these modes is regarded as an
important corroboration of the model.

In [15], [14] a describing function analysis (slightly ex-
tended) shows that equilibrium period solutions at these
frequencies should exist with 210Hz being stable and 714Hz
having a low-dimensional unstable manifold. This would
normally lead to the extinction of the 714Hz mode except
for a measure-zero set of initial conditions. A bifurcation
analysis shows that, contrary to the prediction from describ-
ing functions, the 714Hz mode of the Dunstan model is in
fact stable, but that noise induced perturbations can induced
jumping to and from the stable 210Hz mode, thereby creating
the coexistence.

It is important to note that the new model proposed here
also demonstrates presence of two stable limit cycles with
non-measure-zero basins of attraction. The ability of the
model to capture this unusual and testable aspect of the
system dynamics, is a strong indicator of its possible strength
for system design. The tractability of the K-B method for
analysis is a major advantage of this model versus that
of [14].

VI. CONCLUSION

The aim of this paper has been to show that it is possible
to go further in the analysis of the instability combustion
model proposed in [14]. The two coupled Van der Pol
equations considered in this paper may be an effective choice
to approach the combustion instability model. The analysis
method is based on the use of Krylov-Bogoliubov approach
for oscillatory systems. Indeed, this approach allows one to
overcome one of the difficulties related to the combustion
instability model, i.e. the presence of two coupled resonators.
The simulation tests have illustrated the precision of the
Krylov-Bogoliubov approximation.
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