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LOW FREQUENCY RESOLVENT ESTIMATES FOR LONG RANGE

PERTURBATIONS OF THE EUCLIDEAN LAPLACIAN

JEAN-FRANÇOIS BONY AND DIETRICH HÄFNER

Abstract. Let P be a long range metric perturbation of the Euclidean Laplacian on R
d, d ≥

3. We prove that the following resolvent estimate holds:

‖〈x〉−α(P − z)−1〈x〉−β‖ . 1 ∀z ∈ C \ R, |z| < 1,

if α, β > 1/2 and α + β > 2. The above estimate is false for the Euclidean Laplacian in
dimension 3 if α ≤ 1/2 or β ≤ 1/2 or α + β < 2.

1. Introduction

There are now many results dealing with the low frequency behavior of the resolvent of
Schrödinger type operators. The methods used to obtain these results are various: one
can apply the Fredholm theory to study perturbations by a potential (see e.g. [6]) or a
short range metric (see e.g. [9]). The resonance theory is also useful to treat compactly
supported perturbations of the flat case (see e.g. [3]). Using the general Mourre theory, one
can obtain limiting absorption principles at the thresholds (see e.g. [5] or [8]). The pseudo-
differential calculus of Melrose allows to describe the kernel of the resolvent at low energies
for compactifiable manifolds (see e.g. [7]). Concerning the long range case, Bouclet [1] has
obtained a uniform control of the resolvent for perturbations in divergence form. We refer
to his article and to [4] for a quite exhaustive list of previous results for perturbations of the
Euclidean Laplacian.

On R
d with d ≥ 3, we consider the following operator

(1) P = −bdiv(G∇b) = −
d∑

i,j=1

b(x)
∂

∂xi
Gi,j(x)

∂

∂xj
b(x),

where b(x) ∈ C∞(Rd) and G(x) ∈ C∞(Rd; Rd×d) is a real symmetric d × d matrix. The
C∞ hypothesis is made mostly for convenience, much weaker regularity could actually be
considered. We make an ellipticity assumption:

(H1) ∃C > 0, ∀x ∈ R
d G(x) ≥ CId and b(x) ≥ C,

Id being the identity matrix. We also assume that P is a long range perturbation of the
Euclidean Laplacian:

(H2) ∃ρ > 0, ∀α ∈ N
d |∂α

x (G(x) − Id)| + |∂α
x (b(x) − 1)| . 〈x〉−ρ−|α|.
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In particular, if b = 1, we are concerned with an elliptic operator in divergence form
P = −div(G∇). On the other hand, if G = (g2gi,j(x))i,j , b = (det gi,j)1/4, g = 1

b , then the

above operator is unitarily equivalent to the Laplace–Beltrami −∆g on (Rd, g) with metric

g =
d∑

i,j=1

gi,j(x) dx
i dxj ,

where (gi,j)i,j is inverse to (gi,j)i,j and the unitary transform is just multiplication by g.

Theorem 1. Let P be of the form (1) in R
d with d ≥ 3. Assume (H1) and (H2).

i) For all ε > 0, we have

(2)
∥∥〈x〉−1/2−ε(

√
P − z)−1〈x〉−1/2−ε

∥∥ . 1,

uniformly in z ∈ C \ R, |z| < 1.

ii) For all ε > 0, we have

(3)
∥∥〈x〉−1/2−ε(P − z)−1〈x〉−1/2−ε

∥∥ . |z|−1/2,

uniformly in z ∈ C \ R, |z| < 1.

iii) For all α, β > 1/2 with α+ β > 2, we have

(4)
∥∥〈x〉−α(P − z)−1〈x〉−β

∥∥ . 1,

uniformly in z ∈ C \ R, |z| < 1.

Remark 2. i) The estimate (4) is not far from optimal. Indeed, this estimate is false for the
Euclidean Laplacian −∆ in dimension 3 if α ≤ 1/2 or β ≤ 1/2 or α+ β < 2.

ii) One can interpret (4) in the following way: one needs a 〈x〉−1/2 on the left and on the
right to assure that the resolvent is continuous on L2(Rd) and one needs an additional 〈x〉−1

(distributed, as we want, among the left and the right) to guarantee that its norm is uniform
with respect to z.

iii) By interpolation of (3) and (4), for α, β > 1/2 with α+ β ≤ 2, one obtains estimates

like (4) with |z|−1+
α+β

2
−ε on the right hand side.

iv) In dimension 1, the kernel of (−∆ − z)−1 is given by iei
√

z|x−y|

2
√

z
. In particular, this

operator satisfies (3) but not (4) (for any α, β). Therefore it seems that (3) is more general
than (4). It could perhaps be possible to prove (3) in lower dimensions (at least, in dimension
2 and when P is of divergence form P = −div(G∇)).

v) For large z, the estimate (3) coincides with the high energy estimate in the non-trapping
case. In particular, if we suppose in addition a non trapping condition for P , then (2) and
(3) hold uniformly in z ∈ C \ R.

The proof of the above theorem is based on the low frequency estimates of [2]. Concerning
the square root of P , they are used to treat the wave equation. Note that in [2] they are
formulated for the Laplace–Beltrami operator −∆g, but they obviously hold for the operators
studied in the present paper. Essentially, we will show that (2)⇒(3)⇒(4).
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2. Proof of the results

We begin by recalling some results of [2]. For λ ≥ 1, we set

Aλ = ϕ(λP )A0ϕ(λP ),

where

A0 =
1

2
(xD +Dx), D(A0) =

{
u ∈ L2(Rd); A0u ∈ L2(Rd)

}
,

is the generator of dilations and ϕ ∈ C∞
0 (]0,+∞[; [0,+∞[) satisfies ϕ(x) > 1 on some open

bounded interval I = [1 − ε̃, 1 + ε̃], 0 < ε̃ < 1 sufficiently small. As usual, we define the

multi-commutators adj
AB inductively by ad0

AB = B and adj+1
A B = [A, adj

AB]. We recall [2,
Proposition 3.1]:

Proposition 3. i) We have (λP )1/2 ∈ C2(Aλ). The commutators adj
Aλ

(λP )1/2, j = 1, 2, can
be extended to bounded operators and we have, uniformly in λ ≥ 1,

∥∥[
Aλ, (λP )1/2

]∥∥ . 1,

∥∥ ad2
Aλ

(λP )1/2
∥∥ .

{
1 ρ > 1,

λδ ρ ≤ 1,

where δ > 0 can be chosen arbitrary small.

ii) For λ large enough, we have the following Mourre estimate:

1lI(λP )
[
i(λP )1/2,Aλ

]
1lI(λP ) ≥

√
inf I

2
1lI(λP ).

iii) For 0 ≤ µ ≤ 1 and ψ ∈ C∞
0 (]0,+∞[), we have

∥∥〈Aλ〉µψ(λP )〈x〉−µ
∥∥ . λ−µ/2+δ,

for all δ > 0.

We will also need [2, Lemma B.12]:

Lemma 4. Let χ ∈ C∞
0 (R) and β, γ ≥ 0 with γ + β/2 ≤ d/4. Then, for all δ > 0, we have

∥∥〈x〉βχ(λP )u
∥∥ . λ−γ+δ

∥∥〈x〉β+2γu
∥∥

uniformly in λ ≥ 1.

By Mourre theory (see Theorem 2.2 and Remark 2.3 of [2] for example) and Proposition 3,
we obtain the following limiting absorption principle:

sup
Re z∈I, Im z 6=0

∥∥〈Aλ〉−1/2−ε((λP )1/2 − z)−1〈Aλ〉−1/2−ε
∥∥ . λδ,(5)

for all ε, δ > 0. This entails the following

Lemma 5. For Ψ ∈ C∞
0 (]0,+∞[) and ε > 0, we have

∥∥〈x〉−1/2−εΨ(λP )(
√
P − λ−1/2z)−1〈x〉−1/2−ε

∥∥ . 1,(6)

∥∥〈x〉−1/2−εΨ(λP )(P − λ−1z2)−1〈x〉−1/2−ε
∥∥ .

√
λ

|z| ,(7)

uniformly in λ ≥ 1 and z ∈ C \ R with Re z ∈ I.
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Proof. Let Ψ̃ ∈ C∞
0 (]0,+∞[) be such that ΨΨ̃ = Ψ.

To prove the first identity, we write
∥∥〈x〉−1/2−εΨ(λP )(P 1/2 − λ−1/2z)−1〈x〉−1/2−ε

∥∥

.
∥∥〈x〉−1/2−εΨ(λP )〈Aλ〉1/2+ε

∥∥∥∥〈Aλ〉−1/2−ε(P 1/2 − λ−1/2z)−1〈Aλ〉−1/2−ε
∥∥

×
∥∥〈Aλ〉1/2+εΨ̃(λP )〈x〉−1/2−ε

∥∥

.λ−
1

4
− ε

2
+δλ

1

2
+δλ−

1

4
− ε

2
+δ . 1.

Here we have used Proposition 3 iii), Lemma 4 as well as the fact that δ can be chosen
arbitrary small.

To obtain (7), it is sufficient to write
∥∥〈x〉−1/2−εΨ(λP )(P − λ−1z2)−1〈x〉−1/2−ε

∥∥

.λ1/2
∥∥〈x〉−1/2−εΨ(λP )((λP )1/2 + z)−1〈x〉1/2+ε/2

∥∥

×
∥∥〈x〉−1/2−ε/2Ψ̃(λP )(P 1/2 − λ−1/2z)−1〈x〉−1/2−ε

∥∥

.
λ1/2

|z| .

Here we have used (6) and Lemma 4. It is clear from the proof of Lemma 4 in [2] that we

can apply it to Ψ(λP )((λP )1/2 + z)−1 and that we gain 1
|z| . Indeed, as an almost analytic

extension, we can just take the almost analytic extension of Ψ multiplied by the analytic
function 1√

x+z
. �

Proof of Theorem 1. We only show the third part of the theorem, the proof of the other parts
is analogous. Also it is clearly sufficient to replace z by λ−1z̃2 with Re z̃ = 1 ∈ I and λ ≥ 1
(for instance, λ = (Re

√
z)−2 and z̃ =

√
z/(Re

√
z)). Let ϕ, ϕ̃ ∈ C∞

0 ([1
3
, 3]) and f ∈ C∞(R)

be such that ϕ̃ = 1 on the support of ϕ, f(x) = 0 for x < 2 and

f(x) +
∑

µ=2n, n≥0

ϕ(µx) = 1,

for all x > 0. Since 0 is not an eigenvalue of P , we can write

〈x〉−α(P−z)−1〈x〉−β = 〈x〉−αf(P )(P−z)−1〈x〉−β +
∑

µ=2n, n≥0

〈x〉−αϕ(µP )(P−λ−1z̃2)−1〈x〉−β .

Of course, since |z| < 1, the functional calculus gives
∥∥〈x〉−αf(P )(P − z)−1〈x〉−β

∥∥ . 1.

Let α̃ = min(α, d
2
) and β̃ = min(β, d

2
). Note that α̃+ β̃ > 2 since d ≥ 3. Let Ψ ∈ C∞

0 (]0,+∞[)

be such that Ψ = 1 near [ 1
12
, 12]. Then, for µ

4
≤ λ ≤ 4µ, we have

∥∥〈x〉−αϕ(µP )(P − λ−1z̃2)−1〈x〉−β
∥∥

.
∥∥〈x〉−αϕ(µP )〈x〉1/2+ε

∥∥∥∥〈x〉−1/2−εΨ(λP )(P − λ−1z̃2)−1〈x〉−1/2−ε
∥∥∥∥〈x〉1/2+εϕ̃(µP )〈x〉−β

∥∥

. λ
1

4
+ ε

2
− α̃

2
+δλ

1

2 |z̃|−1λ
1

4
+ ε

2
− β̃

2
+δ . λ1+ε+2δ− α̃+β̃

2 . 1,



LOW FREQUENCY RESOLVENT ESTIMATES 5

for all ε, δ > 0 small enough. Here we have used (7) and two times Lemma 4. On the other
hand, for λ /∈ [µ

4
, 4µ], the functional calculus and Lemma 4 yield

∥∥〈x〉−αϕ(µP )(P − λ−1z̃2)−1〈x〉−β
∥∥ . |µ−1 − λ−1|−1

∥∥〈x〉−αϕ(µP )
∥∥∥∥ϕ̃(µP )〈x〉−β

∥∥

. |µ−1 − λ−1|−1µ−
α̃+β̃

2
+ε,

for all ε > 0. Splitting the sum into two, we get
∑

4µ<λ

|µ−1 − λ−1|−1µ−
α̃+β̃

2
+ε .

∑

4µ<λ

µµ−
α̃+β̃

2
+ε . 1,

∑

µ>4λ

|µ−1 − λ−1|−1µ−
α̃+β̃

2
+ε .

∑

µ>4λ

λµ−
α̃+β̃

2
+ε . 1.

This finishes the proof of the theorem. �

Proof of Remark 2 i). Let us recall that the kernel of the resolvent of the flat Laplacian in
R

3 at z = 0 is given by

K(x, y, 0) =
1

4π|x− y| .

Assume that 〈x〉−α(−∆)−1〈x〉−β is bounded on L2(R3). Applying to χ ∈ C∞
0 (R3) ⊂ L2(R3),

we find
(
〈x〉−α(−∆)−1〈x〉−βχ

)
(x) =

∫
1

4π|x− y| 〈x〉
−α〈y〉−βχ(y)dy & 〈x〉−α−1,

for |x| ≫ 1. But 〈x〉−1−α ∈ L2(R3) if and only if α > 1/2. The condition β > 1/2 is checked

in the same way. We now apply the resolvent to f(x) = 〈x〉−3/2−ε ∈ L2(R3) and find

(
〈x〉−α(−∆)−1〈x〉−βf

)
(x) =

∫
1

4π|x− y| 〈x〉
−α〈y〉−β〈y〉−3/2−εdy

≥
∫

|y|≤ |x|
2

1

4π|x− y| 〈x〉
−α〈y〉−β〈y〉−3/2−εdy

& 〈x〉−α−1

∫

|y|≤ |x|
2

〈y〉−3/2−ε−βdy & 〈x〉3/2−α−β−1−ε.

This leads to the condition 2(3/2 − α− β − 1) ≤ −3 which implies α+ β ≥ 2. �
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résonance au voisinage du réel, Acta Math. 180 (1998), no. 1, 1–29.
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