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Abstract— A nonlinear system identification procedure,
based on a polynomial NARMAX representation, is applied to
a variable geometry turbocharged diesel engine. The relation
between the variable geometry turbine (VGT) command and
the intake manifold air pressure is described by a nonlinear
model, directly identified from raw data. The intent of the
paper is to explore the advantages of such a modeling
procedure in automotive applications in terms of efficiency
and complexity, in view of the related controller design and
tuning problem. Simulation results on a HDI diesel engine
model illustrate the whole procedure.
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I. INTRODUCTION

Modeling and control design of diesel engines play un
important role in the development of the new generation of
internal combustion engines. Improvements in overall per-
formances, beside their inherently superior fuel economy,
make diesel engines competitive with spark-ignited engines
in the class of high performances vehicles.

The tuning of a turbocharged diesel engine is a chal-
lenging task for engineers. A standard procedure used in
the practice is based on long time spending experimental
tests in order to map all possible operative conditions of the
engine. As a consequence, controller design and tuning are
often developed in an empirical way, as a result of several
experiences and of a “try and error” approach on the real
system.

The use of simple and efficient models, on the basis of
which the control design phase could be easier and faster,
is crucial in engine developing, especially for automotive
manufacturers. Model-based controller design allows for
shorter development times: performances and robustness
of control schemes can be evaluated rapidly on a model,
drastically reducing the number of calibrations needed on
the engine.

Examples of control oriented models of diesel engines,
derived from physics principles, are presented in [1], [2],
[3]. An adequate seven states mathematical model can be
found in [4] with EGR/VGT control perspectives and has
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been used in [5]. One should note some fundamental issues
to be considered as high nonlinearities present in the engine
dynamics, interactions between controlled variables and dif-
ficulties to set correct values for the physical parameters.As
a consequence, simple control strategies, as PI controllers
with parameters depending on the operating points, are
widely used in practice to reduce the complexity of the
controller tuning problem. Thus, it is often necessary to
identify input-output models in order to obtain satisfying
results in the controller design phase.

A turbocharger is often used to enhance acceleration
performances in diesel engines. Variable geometry tur-
bochargers (VGT) are employed to achieve good boost at
all speed conditions, with no lose in terms of efficiency and
transient performances.

In this paper a procedure to provide the nonlinear
(discrete time) model of the dynamics between the VGT
actuator command and the boost pressure in a turbocharged
diesel engine directly from raw data is presented. Data are
obtained from a complex Simulink model simulating a high
pressure direct injection (HDI) diesel engine in which the
EGR vane is kept closed (see section II for more details on
EGR), as the primary objective of this paper is to analyze
the feasibility of the procedure in automotive applications.
The effect of the EGR vane will be considered in future
works when the procedure will be applied to the full engine
model.

Black-box modeling is an attractive alternative to models
derived from physics, since it directly provides from data
an input-output model to be used for control design and
controller tuning. A class of nonlinear models is required
for the identification of complex and highly nonlinear
systems. A polynomial NARMAX model is chosen to be
used in the identification algorithm (model estimation and
validation), together with techniques for structure selection
which preserve from over-parametrization.

Emphasis must be done to the fact that the model is
derived with control purposes, that is, its structure has been
conceived for an efficient and high performing diesel engine
control design, as a nonlinear pole-placement (see [6]).



Fig. 1. The VGT/EGR diesel engine.

II. T HE VGT TURBOCHARGED DIESEL ENGINE

Common diesel engines are usually turbocharged in order
to increase their low power density. A turbine is driven by
the exhaust gas from the engine and drives the compressor
which supplies the airflow into the engine as in Fig.1. A
Variable Geometry Turbocharger (VGT) is used to obtain
high transient responses at low engine speeds and to avoid
excessive airflow at high engine speeds. A pressure surge
in exhaust manifold, in fact, has a detrimental effect for the
engine acceleration performances.

The effective flow area of the turbine can be varied by
changing the position of the inlet guide vanes on the turbine
stator, thereby affecting the compressor mass airflow in the
intake manifold. VGT can also act as an emission control
mechanism: it affects the pressure drop across the exhaust
gas recirculation (EGR) vane (which connects the intake
manifold and the exhaust manifold) increasing the exhaust
gas recirculation rate. The gas recirculated back into the
engine through the EGR vane lowers the flame temperature
and avoids theNOx (oxides of nitrogen) formation.

III. NARMAX SYSTEM IDENTIFICATION

A. NARMAX representation

The NARMAX model formulation was introduced in [7]
as an extension for nonlinear systems of the linear ARMAX
model, and is defined as

y(t) = F (y(t − 1), . . . , y(t − ny),

u(t − 1), . . . , u(t − nu),

e(t − 1), . . . , e(t − ne)) + e(t)

(1)

wherey(t), u(t) ande(t) represent the output, the input and
the system noise signals respectively;ny, nu andne are the
associate maximum lags andF (·) is a nonlinear function.

The NARMAX representation is a well-known tool for
nonlinear modeling which includes several other nonlin-
ear representations such as block-structured models and
Volterra series. This class of models has the appealing
feature to be linear-in-the-parameters, so that a straight
implementation of least-squares techniques can be applied.

Expanding F (·) in (1) as a polynomial of degreeL
(whereL is the degree of the nonlinearity) the expression

of a polynomial NARMAX model is obtained as follows

y(t) =
n∑

i=1

θixi(t) + e(t) (2)

where

n =

L∑

i=0

ni, n0 = 1

ni = ni−1
(ny + nu + ne + i − 1)

i
, i = 1 . . . L

(3)

and

θi = ith model parameter

x1(t) = 1

xi(t) =

p∏

j=1

y(t − nyj)

q∏

k=1

u(t − nuk)

r∏

m=1

e(t − nem)

(4)

i = 2, . . . , n, p, q, r ≥ 0, 1 ≤ p + q + r ≤ L (5)

1 ≤ nyj ≤ ny, 1 ≤ nuk ≤ nu, 1 ≤ nem ≤ ne (6)

The choice of a polynomial expression for the regressor
is based on the possibility to derive nonlinear control
algorithms for a nonlinear polynomial model as a direct
extension of classic linear pole-placement control problem.

B. Input signal design

Input signal design is a very important step for nonlinear
system identification. As for the linear case, the input
signal should be persistently exciting. All the frequencies
of interest for the system should be excited, and the input
signal should cover the whole range of operation. A simple
and effective implementation is realized by means of a
concatenated set of small-signal tests. Small amplitude per-
turbing signals may be superposed to the different operating
levels, exciting all dynamic modes of the system. Increasing
and decreasing level amplitudes have to be considered in
order to take into account direction dependent dynamics.

Different classes of signals can be employed for the
identification process as multi-sine signals, maximum length
binary sequences (MLBS) and classic pseudo-random sig-
nals. Documentation about identification signal design can
be found in [8], [9].

C. Structure selection

Structure selection is a key problem in a black-box
system identification. A survey of the structure identification
methods is in [10], and an overview on the different ap-
proaches to nonlinear black-box modeling is in [11]. When
the system to identify is nonlinear a direct estimation based
on (2) generally leads to an over-parameterized model. If the
values ofny, nu, ne andL are increased to obtain a good
accuracy, an excessively complex model will result together
with a numerical ill-conditioning. A procedure is needed to
select terms from the large set of candidates to provide a
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Fig. 2. Equivalent HDI diesel engine scheme for identification.

parsimonious model. A simple and effective procedure is
based on error reduction ratio (ERR) defined in [12] as

ERRi =
g2

i

∑N

k=1 w2
i (t)

∑N

k=1 y2
i (t)

(7)

wheregi(k) are the parameters andwi(k) the regressors of
an auxiliary model constructed to be orthogonal over the
data records:

y(t) =
n∑

i=1

giwi(t) + e(t) (8)

A model is found selecting the relevant terms from the
full model set following a forward-regression algorithm (for
more details see [13]): at each step the parameter with
the highest ERRi is added to the current model, following
the principle that a parameter which reduces the variance
more than the others is more important. An information
criterion, could be used to stop the procedure, as the Akaike
Information Criterion [14], defined as

AIC = Nloge(σ
2
ǫ (θp) + kp (9)

whereσ2
ǫ is the variance associated to the p–terms model

and k is a penalizing factor. At the end of the selection
process, a recursive identification is run with the selected
parameters. Several techniques have been proposed in the
literature for selecting the best model structure, some of
these are enhancements of the ERR algorithm or are used
in conjunction with it as in [15], [16].

D. Model validation

A statistical validation of the identified NARMAX model
is performed with high order correlation functions defined
in [17], [18] to detect the presence of unmodelled terms in
the residuals of the nonlinear model. If the identified model
is adequate, the following conditions should be satisfied by
the prediction errors

Φǫǫ(k) = δ(k) (i.e. an impulse)

Φuǫ(k) = 0 ∀k

Φǫ(ǫu)(k) = 0 k ≥ 0 (10)

Φu2′ ǫ(k) = 0 ∀k

Φu2′ ǫ2
′ (k) = 0 ∀k

TABLE I

DIESEL ENGINE OPERATING POINTS: FULL ACCELERATION.

Speed engine (rpm) Air mass flow (mm3/cp)
1000 45
1250 58.2
1500 64.75
1750 68.3
2000 72.31
2250 66.92
2500 66.37
2750 67.3
3000 66.7
3250 63.11
3500 62.11
3750 61.14
4000 60.95
4250 56.53
4500 52

TABLE II

DIESEL ENGINE OPERATING POINTS: 50% ACCELERATION.

Speed engine (rpm) Air mass flow (mm3/cp)
1000 23.68
1250 30.63
1500 34.3
1750 35.94
2000 37.7
2250 35.22
2500 35.8
2750 35.42
3000 35.1
3250 33.21
3500 32.69
3750 32.18
4000 32.08
4250 29.75
4500 27.37

where Φxy(k) indicates the cross–correlation function be-
tweenx(t) and y(t), δ(k) is the Kronecker delta,u2(t) is
the the mean value ofu2(t) and u2′

(t) = u2(t) − u2(t).
If at least one of the correlation functions is well outside
the confidence limits, a new model has to be identified. It
is necessary, in order to check the ability of the model to
represent system dynamics, to validate the estimated model
on a new set of data (validation data) different from the set
used for the identification (learning data).

Model prediction ability has to be assessed, together with
statistical tests, with signals that may catch system nonlin-
earities. Triangular or step signals of different amplitude
levels are ideal input signals used for time-domain model
validation.

IV. SIMULATION RESULTS

A. Simulation setup

The identification algorithm presented in the previous
sections is applied to a HDI diesel engine model simulated
with The MathWorks Simulink environment. The mechan-
ical and thermodynamic interactions between the variables



TABLE III

ENGINE PARAMETERS AND VARIABLES

p pressure (mbar)
V GT variable geometry turbocharger signal command (%)

N engine speed (rpm)
W air mass flow (mm3/cp)

describing the engine operation are modelled with algebraic
and differential equations, and with lookup tables recovered
by real time experiments. Thus, the model is a low level
description of the system showed in Fig.1 and, providing
a close approximation of the real system, the nonlinear
relation between the VGT signal command and the intake
manifold air pressure (MAP) can be investigated in a large
set of operative conditions.

For identification purposes the system could be seen as
a SISO nonlinear black-box, as shown in Fig.2. The input
(V GT ) to the system is the command of the actuator that
adjusts the angle of guide vanes placed to vary the incoming
exhaust gas flow at the entrance of the turbine. The output
(p) is the air pressure measured at the intake manifold (boost
pressure).N andW are the speed engine and the air mass
flow, respectively: a model is identified around a operating
point defined by the pair(N,W ).

The identification algorithm is feeded with input-output
data sets generated from several simulations in order to
find a polynomial NARMAX model of theV GT–boost
pressure nonlinear relation for different pairs(N,W ), that
specify the operative conditions of interest for the engine.
Tables I and II resume all the different operating points for
a full and 50% driver acceleration.

B. Excitation signal design

The signal used for the identification is, for all the
operating points, a concatenated data set of small signals.
A sequence of increasing and decreasing steps describes
the different regions of the VGT command, and small
amplitude (10% of the corresponding step) multisine signals
are superposed as excitation signals covering a frequency
range from0 up to2Hz. Fig. 4, for example, shows the data
set for the operating point defined by the pair(N,W ) =
(3000 rpm, 66.7 mm3/cp), and a full driver acceleration.
The VGT command is in the range 20%–65%, covered by
a sequence of steps with an increasing/decreasing variation
△ = 5% and superposed multi-sine signals.

C. VGT–boost pressure Model identification

The forward-regression estimation algorithm is applied
to the data related to the pair(N,W ) = (3000 rpm, 64
mm3/cp). The first choice for the parametersny, nu and
L is based on step responses analysis to estimate dynamics
and nonlinearity orders. Tests for nonlinearity detectionare
presented in [19].

A general inspection reveals that a linear second order
system is a good representation for small variations of the

TABLE IV

NARMAX PARAMETERS.

Index selected Parameter value Model term
1 1902.2 constant
2 -0.52096 y(t − 1)
3 0.013717 y(t − 2)
4 6.2607 u(t − 1)
5 1.6462 u(t − 2)
6 9.7052 u(t − 3)
7 0.00019272 y2(t − 1)
10 0.14749 u2(t − 1)
12 -0.40762 u(t − 1)u(t − 3)

15 0.1361 u2(t − 3)

input and of the output. This means that the global nonlinear
discrete time model, after a linearization, should provide
a second order discrete time system. Thus, a model with
ny = 2, nu = 3 andL = 2 is identified, and details about
the parameters are given in table IV.

This procedure, iterated for all the pairs(Ni,Wi), where
i is the generic operating point, leads to a set of nonlinear
models that describes the diesel engine boost pressure as a
nonlinear discrete time difference equation of the variables
V GT , N andW . Thereby, (2) can be parameterized as

y(t) =

n∑

i=1

θi(N,W )xi(t) + e(t) (11)

Each operating point has an associated nonlinear model
of low complexity: for example, model in table IV contains
10 parameters of the 21-terms full model. On the basis
of this model efficient but still robust nonlinear control
algorithms can be directly applied.

D. VGT–boost pressure Model validation

Statistical and time-domain validations are employed to
assess the model quality. Good results for the statistical
validation (10) are obtained (see Fig.3). Fig.5 and Fig.6
show model long-term prediction withvalidation dataand
step model validation with small and high amplitude data,
respectively. In these last two cases a step-sequence is
applied to the identified model to verify that, for small
and large variations in the input signal, the system output
is matched from the nonlinear NARMAX model output.
The first step sequence is the same used to sweep input
amplitude range in the identification data acquisition (△

= 5%), in the second one a larger amplitude variation is
applied (△ = 15%). This typical engine test confirm that
the model is suitable to represent system dynamics in both
input direction.

V. CONCLUSIONS

Control oriented models for diesel engines are necessary
for an efficient tuning of controllers. A practical solutionto
the nonlinear modeling problem in automotive applications
is represented by a nonlinear black-box identification. Poly-
nomial NARMAX models constitute an interesting class of
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input-output models for describing a large set of nonlinear
systems, as they are able to capture nonlinear dynamics
and, at the same time, they can be efficiently used together
with structure selection and parameters estimation proce-
dures. This drastically reduces the time for the elaboration
of a control oriented model. In this paper a practical
identification procedure based on a polynomial NARMAX
representation has been developed and applied to a HDI
diesel engine case study. Parsimonious nonlinear models
have been derived in view of nonlinear control algorithms
implementation.
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