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Stabilisation of network controlled systems with a
predictive approach

E. WITRANT, D. GEORGES C. CANUDAS DE WIT AND O. SENAME

Laboratoire d’Automatique de Grenoble, UMR CNRS 5528
ENSIEG-INPG, B.P. 46, 38 402, Saint Martin d"Heres, FRANCE

Abstract— This paper deals with network controlled systems. or hybrid model of the network as well. In the specific case of
A state predictor is used to stabilize such system as in [1], [2]. Internet networks, where the emission is regulated by a transfer

The full characterization of the prediction horizon is provided,
which allows to prove the stability of the closed-loop system with
the state predictor (using an estimated horizon).

Index Terms— Network controlled system, time-delay systems,
predictive control.

The importance of time-delay in practice, particularly con-
cerning networked control systems, is now understood as
shown for instance in [3], [4]. .
In most study concerning stabilization of network controlled
systems, the time-delay is treated as a constant or time-varying
one, but the delay dynamical behavior corresponding to thee
network characterization is in general not taken into account.
This paper deals with the stabilization of such systems, as-
suming the knowledge of the transmission protocol dynamics,e
i.e. a "delay model”. We aim to provide criteria which ensure
stabilization of the network controlled system using a predic-
tive approach. This work follows the previous authors’ studi

protocol and a router stores and manages the data packets, we
have the following description

« z(t) describes the time evolution of the emitters window

size W,(t) (for i = 1...N sources connected to the
network) and the router’'s queue lengtft). In that case,
the state writes as(t) = [Wi(t) ... Wx(t) q(t)]%,

uq(t) is the number of userd” and possibly the router’s
output capacity’,., if both are time-varying; we then have
ua(t) = {N,C,},

f(z(t),uq(t)) is set by the TP on the windows sizes and
by the queue management scheme (i.e. TCP and AQM
policy),

h(z(t),uq(t)) determines the delay occurring between the
sender and the receiver from network parameters such as
the round trip timeR;(¢).

‘ijote that (1)-(2) describe an autonomous system with an
the prediction horizon. xogenous inpui:y(t). This input is assumed to be known

e . . ver a certain range of time ahead of the present time (equal to
The outline is as follows. In section 2 the considered modq(ﬁ 9 P (eq

. . . 1he maximum delay expected,,.). This would be the case if
for the plant and_tlme—.delay behavior are described. I_n secti subsystems of a supply chain act in a predetermined order
3, th? ;tate pr.edlct_or IS p_resepted, e.md the computauon of S the transfer protocol is set to declare to the network that
prediction horizon is detailed in section 4. Section 5 concern$ source will emit and wait during before starting the
the stabilization proof of the predictive state feedback contrgl - cion max
law using the estimated horizon. The proof of stability of th '

complete scheme (which uses the time-delay model) is givsrq example of such dynamics is the TCP model described

in section 6. Some concluding remarks end the paper Yy [5], where a fluid flow model was developed using Pois-
' 9 Paper. son counter driven differential equations, with a proportional

Active Queue Management (AQM) policy set on the router’s
|. PROBLEM STATEMENT site. The AQM is introduced with a packet discard function
The aim of this paper is to explore how the transmissidi{-) and acts as a feedback from the router on the emitter’s
protocol dynamics can be explicitly used in the design of tn@indow size; the proporti.onal schem(_a is shown to be stable
control feedback. These dynamics can be described by {Rd6l- The network equations then write as
general class of systems that write as

[1], [2], and goes further into details in the characterization

dWi(t) 1 Wi(t) Wit — Ri(t))

T(t) = h(z(t), ua(t)) )
dat) _ g +y° Wi(t) (to) = @)
where z(t) is the internal state of the network (with ini- a "2 R T D
tial state zp), uq(t) is the exogenous input to the system, Rt =1 ;
f(z(¢t),uq(t)) describes the internal dynamics of the network 7 = il ), where R;(t) = {q( ) + Tm}
and h(z(t),uq(t)) gives the resulting delay(¢) from the 2 Cr

whole model. Note that the description of the network dynam-
ics with a model based on an ordinary differential equation vghere p;(t) =
arbitrary: the proposed results can be applied with a discrggempagation delay.

»q(t — R;(t)) and T,; is the constant



The remotely controlled system has the form: [1l. COMPUTATION OF THEPREDICTOR S HORIZON

#(t) = Ax(t)+ Bu(t — 7(t)) (5) We are now focuging on the solution of theplicit e_quation
(10) used to establish the control law. The dynamic computa-
y(t) = Cz(t) (6) tion proposed in [2], allowing for aexplicit use of the delay

wherez € R™ is the internal statey € R is the control Qynamics, is detgiled here to show that this approach rgsults
input, y € R™ is the system output, and, B, C are matrices " the exponential convergence of the predictor's horizon
of appropriate dimensions. The paifd, B) and (4, C) are e€stimation. We exploit the fact that the scalar differential
assumed to be controllable and observable, respectively, BAHatoNd(t) = —d + g(4) has only one globally attractive
no assumption is made on the stability 4f We assume that fixed point if the applicatiory has only one fixed point. This

all solutions of model (1)-(2) lead to the following propertiedS & continuous version of the discrete iteration , = g(d»)-

Vi >0 This approach has the advantage of proposing an explicit
- solution, where the delay occurs in the state of the controller,
0<7(t) < Timax (7) and to be more powerful on the level of the computing time

Ft)<v<1 (8) hecessary to the resolution of the implicit equation (10). We

describe how the dynamics df(¢) is defined in order to
where 7., IS an upper bound on the time-delay. Note thajuarantee an asymptotic convergence towards the solution of
these conditions are a direct consequence of the lossldss implicit equation. Note that this approach motivates the
property of the network considered. need of a dynamic model of the delay but could also be

developed with a discrete or hybrid model of the delay.

Il. BACKGROUND ON THE STATE PREDICTOR First define the functional

Due to the inherent time-variation of the delay considered 8(t) = o(t) — r(t + (1)) (13)
when dealing with networks, it is not possible to deSig{R/hereS
a controller that imposes an invariant closed-loop spectru

Instead, under certain weak conditions, we are able to set 1&h that the surface(t) — 0, wheres({) is the required value
eigenvalues of dime-varying shifted system, or equivalently of 5(t) (corresponding to an exact solution of the implicit

we ttrans_fotrm thf gllm(te_-mvarlan_t del_layed unftableﬂ?pen'k:%%uation), is rendered attractive and invariant. The result of
system, into a stable ime-varying linear System. The contigi ., 5 dynamics guarantees the exponential convergence of

design proposed here is similar to the one used in [7] in %r(]t) towardsd(t). Therefore, we build an open loop estimator

(t) is the estimated value @f(¢). The underlying idea
“the proposed approach is to find a variation law d¢t)

adaptive control scheme'. . . of 4(t), solution of the Cauchy’s system
The system transformation is done by replacing the current

time ¢ by the shifted time coordinate+ 4(¢) in (5), which () =0
results in s(t=0)=0

2/ (t+6(t)) = Ax(t+6(t)) + Bu(t+6(t) — 7(t + (1)), (9) 1O Preventthe numerical instabilities induced by this approach,
’ the dynamics of(¢) is defined by
where z/(-) is the derivative ofz(-) with respect to its

argument (i.et£ + 4(¢)) and §(¢) is a bounded and positive 5(t) +03(t) = 0 (14

time-depending function. Defining(t) as whereo is a positive constant. Deriving (13) with respect to
5(t) = 7(t + 8(t)) (10) time and' substituting in .(14), we obtain

and considering first the problem of state feedback stabiliza- o(t) =7 ()1 + (1)) +a(0(t) = 7(C)) =0

tion, the eigenvaluesf of the time-varying shifted system (9) a\%ereé(t) =4 S(t) andr’(-) is the derivative ofr(-) with
set with the control input respect to its argument. The previous equation implies that

t+6 (14) is satisfied ifr’'(-) # 1 and if the variation lawd(t) is
w(t+0) = e [m(f) + eAt/ e "’ Bu(0 - 7(0))d0 | established with
t
= -K . 11 i 5 /(¢ .
u(t) z(t+6(t)) (11) 5t = — 05/ o7 (©) +/UT(C) (15)
The resulting closed-loop equation is then 1=7(0) 1=7(C)

This explicit expression of the dynamics 6ft) ensures that
the estimat@ (¢) converges towards the desired vali{e), and
where 4, is the closed loop state matrix, that can be madbat the functions(t) converges exponentially towards zero.
Hurwitz from the controllability hypothesis ofid, B). The We thus directly use dynamics of(¢) given by (1)-(2). It
stability of this system is established in [8] and reconsideré@mains to show that the estimation error &) induced by

in [2], where a Lyapunov-based analysis in the time-shiftdfe proposed method has the same stability propertiéstas
coordinates + §(t) is proposed. This last result connects th#r the type of functions considered. This is established with
conditions (7)-(8) to the stability of (12). the following lemma.

@' (t+6(t)) = (A= BK)a(t +6(t)) = Aax(t+ (1)) (12)



Lemma 3.1: Let z(t) € X C R be the solution of the im- u(t-1)
plicit equationz(t) = f(x(t)), where f(x(t)) is a continuous
and differentiable function o’ with a Lipschitz coefficient
M < 1. If &(t) is the estimate of this solution, computed from () —> 5‘(0
the dynamics

Linear System

{é(t) = —0o3(1) 1 \l/

2(t) — f(2(1)) o0 State Predictor |« ©
X

»>
—~
~
=

wherec is a positive constant, then the estimation eu@)

defined by Fig. 1. Control with the estimation af(¢).

satisfies the inequalit
a Y The error induced by this approximation converges exponen-

e(t)] < 1|§(t])\\4 (16) tially towards zero and is bounded in the following way:
i 2 |60 — (o) e~
and converges exponentially to zero. le(t)] = |6(t) — o(t)| < 2—002 (17)
Proof: The estimation errof ¢ is first expressed as a 1 -
function of f and s with whereo is a positive constant.
€= f(@)—3— f(&) = -5+ f(z) — flz—e) Proof: This theorem is a direct consequence of the

proposed dynamic computation and the properties of the
The continuity and differentiability properties ¢gf on X as network considered, which make it possible to apply Lemma
well as the mean-value theorem then make it possible 30l. Indeed, the domain considered is &1, from the
establish that there is onein the interval [z — ¢,z] such definition of§ (10) and the boundness condition oft) (P1).

that The condition on the delay’s derivativeP2) ensures that
flx)— f(x—e) = f'(c)e the condition on the Lipschitz coefficient of Lemma 3.1 is
This implies satisfied. Finally, the variablest) ands(t) are substituted by
(1= f(e) = — their expression in terms @f-), o(-) and7(-). [ |

and consequently . IV. PREDICTOR WITH AN ESTIMATED HORIZON

‘T C f'(c) This section is dedicated to the synthesis of a predictive

control law based on an estimated horizon for the stabilization
of network controlled systems. We first describe the influence
of the horizon estimation on the closed-loop system. Then,
sup fllz) =M <1= f'(¢) <1 the computation method proposed in the previous section
z€R is validated by guaranteeing the exponential stability of the
thus justifying the inequality (16). Finally, the exponentiatlosed-loop system. The estimate of the predictor’s horizon
convergence ok(t) is directly obtained from the dynamicd(t) induces a new dynamics which influences the closed-loop
equation definings(t), which has as the solutiod(t) = system. Indeed, the control law based on the state predictor
5(0)e~ . B is now established using the estimatei¢f), as presented in
Remark 3.1: The preceding result shows equivalently thatigure 1, and writes as
the tracking error

The assumption on the Lipschitz coefficient ffmakes it
possible to establish that

t+6(t)
e(t) = s(t) —3(t) u(t) = —KeM(® z(t) + et / e~ Bu(d — 7(6))do
obeys the law of exponential decayt) = e(0)e “*. This t
is a direct consequence of the fact that the functi¢ is ) (18)
described by a Cauchy’s system. or, equivalently,

The previous lemma is now be applied to the horizon u(t) = 7K1,(t+3(t))
estimation problem with the following theorem.

Theorem 3.1: The solutiond(t) of the implicit equation with 4(t) defined by its dynamics (15). Using the change
(10) can be estimated by the variabi¢), solution of the in coordinatest — ¢ + 4(t) and (18), the system dynamics
dynamic equation (15), with(0) = &y € [0, Tmae] @and 7(t) considered &
satisfying the conditions ,

P1) 0<7(t) < Tomaes 2'(t+36) = Ax(t+96)+ Bu(t) )
P2) sup,cp+ 7(t) =v < 1. = Az(t+6) - BKa(t+9) (19)

Lfor simplicity sake, the temporal indices eft) are omitted in this proof,  2the temporal dependence &ft), 5(¢) and ¢(t) is omitted in the sequel
the suggested solution remaining true forall for simplicity sake.



Adding and subtractind3 Kz (¢ + §) on the right side of the Deriving V(-) along the trajectories of; and using the
previous equality, we obtain the system relationships

) , _ d b(t) t
Sy 2/(C) = (A= BK)a(C) + BE(2(C) — 2(C — ¢)) d [ N
dt | Jaey Jevo

= (b—a)f ()

where((t) = t+4(t) ande(t) = §(t)— () has the properties b ) 0
described by Theorem 3.L, can be rewritten, by arithmetic -1+ b)/ ft+6)do+ (b— a)/ f(t+60)do
equivalence using the formula of Leibniz-Newton, a a

and
0 T T ao-1 Tq
¥(¢) = (A= BE)2(Q) + BE | o/(¢+6)ag ZUUS S E
e for i = 1,2, we obtain the inequality
The dynamics (19) is then substituted into the integral term to JV (z(¢)) - .
obtain the transformed system ac <2(Q)" [PAa+ AgP + earS] z(()
0
0 T -1 T
Sial(Q) = (AfBK)x(()JrBKA/ (¢ + 6)do + LGZJU(C) PBKAS™(PBKA) z(C)dd
e h <1 _
7(BK)2/ 2(C + 0)do + /2 aar;(c)TP(BK)“'S YP(BK)*)Tx(¢)do
—2¢ T
T T
with the initial conditions S [P Aa+ AqP +cars (21)
-1 T
©O) = o0).0€lto— 20w, b (1o, ) €RF xCfy,, T CPPRATPBRA
+ e~P(BK)?>S™Y(P(BK)*)™| z(¢)
whereey = sup, e(t), Cp . ={¢ € Cn r : |[¢]lc < v}, vis a
a positive real numbet]¢||. = sup_, <, l[9[], || - || refers where
to the Euclidian norm ant_d?nﬁ = C([—T_, O],R“)_ denotes _ L 1ta(l—éy) ‘ 1— 2y
the Banach space of continuous vectorial functions mapping a1 = (1)1 —2én) az = m (22)
[—7, 0] into R™ with a uniformly convergent topology (see [9] M M M
for more details). are some positive constants. Defining the matrices
Note that the stability oS, implies that of%, but the R = a;S+aPBKAS (PBKA)T
reverse is not true (comparison principle), because of the 1 - p
initial conditions prolongation on the temporal spaé&) — +- P(BK)"S™(P(BK)?)
2¢,6(0) — €]. The stability of the transformed system is Q = —(PAy+ATP)
guaranteed by the following lemma, which is an application . cl
of the results of [10] to the problem considered. which are positive definite by construction and by the assump-
Lemma 4.1: Consider the syster®, with appropriate dis- tion i), respectively, the previous inequality writes as
tributed initial conditions. If the following conditions hold dv(z(¢)) . .
i) e(t) satisfies (17) and is such that < (=Am(@Q) + leAa (R)z ()
. . 1 The convergence of the functiorft) ensures that there is a
0<ém= S‘ipe(” <3 time ¢, such as
ectori - e(t)] < 2D
then the trajectories of({(t)) are asymptotically bounded. Mz (R)

Proof: Consider the Lyapunov-Krasovskii functionalfor all t > ¢

¢, and thus that the Lyapunov-Krasovskii func-
established fob; us yapunov vskii fu

tional converges for al(¢) € {z({(t)) : t > t.}. From the
fact that the system considered is linear and cannot diverge in

_ T
V(@) = (0 Pm(C)O X finite time, we conclude that the trajectories of the functional
1 T differential equation:; are asymptotically stable. [ ]
du| db ¢
Jr1 — €M /,6 [/H@ (p)” Sz(p) M] Remark 4.1: Although the method used to establish the pre-

P vious lemma can seem conservative, in particular concerning
@ : / / 2(p) T Sx(p)dp | do the bounds imposed on the error variation, it remains suitable
L=2¢em Joze | Jevo to support the matter of this section. Indeed, these limits are

] - o ) ) determined by an appropriate choice of the constanthich
with P and S some positive definite symmetric matrices, ang, ;st pe selected such that

J<f
O<ax ém 2[0g — 7(do)|




This limits the possible convergence speed of the estimatione in a more general way, by combining an observer and a
error. predictor on the delay.

Remark 4.2: The maximum acceptable variation of the efNote that the transfer protocol algorithm can be used on
ror ¢ is given by the precision of the network model or caghis |evel to make an aperiodic network totally deterministic.
be set with the transfer algorithm if a buffer is introduced ghdeed, let us suppose that a source emits a preliminary signal,
the receiver’s input (use of the transfer protocol for the contrgf negligible size, informing of its intention to use the network

requirements). and waits during a time,,,, before emitting. The number of
sources planing to use the network is thus known in advance
V. EXPLICIT USE OF THENETWORK MODEL and a model of the emission protocols and of the queue

The last step aims at describing the control law with amanagement can be used in order to precisely predict the delay
explicit use of the network model and at showing that thieehavior.
stability is ensured for a delay satisfying (7)-(8). This is
established by the following theorem. VI]. CONCLUSIONS

Theorem 5.1: Consider the system described by ] o
In this paper, a state predictive approach has been used

i(t) = Az(t) + Bu(t — 7(1)) to deal with network controlled system in the case where

where (4, B) is a controllable pair. Suppose that the delaghe transmissiqn protocol dynamic is explicitly used in the
dynamics described by (1)-(2) and the positive constaate model formulation. We have proved that such a system can be
such that the following conditions hold for il stabilized with a state predictor, and have mainly focused on

the characterization of the prediction horizon.
Al) 0<7(t) < Tomax . :
A2) #)<v <1 Most part of this work are developed in [11], where an
- 1 application to the stabilization of an inverted pendulum is
A3) 0 < épy =supyé(t) < 3 . L .
then the state feedback irol | presented. In this application, an observer is also needed to
en the state feedback contro awA estimation the state variable, in order to implement the state
t+0(t) predictive control law. The design of this observer, in the

u(t) = _ KA z(t) + et / e~ Bu(0 — 7(6))de | framework of varying time-delay, and in connection to the
d considered control scheme, is currently studied.
o) = - C b+ dr(Q)/d 4 o7(C) VIl. ACKNOWLEDGEMENTS
1 —dr(C)/dC 1 —dr(¢)/d¢ '
dr - dh - . This study was realized within the NECS-CNRS projet. The
d?AK) = E(Z(C)7 ua(C)) authors would like to thank the CNRS for partially funding the
dv - A R project.
dfé(é) = f(2(¢),ua(C)), 2(0) =z
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