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THE SEMILINEAR WAVE EQUATION ON ASYMPTOTICALLY
EUCLIDEAN MANIFOLDS

JEAN-FRANCOIS BONY AND DIETRICH HAFNER

ABSTRACT. We consider the quadratically semilinear wave equation on (Rd, g), d > 3. The
metric g is non-trapping and approaches the Euclidean metric like (x)~°. Using Mourre
estimates and the Kato theory of smoothness, we obtain, for p > 0, a Keel-Smith—Sogge type
inequality for the linear equation. Thanks to this estimate, we prove long time existence for
the nonlinear problem with small initial data for p > 1. Long time existence means that, for
all n > 0, the life time of the solution is a least ", where § is the size of the initial data in
some appropriate Sobolev space. Moreover, for d > 4 and p > 1, we obtain global existence
for small data.
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1. INTRODUCTION

This paper is devoted to the study of the quadratically semilinear wave equation on asymp-
totically Euclidean non-trapping Riemannian manifolds. We show global existence in dimen-
sion d > 4 and long time existence in dimension d = 3 for small data solutions. In Minkowski
space, the semilinear wave equation has been thoroughly studied. Global existence is known
in dimension d > 4 for small initial data (see Klainerman and Ponce [23] and references
therein). Almost global existence in dimension d = 3 for small data was shown by John and
Klainerman in [18]. Almost global means that the life time of a solution is at least e'/%,
where ¢ is the size of the initial data in some appropriate Sobolev space. Note that, in di-
mension d = 3, Sideris [31] has proved that global existence does not hold in general (see also
John [17]).
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2 J-F. BONY AND D. HAFNER

In [20], Keel, Smith and Sogge give a new proof of the almost global existence result in
dimension 3 using estimates of the form

T
(L) 0@+ D)) ™20 | a0 ymsy S (0, )l 2es) + /O 1G (s, )| 2 e ds,

and a certain Sobolev type estimate due to Klainerman (see [22]). Here u solves the wave
equation OJu = G in [0, +0o[xR? and v = (Ou,d,u). They also treat the non-trapping
obstacle case. In [21], similar results are obtained for the corresponding quasilinear equation.
The obstacle case in which the trapped trajectories are of hyperbolic type is treated by
Metcalfe and Sogge [24].

Alinhac shows an estimate similar to (1.1) on a curved background. In his papers [1] and
[2], the metric is depending on and decaying in time. The results of Metcalfe and Tataru
[26] imply estimates analogous to (1.1) for a space-time variable coefficients wave equation
outside a star shaped obstacle (see also [25]). Outside the obstacle, their wave operator is a
small perturbation of the wave operator in Minkowski space.

The common point of the papers cited so far is that they all use vector field methods. We
use in this paper a somewhat different approach. We will show how estimates of type (1.1)
follow from a Mourre estimate [27]. This method will permit us to consider non-trapping
Riemannian metrics which are asymptotically Euclidean without requiring that they are ev-
erywhere a small perturbation of the Euclidean metric. We will suppose for simplicity that
the metric is C*, but a C* approach should in principle be possible. Spectral methods for
proving dispersive estimates were previously used by Burq. In [5], he obtains global Strichartz
estimates for compactly supported non-trapping perturbations of the Euclidean case. In more
complicated geometries, conjugate operators are probably not vector fields and it is perhaps
worth trying to mix the classical vector field approach with the Mourre theory.

Let us now state our precise results. We consider the asymptotically Euclidean manifold
(R, g) with d > 3 and

g= zd: gi.;(x) dz" da’.
ij=1
We suppose g; j(z) € C*°(R?) and, for some p > 0,
(H1) Va e N 93(gi5 — 0iy) = O((x)71*177).
We also assume that
(H2) g is non-trapping.

Let g(z) = (det(g))'/*. The Laplace Beltrami operator associated to g is given by
1 ..
Ny =) 09" g%0;,
i 9

where ¢"J(x) denotes the inverse metric. Let us consider the following unitary transform

V: { LA (R4, g% dx) — L*(RY dax)

v — qu.
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The transformation V sends —Ag to

1. .. 1
P=-VAV =-)" ;@gm g2aj§,
Y]

which is the operator we are interested in. Let 5]- = jg_l and Q = Q8¢ .= 2,0, — 2,0) be
the rotational vector fields. We consider the following semilinear wave equation
{ Ogu = Q(u),

(1-2) (u‘tzo,atuhzo) = (U07U1)-

Here (g = 97 + P and Q(v/) is a quadratic form in v’ = (8yu, Oyu). For z € R, |z| (resp.
[x]) denotes the largest (resp. smallest) integer such that |z| < x < [z]. Our main result is
the following theorem.

Theorem 1.1. Assume hypotheses (H1) and (H2). Suppose ug,u; € C§°(R?) and that, for
M=2 ((%W + 1), we have

(13) S e+ Y oot <a
laf+5<M+1 la+j <M

i) Assume d > 3 and p > 1. For all n > 0, there exists a constant §, > 0 such that, for
8 < 6y, the problem (1.2) has a unique solution u € C*([0,T] x R?) with

T=46"

i1) Assume d > 4 and p > 1. For ¢ small enough, the problem (1.2) has a unique global
solution u € C°°(]0, +00[xR%).

Remark 1.2. One may consider more general nonlinearities. For example, the previous result
holds for quadratic nonlinearities of the form Q(z)({z) "u,u’) with u > 1 and [|02Q(x)| =
O((z)~le). In particular, one can replace Q) by Q(dyu, dyu) or work with the wave equation
before the transformation by V. To prove this remark, it is enough to combine the proof of
Theorem 1.1 with Lemma 4.2.

The main ingredient of the proof are estimates of type (1.1). Let us therefore consider the
corresponding linear equation. Let u be solution of

(1.4) { (02 + P)u = G(s),
(ult:()’ 8tulrs:o) = (uo,u1).

With the notation
T172u+25 ILL S 1/27

Ff‘(T):{1 0> 1/2,

we have the following estimate.

Theorem 1.3. Assume that (H1) and (H2) hold with p > 0 and let 0 < u < 1. For alle > 0,
the solution of (1.4) satisfies

T
@5 @) oz S <F;<T>>1/2<||u'<o, Misan + | ||G<s,->||L2(Rd>ds).
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To prove the nonlinear theorem, it will be useful to have higher order estimates. To this
purpose, let us put O = 2,0, — xggk, Z = {875,596,(2}, Y = {5x,§~2}, X = {(?);c}, where
{Q} (resp. {8,}) are the collections of rotational vector fields (resp. partial derivatives with
respect to space variables). Then, we have

Theorem 1.4. Assume that (H1) and (H2) hold with p > 1 and let N > 0 and 1/2 < u < 1.
For all € > 0, the solution of (1.4) satisfies

sup Z H@fpjﬂu(t,-)HLQ(Rd) + Z <F5(T)>_1H<x>_uZ&u/“L2([o,T}de)
0StST <y j<N+1 la|<N
T
/
(16) $ Y (12w Oy [ 12606, s
la] <N 0
Moreover, for p = 1, the same inequality holds with (F;;(T)fl replaced by (T)~¢.
Remark 1.5. i) Note that, in Theorem 1.1 and Theorem 1.4, p > 1 is required whereas
Theorem 1.3 is valid under a general long range condition p > 0.

ii) Theorem 1.3 and Theorem 1.4 remain valid if we replace u' by (dyu, PY/?u).

The paper is organized in the following way. In Section 2, we show scattering estimates
in a general setting. Section 3 is devoted to the Mourre estimate for the wave equation on
our asymptotically Euclidean manifold. Using these results, we prove the estimates for the
linear wave equation (Theorem 1.3 and Theorem 1.4) in Section 4. From these estimates, we
deduce the nonlinear result in Section 5. Appendix A collects some regularity properties of
operators and Appendix B contains low frequency resolvent estimates.

2. THE GENERAL SETTING

In this section, we obtain some abstract estimates which will be used to prove Theorem 1.3
and Theorem 1.4. These estimates are not specific to the wave equation and could help to
show analogous estimates for other equations. The key ingredients are the limiting absorption
principle and the Kato theory of smoothness.

We begin this section with the notion of regularity with respect to an operator. A full
presentation of this theory can be found in the book of Amrein, A. Boutet de Monvel and
Georgescu [3]. In Appendix A, we recall the properties which will be used in this paper.

Definition 2.1. Let (A, D(A)) and (H, D(H)) be self-adjoint operators on a separable Hilbert
space H. The operator H is of class C*(A) for k > 0, if there is z € C\ o(H) such that

R>t— eitA(H — z)*le*itA,

is C* for the strong topology of L(H).

Let H € C*(A) and I C o(H) be an open interval. We assume that A and H satisfy a
Mourre estimate on I:

(2.1) 1L, (H)i[H, A1 (H) > 61, (H),

for some & > 0. As usual, we define the multi-commutators abdf4 B inductively by ad) B = B
and ad’;' B = [4,ad’, B].
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Theorem 2.2 (Limiting absorption principle). Let H € C?(A) be such that adf4 H,j=1,2,
are bounded on H. Assume furthermore (2.1). Then, for all closed intervals J C I and
p > 1/2, there exists Cy, > 0 such that

(2.2) sup H H(H — 2)_1<A>_“H < Cipu
RezeJ
Im z#£0

If A and H depend on a parameter, the constant in the limiting absorption principle can
be specified according to this parameter. In fact, mimicking the proof of [28], we obtain the
following estimate.

Remark 2.3. Assume that (2.1) holds uniformly and that [H,A] is uniformly bounded.
Then, for all closed intervals J C I and > 1/2,

sup [[(AY(H — 2" (A < Gyl || adk H|C"*,
Rezc/

for some a]# > 0.

We now state a result of Kato [19] which says that, under the conclusions of Theorem 2.2,
(A)~#1;(H) is H-smooth. For the proof and more details, we refer to Theorem XIII.25 and
Theorem XIII.30 of [30].

Theorem 2.4 (H-smoothness). Let A and H be two self-adjoint operators satisfying (2.2).
Then, for all closed intervals J C I and p > 1/2,

/RW &L (Y2 dt < 8Cllull?,
for all u € H.

In the previous theorem, C,, is the constant appearing in (2.2). By interpolation, we get

Corollary 2.5. Assume (2.2). Then, for all closed intervals J C I and 0 < pu < 1/2,
T
/ [CAY e 0y (| dt < My T2 a2,
0

for all 0 < & < 2u. Here,

—€

Mg = (3C0u-0) "

Proof. Since e”*H is unitary,

T
/ e (B 2dt < Tl
0
Combining Theorem 2.4, the previous estimate and an interpolation argument, we get
T
/ H <A>_(1—9)Ve—th]1J(H)uHth < (8CJ7V)1_9T0 HUH2
0

forall 0 < # < 1 and v > 1/2. Taking # = 1 —2u+¢ € [0,1] (since € < 2u) and v =
u/(1—0)=p/(2u—¢e) > 1/2, the corollary follows. O
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We now study the non-homogeneous equation using the Fourier transform. Let G(t) €
(R¢; H) be such that supp G C [0, +oo[. We consider the solution u of

{ (i0; — H)u(t) = ¢(H)G(1),

u‘tzo = O,

Ll

loc
(2.3)

with ¢ € L>(R) and supp ¢ C J. This means that

(2.4) u(t) = —i /0 e =0 o(H)G(5s) ds,

and then u € CO(Ry; H) N S'(Ry; H).

Lemma 2.6. Let A and H be two self-adjoint operators satistying (2.2). Then, for all u > 1/2
and ¢ € CH(R) satisfying ||¢]lco < 1, [|¢']|cc < C1 and supp ¢ C J, we have

(A o(H)(H = 2)"H(A) 7] < Cup + C1,
for all z € C\ R.

Proof. Using Taylor’s expansion formula, we have

and then
1
O(H)H -2 =pRez)(H — 2)7* +/ ¢ (tH + (1 —t)Rez)dt (H — Rez)(H — 2)~".
0
Using the spectral theorem, we obtain the following estimates:

H /01 ¢ (tH + (1 — t)Re 2) dtH < /01 |¢'(tH + (1 —t)Re z) | dt < Cy,

H(H— Rez)(H — z)*lH < ilelﬁ‘x(x —iImz)*1| <1.

Therefore, for Re z € J, we have

[(A)Ho(H)(H — 2)"H{A) || < lo(Re 2)[[(A)7#(H — 2)~HA) || + Crll(A) 7
<Cju+Ch.

On the other hand, for Rez ¢ J, p(Rez) = 0 and then
[(A) ™ p(H)(H — 2)"H(A)TH]| < C1l[{A)~H|* < Cr.
The two last estimates give the lemma. ([l

Proposition 2.7. Let A and H be two self-adjoint operators satisfying (2.2) and ¢ € C*(R)
as in Lemma 2.6. Then, for all p > 1/2 and G(t) € L*(Ry; D((A)*)) with supp G C [0, +o0],
the solution u of (2.3) satisfies

/OOO [(A) " u(t)|[*dt < (Cyp + C1)? /OOO [(AYG(t)|| dt.
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Proof. Let ue. = (1 +ieH) 'u. From (2.4), u. € CY(Ry; H) N CO(Ry; D(H)) NS’ (Ry; D(H))
and u, is the solution of the problem

{ (i0 — H)ue(t) = (1 +icH) ' o(H)G(t),

(2.5)
Ug|,_g = 0.

Since the support of the temperate distributions u. and G is in [0, +o0, their Fourier trans-
forms are analytic in Im z < 0. Then, (2.5) gives, for Im z < 0,
(2 — H)ix(2) = (1 +icH) " o(H)G(2).

Then

(AP (2) = (A) M1+ ieH) " o(H) (2 — H)"H{A) APG(2).
Since [lp(x)(1 + iex) oo < l@lloo and [0z (@ (2)(1 4 icx) ™ )lloo < ell@llo + 1€/ lloo, Lemma
2.6 implies

(A #G(2)]| < (Cop+ 1 +2)|[{AHE(2)].
Thus, for all 6 > 0, Plancherel’s theorem gives
+00 9 +oo 9
/ e (4) ue|*dt < (Cyp+ Co +2)° / e~ (4G dt.

0 0

Letting 6 and € go to 0, we get the proposition. O
By interpolation, we also have

Corollary 2.8. Assume the hypotheses of Proposition 2.7. Then, for all 0 < p < 1/2 and
G(t) € L3*(Ry; D((A)*)) with supp G C [0, +o0],

T T
[ N i< Np a0 [y fa
0 0

for all 0 < e < 2u. Here,
442
Nipe = (CJ,;L/(Q;L*E) +C1) e

Proof. Let Pr: L*([0,T]; H) — L?([0,T]; H) be the operator defined by
¢
(PrG)(t) = —i / e = o (H)G(s) ds.
0

Proposition 2.7 gives

1€A) ™ PrG| t2o,mm) < (Crw + COIKA)Y Gl 2(0,1):0)
for v > 1/2. Moreover,

1PrGlqon < VT s | [ e o6 ds
te[0,T]

<\/Tsup\[</H_”S HGsH )1/2

te[0,T]
<TG r2(jo,17:0) -

With these two estimates in mind, one can prove the corollary by mimicking the proof of
Corollary 2.5. O
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3. THE WAVE EQUATION AND THE MOURRE ESTIMATE

In this section we will show a Mourre estimate for the wave equation on our asymptotically
Euclidean manifold:

(3.1) { (0} + P)u =0,

Uj,_y = U, atu‘tzo = uj.

Recall that
(3.2) P=-) -0ig"g%0;-,
i g g

is self-adjoint on L2(R?, dz) with domain D(P) = H?(R%). We define H*(R?) as the closure
of H*(R?) with respect to the norm

k
lull 2 = 3 || P72l
j=1

Let £ := HY(R?) @ L?(RY) with
1 (uo, u)[|E = (Puo, uo) + fJur||?,

be the energy space associated to (3.1). The energy of (3.1) is clearly conserved:
[ (u(t), Beu(t)) || = Il(uo, ur)le-

We will rewrite (3.1) as a first order system

{Zatf = Rfu

f|t:0 - (’LLQ, Ul),

0
o-( i)

The operator R is self-adjoint on £ with domain D(R) = H2(RY) @ H'(R?Y). Let £ =
L*(RY) @ L*(RY). It is useful to introduce the following unitary transform:

1 P1/2 i
Ug—>£, UZﬁ(Pl/Z —Z>’

(3.3)

with

which satisfies

_ 1 p-1/2 p-1/2 1 p1/2 0
* 1 - — *
Ur=U""= \@( _ ; and L=URU 7 0 _pi2 |

The operator (L, D(L) = H*(R?) @ H'(R?)) is self-adjoint. In order to establish a Mourre
estimate for L, it is sufficient to establish a Mourre estimate for P1/2. We divide this section
into the study of the low, the intermediate and the high frequency part.
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3.1. Low frequency Mourre estimate.

For low frequencies, we will make a dyadic decomposition and use a conjugate operator
specific to each part of the decomposition. In this section, we will obtain a Mourre estimate
for each part. For A > 1, we set

(3.4) Ax = o(AP)Aop(AP),
where

_1
2

is the generator of dilations and ¢ € C§°(]0, 4+o00[; [0, +00[) satisfies p(x) > J > 0 on some
open bounded interval I C]0,+o0].

Ay = =(xD + Dz), D(Ao) = {u € L*(R?); Agu € L*(R%)},

For the various estimates that we will establish in this section, the following formula for the
square root of an operator will be useful. Making a change of contour and using the Cauchy
formula, one can show that

IR
(3.5) o 1/? = / s7V2(s + o) ds,
T Jo
for o # 0. Therefore, the functional calculus gives
1 [t
(3.6) ©(AP)P'/? = - / sTV2p(AP)P(s 4+ P)"\ds.
0

It is well known that P € C*(Ap). In particular, p(AP) : D(4y) — D(Ap) and A, is
well defined on D(Ap). Its closure, again denoted Ay, is self-adjoint (see [3, Theorem 6.2.5,
Lemma 7.2.15]).

Proposition 3.1. i) We have (\P)"/? € C?(A)). The commutators adeA(/\P)l/z, j=12,
can be extended to bounded operators and we have, uniformly in A,
(3.7) I[Ax, AP 2] <1,
1 p>1
2 1/2 ’
(35) a2 < {07
where € > 0 can be chosen arbitrary small.

i1) For \ large enough, we have the following Mourre estimate:

5%2V/inf I

(3.9) 1;(AP)[i(AP)/2, A\ 1, (\P) > 5 L(AP).
i13) For 0 < p <1 and ¢ € C§°(]0, +00]), we have

(3.10) AN () 7# ] € X723,

(3.11) [CANFBAP) () 7H|| S A2,

for all € > 0.

The rest of this section will be devoted to the proof of the above proposition, which will
be divided into several lemmas.

Lemma 3.2. We have (\P)'/2 € C'(A,).
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The proof of Lemma 3.2 is analogous to the proof of [13, Lemme 3.3]. In this lemma,
it is shown that ((AP)'/2, Ay) fulfill the original conditions of Mourre which imply the C?
regularity. We now have to estimate the commutators. First note that
[i(AP)Y2, Ay] = iXV2p(AP)[PY2, Ag]p(AP).
Using formula (3.6), we find

312) ORIV Ao = L [ PP PG+ P A o) s,
0

i
with

[P(s+P)~" Ag] = —s[(s+ P)" !, Ag] = s(s+ P)"'[P, Ao](s+ P)"".
A direct calculation gives

[P, A))=—i) g7'D, (2929j’k - Z$£8€(929j’k)>Dkg_l
¢

j?k
—i Y g7wi(009) > Dig’g"* Drg™t —i> g7 Dig? g " Drg™* Y | x4(Dig)
¢ gk gk ¢
=—2iP+i Z g 'D; ( Z 200y(g2 ") — 297 g Z xg(agg)> Dyg !
Jk ¢ 1
+> 9710597 e(009)) 9?9 Drg T = > 97 Dig* g7 Ok (97 we(Deg)) g
Jok,€ 3.k,L
(3.13) =—2iP -2y g 'DjajxDrg ' +2iY bpDrg ' —2i > g 'Djb;,

where 9%a;; = O((z)~?7101) and 9%b = O((z)~P~1~12l) by (H1). In the following, a term 7,
j € N, will denote a smooth function such that

(3.14) 8%ri(z) = O((a)~P=I~lol).
Moreover, to clarify the statement, we will not write the sums over j, k and j, k and replace
the remainder terms in (3.13) by 0*r¢d, 0*r; and r10*. Then,

(3.15) [P, Ag] = —2i(P + 8*rod + 811 + 10).
and (3.12) becomes

2i [T
e(AP)[PY?, Aglp(\P) = —= / s12p(AP)(s 4+ P)~!
T Jo

(P+ *rod + 0 r1 + 7‘15) (s + P)"tp(AP)ds.
Proceeding as in (3.6), one can show that
+oo
/ sY2.2(AP)P(s + P)"2ds = ggpz()\P)Pl/Q.

0
Then, we finally obtain

(3.16) [i(AP)/2, 4\] = (AP)Y2p*(AP) + R,
with

400 -~ -
(3.17) R= z)\l/Q / s'2p(AP)(s + P)! (%100 + 0*r1 +110) (s + P) ' o(AP) ds.
0

™
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The remainder term R can be estimated in the following way.
Lemma 3.3. Assume 0 <y < d/4. Then, we have
| Rul| AV ()~ minodsD 2y |

for alle >0 .

Proof. First, we write
e(AP)(s + P)7'0* = A2 (s + P) L o(AP)(AP) /2 P~1/25",
Using Lemma B.13 and the functional calculus, this term can be estimated by
(3.18) [o(AP) (s + P)710*|| S AY2[|(5 + P) Maupp o (AP)|| S A2 (s +A7H 7!
Moreover, applying Lemma B.12 (with § =0 and v = 1/2 < d/4), we get
(3.19) |o(AP) (s + P)"10%u|| S (s + A7H) "IN (2wl
(3.20) [o(AP) (s + P)"tul| < (s + A7) TINT2EE ().
On the other hand, we write, for k € N,

(s+ P)'o(AP) = A(As + AP) 'p(AP) (AP + 1) 7"

with () = ¢(0) (o + 1)* € C5°(]0, +oo[). Using the spectral theorem, we have

(321) (54 P)'p(AP) = % /()\s +2) TP — 2) L AP + 1)K L(d2),

where J € C§°(C) is an almost analytic extension of 1. From the form of ¢, one can always
assume that suppy C {z € C; Rez > & > 0}. In particular,

(3.22) (As+2)7 < As+1)7E

uniformly for z € supp J
Using Proposition B.9, Lemma B.10 and Remark B.11, we obtain

[(2) P (AP — 2)"'u|| S [[(@) AP — 2) () min(psd/2)=e gy~ min(pd/2) ey |
(3.23) < Ile|CH 7min(p,d/2)+€uH’
and
()PP — 2) || S [[(@) PO — ) (a)ymin(ed/2) =< gy = min(pd/2) ey |
(3.24) < ;\Inl,;CH min(ﬂ,d/2)+suH’
for all € > 0.

Let v < d/4 and fix k > v + 2. Applying k times Proposition B.9, we get
(325) H — min p,d/2)+s()\P + 1 UH <\~ “/—i—EH min(p,d/2)+2’y+25uH,

for all € > 0.
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The formula (3.21) and the estimates (3.22), (3.23), (3.25) imply
[{2) =" (s + P) "' o(AP)u]

<AQs+1) /law @) PP — 2) X (AP + 1)l L(dz)

< As + 1)—1</ylmzy Cla(2)| L(dz) )H —min(pd/DTE (AP 4 1) Ry
(3.26) < AT (s 4 1)71H<x>7min(p,d/2)+2’y+2€uH7
for all € > 0. The same way, using (3.24) instead of (3.23), we obtain
(3.27) [{2) (s + P)Lo(AP)u|| S AV/27F2 (s + 1) 71 || () ~minled/ 220422 |
for all € > 0.
Let R; be the term of (3.17) with 9*rgd. Using ro = O((z)~"), (3.18) and (3.27), we get

+o0 .
| Ryu|| S AV </ sY2(s + A7 s + 1)_1d5> H<gj>_m1n(P,d/2)+2’Y+2€uH
0

+o0 .
< )\—wrs(/o 31/2(s+ 1)_1(3—1—1)_1ds>H(x>_mm(p’d/2)+2'y+25uu

(3.28) SATHE <x>—min(p,d/2)+27+2suH’

for all £ > 0. The same estimate can be proved for the term of (3.17) with 0*ry (resp. r19)
from r; = O({x)~P71), (3.19) and (3.26) (resp. (3.20) and (3.27)). O

Lemma 3.4. For all € > 0,
[[AP)'/2, Ar], AN] = O(X).

Remark 3.5. If we assume p > 1, Lemma 3.4 can be proved more simply. In fact, Lemma 3.3
and Lemma 3.6 give ||Ru|| < ||(z)"1u|| and || Ayu| < [[{(x)ul|. Using R* = R, these estimates
imply Lemma 3.4.

Proof. e We start with the commutator between Ay and the first term on the right hand side
of (3.16). Let ¥(0) = op?(0?) and ¢ be an almost analytic extension of 1. Then, we have

[(AP)22(AP), A\] = [0 (AP)'/?), A)]
=— /c‘w (AP)V2 = 2) T HAP)Y2, 4, (AP)V? = 2) ' L(d2).

From (3.16) and Lemma 3.3, [(AP)'/2, A,] is uniformly bounded. Therefore, the commutator
[(AP)Y/202(AP), A,] is also uniformly bounded.

e We now study the commutator between Ay and R defined in (3.16). One can write
(329)  [Ax R] = [¢(AP), R] Agp(AP) + ¢(AP)[Ao, Rlp(AP) + ¢(AP) Ao [0(AP), R],

that we note [Ay, R] = S1 + S2 + S3. Since S3 = —S7, we only study the two first terms.
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* With (3.17) in mind, the operator S can be written
2 oo
Sy = WAW/ sY20(AP)(s + P) " [p(AP), 9100 + 0*r1 + 110)]
0

(3.30) (s + P)"Lp(AP) Agp(\P) ds,
where

[@()\P),g*rog—l— 5*7"1 + 7"15}
(3.31) _ —% / B3()AP — 2) " [P, 3% rod + 8*ry + 18] (AP — =) L(dz),
and @ is an almost analytic extension of ¢. A direct calculation gives

[P,0%r0d + 811 + 18] = 0*0*r10 + 8r28 + *r3 + 130,
with the convention of (3.14). For the first term in this equality, we write
90" r 0 =0* (AP + 1)(AP + 1)"'0*r 0
=(AP 4+ 1)8* (AP 4+ 1)"'0"r10 — A[P,0*](AP + 1)"'9*r10.
As before, a direct calculation gives
[P,0*] = 9*r10 + O*rs,
with the usual decay on r; and ro. Summing up, we get
[P,0%r0d + 0%y + 18] = (AP + 1) (AP +1)"'9" 110
~ M0 4+ 1) (AP +1)710% 110 + 8120 + 1y + 130"

Applying Lemma B.10 (with 8 = 1 and v = 0 satisfying v + 3/2 < d/4), Lemma B.10 (with
B =0 and v =1/2), Remark B.11 and Lemma B.13, one can show that all the terms (say 7)
of the last equation, with the exceptions of 6*?"3 and r36 satisfy

A—3/2+
| Imz|c H

(3.32) [AP+1)T' AP — 2) "7 (AP — 2) lu|| S

for all € > 0. Writing

AP +1)"YAP — 2) 710" rg(AP — 2) ' = AP + 1) Y @) " @) (AP — 2) " '0" rg(AP — 2) ',
and using Proposition B.9 (with § =0 and v = 1/2), Lemma B.10 (with 5 =1 and 7 = 1/4)
and Proposition B.9 (with § =1 and v = 1/4), we get

A—3/2+

(3.33) [(AP +1)7Y AP — 2) 10" rs (AP — 2) "l S WH

Note that, in the case d = 3, we have v+ (/2 = d/4. It is why we can not use the additional
decay (z)7” and loose A°. In a similar manner, Proposition B.9 (with 8 = 0 and v = 3/4)
and Lemma B.10 (with 8 =1 and v = 1/4) imply

\—3/2+e
| Im 2|©
Combining the estimates (3.32), (3.33) and (3.34) with the identity (3.31), we obtain
(3.35) [(AP + 1) p(AP), 9108 + 911 + 0] ul| S AN 7Y2|| () ~Lul|.

(3.34) [AP +1)" AP — 2) 130 AP — 2) " tu| <

@) ]l
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From the form of Ay, we have
Ay = —ig 'oxg + a,
with 0%a(z) = O((z)~1°). As in (3.21), we write
A _
(3.36) (s + P)"lp(A\P) = - /(/\s +2)7103(2) (AP — 2) 7' L(dz).

The above expression for Ay, together with Lemma B.10 (with 5 = 1 and v = 0), Proposition
B.9 (with § =0 and 7 = 1/2) and Remark B.11, gives

[ 0P — ) A S 2
~ | Imz|¢"
Then, (3.36) (see also (3.22)) implies
(3.37) ()7 (s + P)Lo(AP) Ao || S AVFFE(Ns +1) 71,

for all € > 0.

Eventually, using the identity (3.30), the functional calculus and the estimates (3.35) and
(3.37), we obtain

+oo
IEsl 5/\1/2/ 81/2(8+)\_1)_1)\_1/2+8/\1/2+5()\s+1)_1ds
0

+oo +00
(3.38) <A3/2H2e / sY2(\s +1)72ds S A% / 2+ 1) 2dt < A%,
0 0
for all e > 0.
* We now study Se = p(AP)[Ao, R]p(AP). Using (3.36), S2 can be decomposed as
(3.39) So =T + T + T3,
with

400
1 =500 [T 520520 05 + 2 pOPYOP — 2 P AP — 2)
0
(0100 + &r1 + 1) (s + P) "' *(AP) ds L(dz),

+oo - - -
Ty :%/\1/2 / s1202(AP)(s 4+ P)! [Ag, 0*190 + 0*r1 + 10| (s + P) ' p*(AP) ds,
0

2 ‘oo ~ o~ o~ ~
T3 :ﬁ)\s)/z // sY205(2)(As + 2) L (AP) (s + P) ! (0%190 + 0" ry + 110)
0
(AP — 2) 7Y [P, Ag](\P — 2) " to(\P) ds L(dz).

Since Ty = T, we only treat 717 and T5.
From (3.15), we know that

[P, Ao] = —-21P + 5*7‘05+ 5*7“1 + 7‘15.
Let 7 be a term of the last equation and let 7 be a term of the sum

5*7”054- 5*7'1 + ?”15.
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Then the functional calculus, Proposition B.9 (with =0 and v = 1/2), Lemma B.10 (with
B =0 and v = 1/2), Remark B.11 and Lemma B.13 show that

)\—2+5

H(}\P — Z)il%/(AP — Z)il?(AP‘F 1)71H 5 W,

for all € > 0. Then, 77 becomes
+o0
(3.40) 1Ty < x’)/z/ sY2(1 4 Xs) I (s £ AT s < A,
0

for all € > 0.
A direct calculation shows that
[AO, 5*7’05-1- 5*7’1 + Tlg] = 5*7’()5+ 5*7'1 + 7’15+ T9.

From Proposition B.9 (with 5 =0 and v = 1/2) and Lemma B.13, every term (say 7) of the
previous equation satisfies

AP+ 1)7'FAP+ 1)~ S A
Then, using the spectral theorem, 75 fulfills

+oo
(3.41) T2l < )\1/2/ sY2(s + ATHTIATIHE (s £ AT s S N°
0

Combining (3.39) with the estimates (3.40), (3.41) and T3 = T}, we obtain
(3.42) I1S2] S X

* The lemma follows from (3.29), (3.38), (3.42) and S3 = —S7. O
Lemma 3.6. Let 0 < 1 <1 and ¢ € C§°(]0, +00[). Then, we have
(3.43) LA G| S ATz,
(3.44) AN B AP) ()7 S A2,
for all € > 0.

Proof. From (3.4), we have

(3.45) Ay = o(\P) <g_1ng + z(%l + g_lx(ag))>g0()\P).
Lemma B.13 gives

©(AP)g~'D = PY2p(AP)P~2¢71D = O(AV/?).
Moreover, Lemma B.12 (with =1 and v = 0) implies

[{@)o(APYul| S A (x)ull,

for all € > 0. Summing up the previous estimates, we get
(3.46) le(AP)g ™! Dagp(AP)ul| < A~/ (z)ul],
for all ¢ > 0. Using Lemma B.12 (with 8 = 0 and v = 1/2) and that x(dg) is bounded by
(H1), we obtain

(3.47) [eP) (5 + 57 2(00)) 0P| < [lePYul] < A~ (2.
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The inequality (3.43) follows from (3.45), (3.46) and (3.47) for 4 =1 and for 0 < u < 1 by
interpolation. To prove (3.44), we write

[(ANFDAP) ()~ S [P )~ || + ||| AN S AP) (@) ]| S A2+,

where we have again used Lemma B.12 with =0 and v = 1/2. U
Lemma 3.7. For )\ large enough, we have
6%V/inf I
1, (AP)[i(AP)/2, A\ 1,(AP) > %HI(AP).

Proof. Recall that (3.16) gives

[i(AP)Y2, A)] = (AP)Y2*(AP) + R.
On the other hand, we know by Lemma 3.3 that ||Rul| < A%||ul| for some & > 0. Using
o(z) >0 > 0 on I and taking A large enough, we get the lemma. O

3.2. Intermediate frequency Mourre estimate.

Here, we obtain a Mourre estimate for frequencies inside the compact [1/C, C]. For that,
we will use a standard argument in scattering theory. Mimicking Section 3.1, we set

(3.48) A= ¢(P)Aop(P),

where ¢ € C§°(]0, +o0[; [0, +00]) with ¢ = 1 near [1/C,C]. As before, A is essentially self-
adjoint on D(Ap) and we denote again A its closure.

Proposition 3.8. i) We have P'/? € C?(A). The commutators ahdf4 PY2 j =1,2, can be
extended to bounded operators.

i1) For each o € [1/C,C], there exists § > 0 such that

(3.49) Vo505 (P) [P, ANy 55151 (P) (P).

> g
W ok e
ii1) For 0 < p < 1, we have
(3.50) [ (A ()| S 1.
Proof. The points i) and i) follow directly from Proposition 3.1 with A = 1. Moreover, using
(3.16) and Lemma 3.3, we get
[z’Pl/Q,A] — PY2.%(P) 1 R,

where || Rul| < |[{z)~%ul| for some v > 0. Then, Rp(P) is a compact operator on L?(R%). Let
o € [1/C,C]. Since o is not an eigenvalue of P (see [9, Corollary 5.4]), we have

SEEEH Iy _50+46(FP) = 0.
Thus, we obtain
lim By 5,545 (P) Rep(P) = 0,
in operator norm. Using
Vy—g045)(P) [iPY2, A1y _5,515)(P) V0 = 01jy_g545)(P)
+ o —5,016)(P)RO(P) g 5,015 (),
part ii) of the proposition follows. O
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3.3. High frequency Mourre estimate.

In this section, we construct a conjugate operator at high frequencies. We work with the
simple o—temperate metric
da? de?
= + )
1+22  1+&2
We refer to [15, Section XVIII] for the Weyl calculus of Hérmander. For m(z,§) a weight
function, let S(m) be the set of functions f € C°(R? x R?) such that

0507 f (0, €)] S m(x, &) ()1 (€)1,

for all a, 3 € N%. 1In fact, S(m) is the space of symbols of weight m for the metric . Let
¥(m) denote the set of pseudo-differential operators whose symbols are in S(m).

Let p(z,€) € S({£)?) be the symbol of P, and
po(x,€) =Y "M ()& € S((€)?),
7,k

v

be its principal part. We have p — pg € S(1). Let

Oep
Hpo - ( _(%w;() ) ’

be the Hamiltonian of py. Since the metric g is non-trapping by assumption, the energy
{po = 1} is non-trapping for the Hamiltonian flow of py. Then, using a result of C. Gérard
and Martinez [12], one can construct a function b(x, &) € S({x)(£)) such that b = x - £ for =
large enough, and

(3.51) Hp,b > 0,

for some § > 0 and all (z,¢) € py ' ([1 —¢,1+¢]), e > 0. We set A = Op(a) with

a(z,€) = b(z. (o +1)71%¢) € S((x)).
Let f € C*°(R;R) be such that f = 1 on [2,+00] and f = 0 on | — 00, 1]. As conjugate
operator at high frequency, we choose

(3.52) Aoo = f(P)AS(P).

Let ¢ € C°(R) satisfy ¢ + f =1 on [—1,4o00[. Since P > 0, we have f(P) =1 — ¢(P).
On the other hand, from the functional calculus of pseudo-differential operators, ¢(P) €
U((£)~>°) and then f(P) € W¥(1). To prove this assertion, one can, for instance, adapt
Theorem 8.7 of [8] or Section D.11 of [7] to the metric . In particular, A, is well defined as
a pseudo-differential operator, and we have

(3.53) Ao = A+ T ((x)(&)"™) € U((z)).
The following proposition summarizes the useful properties of A.

Proposition 3.9. i) The operator A is essentially self-adjoint on any core of (x) with
D({z)) = {u € L2(RY); (x)u € L*(R?)}. Moreover,

[Asoul] S J[{z)ull,
for all w € D((z)).
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i) We have PY/? € C?(As). The commutators [PY/2, Ay] and [[PY/?, Ay, Ase] are in
(1) and can be extended as bounded operators on L*(R?).
iii) For C' > 0 large enough,
, J
i 4 oo (PYi[PY2, Aso] Ui 4 ool (P) > gﬂ[C’,—l-oo[(P)'

The rest of this subsection is devoted to the proof of this proposition. It is a direct
consequence of the next lemmas. For the first part of the proposition, we will use the following
extension of Nelson’s theorem due to C. Gérard and Laba [11, Lemma 1.2.5] (see also Reed
and Simon [29, Theorem X.36]).

Theorem 3.10 (Nelson’s theorem). Let H be a Hilbert space, N > 1 a self-adjoint operator
on H, H a symmetric operator such that D(N) C D(H) and

[Hull < [Null,
(Hu, Nu) — (Nu, Hu)| S [NV,
for all uw € D(N). Then, H is essentially self-adjoint on any core of N.

Lemma 3.11. The operator Ay is essentially self-adjoint on any core of ({x), D({z))) (in
particular, on the Schwartz space S(R%)) and

[Acoull S [[{z)ull,
for all u € D({x)).
Proof. The operator N = (z) is self-adjoint on D(N) = D({(z)) and essentially self-adjoint on

S(RY). Since Ay € ¥((z)) and N~! € ¥({z)~1), the operator Ao, N~! € ¥(1) is bounded on
L?(R%) by Calderon and Vaillancourt’s theorem. Then, A, is defined on D(N) and

[Acoull < [[Null,
for all w € D(N).
By pseudo-differential calculus, (z)~12[Ay, (2)](x)~/? € U((£)~1) is bounded on L?(R%).
Then, working first on S(R?), this gives
(Au, Nu) — (Nu, Au)| < N2,

for all w € D(N). Thus, Theorem 3.10 implies that A is essentially self-adjoint on any core
of D((z)). O

Lemma 3.12. Let g € C*°(R; [0, +00]) be such that g =0 on ] —o00,a] and g =1 on [b, +o0],
for some 0 < a < b. Then,

g(P)PY? = 0p ((po +1)'/%) + ¥ (1) € V((¢)).

We omit the proof of this classical result. It follows from (3.5) and the Beals lemma [4].
We refer to Section 4.4 of [14] for similar arguments (see also [4, Theorem 4.9]).

Remark 3.13. For the subsequent uses, a parametrix will be enough. In fact, since we
work with the metric vy, the remainder terms will decay like ((x,&))~>°. Therefore, they can
“absorb” the pseudo-differential operators of any weight. In particular, this allows to treat
the commutators.



THE SEMILINEAR WAVE EQUATION ON ASYMPTOTICALLY EUCLIDEAN MANIFOLDS 19

Lemma 3.14. We have [P'/2, A,] € (1) and [[PY/?, As], Ase] € U((£)~1). These commu-

tators extend as bounded operators on L?(R%).

Proof. Let g € C*°(R) as in Lemma 3.12 be such that fg = f. Then,
(3.54) (P2, AL] = [g(P)P'?, Ay].

Since g(P)PY? € ¥((¢)) by Lemma 3.12 and Ay, € ¥((z)), the pseudo-differential calculus
gives [g(P)PY/?, As] € W(1). The same way, [[PY/2, Ay], Ass] € U((£)~1). Using Calderon
and Vaillancourt’s theorem and working first on S(RY) which is dense in D((x)) N H'(R%),
one can prove that these operators extend as bounded operator on L?(R?). O

Lemma 3.15. We have P'/2 € C?(AL).

Proof. Let H = (D) = Op((§)) € ¥((£)) be the self-adjoint operator with domain D(H) =
D(P'/?) = H'(R?) (see Lemma B.13). We remark that (H 4 2)~' = Op(((¢) £2)~!) € ¥(1)
is a Fourier multiplier. Thus, D({x)), which is a core of A from Lemma 3.11, is stable by
(H £ 2)~1. On the other hand, [H, As] € ¥(1) can be extend as a bounded operator on
L?*(R%). Then, Theorem A.1 implies H € C(Aw).

Since H € C'(As) and [H, Ay] is bounded on L?(R?), Lemma A.3 says that 4= leaves
D(H) invariant. Then, e~ leaves D(P'/?) = D(H) invariant and [P'/2, A,] is bounded
from Lemma 3.14. Then, Theorem A.2 implies that P'/2 € C'(Ay).

The lemma follows from Theorem A.2, Remark A.4 and Lemma 3.14. ([l

Lemma 3.16. For C' > 0 large enough,

)
gﬂ[C,Jroo[(P)'

H[C,Jroo[(P)i[Pl/Q?AOO]]I[C,Jroo[(P) =
Proof. Equation (3.53) and (3.54), Lemma 3.12 and the pseudo-differential calculus give
[P1/2 ] [ (P)P1/2 A ]
=i[ Op ((po + 1)"/?),0p(a)] + T((&) ™)
*% Op ((po + 1) V/*Hpea) + T((&) ™)
=5 00 ({0 + 1) 2(@ep) (. €) - (2:8) (& (o +1)7/%€)
(0 + 1) @) (2. 8) - (90) (. (0 + 1)) ) + 0 ((6))

(3.55) =5 00 ((Hpub) (2, (0 + 1)7/2)) + w((&) ).

For the last equality, we have used that pg is a homogeneous polynomial of order 2 in &.
Note that

po(e, (po+1)71%€) = (o + 1) 'po € [L —&,1 + <],
for £ large enough. Then, adding a cut-off function in &, (3.51) and (3.55) imply that

i[P'?, Ase] = Op(e) + W((€) ),
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with ¢ € S(1) and ¢(x, &) > §/2. We write c(z, &) = §/4 + d?(x, &) with d € S(1) real valued.
Thus, by the pseudo-differential calculus,

i[P'?, As] > 6/4+ Op(d)” Op(d) + ¥((¢) )
(3.56) >0/4+W((6)7),

as self-adjoint operators (one can also apply the Garding inequality).
Let R € U((£)71). Since P € ¥((£)?), the operator

R*(P+1)R e ¥(1),

is a bounded operator on L?(R%). Then, (P+1)'/2R is also bounded on L?(R%). In particular,
we have

[0 ot (PYR] =i soet (PY(P + 1) V3 (P + 1) 2R
<l ot (PP + 172 [[(P+ 1R
(3.57) S(C+ 1712

The lemma follows from (3.56) and (3.57). O

4. PROOF OF THE LINEAR ESTIMATES

In this section, we will show the main estimates for the linear wave equation (Theorem 1.3
and Theorem 1.4). To prove these results, we will make a dyadic decomposition of the low
frequencies. We will often consider ¢ € C§°(]0, +o00[; [0, +00[) such that

A=27, n>0

for x €]0,1]. To ¢, we will associate ¢ € C§°(]0, +00]; [0, +00]) satisfying @y = ¢.

We begin with a technical lemma which proves Remark 1.5 7).

Lemma 4.1. For all p < p < 3/2, we have

@) D] S [[() =" P2,

d
@)™ P 2ul| S 3 [ ()~ Ol -
(=1

Proof. Since the two inequalities can be treated the same way, we only prove the first one.
We write

[(x) " Dpul| < |[(2) ¥ (P < C)ul| + ||(z) #8W(P > C)ul| = I1 + L.
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e We first estimate ;. Let ¢ be as in (4.1). For i < u, we have, using Lemma B.12,
LS Y [Ke) o (P)u|

A dyadic

= 3 @) 2B (AP (AP) Y (@) ) TPV
A dyadic

S X AT P
A dyadic

Sl P2l
for € small enough.

e We now estimate I». By Lemma 3.12 and the pseudo-differential calculus, we know that
the operator

(x) 10w (P > C) P~V (z),

is bounded. Therefore,

I = |[{@) "9, u (P > C) P~V (a)(z) " P ?u|| < |[(2) P 2.

Using the same type of proof, one can show the following estimate.
Lemma 4.2. For all p > 1, we have
1)~ ul| < | P2
Remark 4.3. Let y1 > 0 be given. Then, for all € > 0, there exist 0 < p < p, 0 < & < € such
that F£(T) < FS(T). Then, it is sufficient to bound the different quantities we consider by
F£(T) rather than by F(T).
Theorem 1.3 will follow from the corresponding result for the group e~ vz
Proposition 4.4. Let 0 < pu < 1. Then, for all 0 < € < u, we have
T
. —itP1/2 |2
/0 H(w) pe—itl UH dt < FE(T)HUHQ
Proof. We write
T itP1/2 112 T itpl/2 2
/ [ () He= P 20| Pat ,S/ [(z) e~ P w(P < 1/C)o|Pdt
0 0
g itpl/2 2
+/ [(z) e P> w(1/C < P < C)o|dt
0

T
+/ () e PP W(P > Oy dt = I + I + L.
0

e We first estimate I. Let o, ¢ be as in (4.1). Proposition 3.1 gives
@) *BAPY AN * < A7,
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for all £ > 0. Then,

T
ns Y et / (AN He P o (AP | at
A dyadic 0
A~z
— Z )\—#+E1+1/2/ H<A>\>—,ue—is()\P)l/2<p()\P)vHQdS
A dyadic 0
< YD ATmE g (12T o2,
A dyadic

for all 9,e3 > 0 with €9 < u. Here, we have used Proposition 3.1, Remark 2.3, Theorem 2.4
(for > 1/2) and Corollary 2.5 (for p < 1/2) with H = (AP)'/2.

* If 4 > 1/2, then, by choosing €1, €3 small enough, the sum is convergent and we find
I S ol
* If 4 <1/2, we find

Il< Z >\€1+€3_€2T1_2N+262HU||2-
A dyadic

Fixing first 5 and then €1, €3 small enough makes the sum convergent.

e We now treat I. Since [1/C,C] is a compact interval, Proposition 3.8 gives us a finite
number of open intervals I, k = 1,..., K, satisfying (3.49) and

K
[/c,.clc | I
k=1

Then, applying Theorem 2.4 (for 1 > 1/2) and Corollary 2.5 (for © < 1/2) on each I}, (slightly
reduced), we obtain
I S FR(T)||lv]*.

e Let us finally estimate I3. By Proposition 3.9 and an interpolation argument, we get

[ @) {Aso)|| S 1.

Thus,
T i pl/2 2 T it pl/2 2
/ [(z) e 0(P > C)||dt 5/ [(Ase) e 7 0(P > C)o||"dt
0 0
SEL(D)|oll?,
where we have used Theorem 2.4 (for p > 1/2) and Corollary 2.5 (for u < 1/2). O

For the proof of Theorem 1.3, we will need the following theorem of Christ and Kiselev [6]
in a form available in the article of Burq [5].

Theorem 4.5 (Christ-Kiselev). Consider a bounded operator T : LP(R; B;) — L4(R; Bs)
given by a locally integrable Kernel K (t,s) with value operators from By to Ba, where By
and By are Banach spaces. Suppose that p < q. Then, the operator

Tft)= | K(ts)f(s)ds,

s<t
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is bounded from LP(R; By) to L4(R; Bs) by
T _ 9= '=a7h)
HT}|LP(R;31)—>L4(R;B2) = (1 2 )”T”LP(R;Bl)—wq(R;Bz)-

Proof of Theorem 1.3. By linearity and uniqueness it is sufficient to consider separately the
cases (ug,u1) =0, G =0.

e G = 0. Thanks to the discussion at the beginning of Section 3, the solution of (1.4) is

given by
U(t) _ _—4tR{ Uo . _ 0 1 _ *
<8tu(t)>_e <u1) with R_(_ip 0>,R—ULU.

Using Lemma 4.1, we see that for 1 < p we have

)~ |72 || ()"0 ( 83152) >

2

)
L2x L2

with
1/2 1
(4.2) M::<P 0>,MU*:<1. 1.).
0 1 V2 \ —t ot
Using Proposition 4.4, we therefore have the following estimate
! |2 ’ i itR( U0 2
—p < et
/0 [()~*u HLth N/o H<x> Me ( Uy >‘L2><L2
T _ 2
< e ()]
~Jo up /lL2xr?

<E@|u ()], = FE@) o, m) 2

Uy L?x L2

e (up,u1) = 0. In this case, the solution of (1.4) is given by

Canin )= " Caty oo

Thus, for all g < p,
2

T , T [t o venr 0
43 </ / U< )d it
(4.3) /0H<l‘> w72 S ; 0(x> e G(s) SL2><L2
Let
TH(t) = /R () P o.z1 () L.y ()"~ DE £ (5) ds.
We estimate
ITf e aocan = | (b Pe [ ot pis)as| o

e [ " enLp(s)ds

s ([ el d)
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It follows
TG o212y 2Rz 12y S FE(T).
The expression on the right hand side of (4.3) is
ITU©, GDIz2gzexrey
with
710 = | @) (s o@D 1 (s) ds.

We can apply the theorem of Christ and Kiselev to conclude that
2
ds)
L2x L2

700,660 s <50 ([ |7 ( iy )

iz ([ 16l )

which finishes the proof. ([l

Theorem 1.4 is now proved for N = (0 using in addition the usual energy estimate

T
(4.4) el gty S 110, ) gy + /0 1G5, ) 2 gty ds.

Note that in the usual energy estimate v’ is replaced by (9;u, P/ 24), but we have

> 8wl < 1Pl £ ||Opu
k k

by Lemma B.13. It will be useful to have similar estimates to the preceding containing a
L?(R4*! (2)*dt dz) norm of G on the right hand side rather than a L} L2 norm.

?

Proposition 4.6. Assume 0 < p < 1.
i) Let

(4.5) { (i0, — P?pw =G,

v\z:o = 0.

Then we have, for all 0 < € < p,
T T
(4.6) / () #o]%dt < (Fj(T))Q/ ()G dt.
0 0
i1) Let

wn { (02 + P)u=G,

(U,|t:O, 8tu‘t:0) =0.

Then we have, for all 0 < & < p,

T T
T —p,u/ 2 IS5 2 T 1% 2 X
(48) | ey P 5y [ e
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Proof. i) We have
r 2 2 T 2
JR R </ (&) (P <1/Cpulfde+ [ || w1/C < P < Ol
0 0
T
+/ ()"0 (P > C)l[*dt =: I + I + I.
0

e We first estimate I;. Let ¢, ¢ be as in (4.1). By Proposition 3.1, we know that
(@) P APV ||” = [[(2) " “BP) (AN (Ax) Po(AP)0[| S A8 || (Ax) (AP .
Therefore, we have

T 2
ns Y awte /0 [ (Ax) Ho(AP)u(t)|[*dt

A dyadic
A—1l/2r
= > A “+61+1/2/ [{Ax) o APY(AY25) || ds.
A dyadic
Now observe that ©(s) = v(A\!/2s) is solution of the equation
(i0s — (AP)2)5 = AY2G(\Y2s),
), = 0.

We now apply Corollary 2.8 with H = ()\P)l/ 2. Using also again Proposition 3.1, we obtain

A~ver )
/0 [(An) (AP YA 2s) | 2ds

A—t/2r

<(Fe (A V272 /0 (AN o (AP)G(A25)|2ds

ATvzr
S(F(AV2T))2Almes / @) G (A2s)|2ds
0

T
—(F T RN R [ @G|
0
Thus,
T
Ilg Z )\12M+51+53(F52<)\1/2T))2/ H<m>uG(t)H2dt
0

A dyadic
If 4 < 1/2, then we see that

LS ) antesmer(isiuie) /TH<x>uG(t)H2dt.
A dyadic 0

Once 0 < g9 < p fixed, it is therefore sufficient to choose 1,3 small enough such that
e1 +e3 < 2e9. If u > 1/2, we choose €1, 3 small enough such that e; + 3 < 2u — 1. Then,

T
I < /0 ()G (t) || dt.



26 J-F. BONY AND D. HAFNER
e We now study I. Part iii) of Proposition 3.8 implies
T
P / [(A)#B(1/C < P < C)o|*dt.
0

As in the proof of Proposition 4.4, Proposition 3.8 gives us a finite number of open intervals
I, k=1,..., K, satisfying (3.49) and

K
/c.clc | I
k=1

Then, applying Corollary 2.8 on each I (slightly reduced) and using Proposition 3.8, we
obtain

T
L < (FSD)? [ [[(2) G| dt.
0

e We finally estimate I5. Proposition 3.9 and Corollary 2.8 yield

T B 2 5 9 T m 2
135/0 [{Acc) ™ 0(P = C)o||*dt S (F5(T)) /O {4} G "t

T
g(Fg(T>)2/O ()G | dt.

i1) We first write (4.6) as a first order system

. U U (0 U
Zat<8tu>:R<atu>+Z<G>’ <8tu>|t:0:0.

It is sufficient to estimate, for @ < u,

T . BENITE T B u V12
sV dt = “ENMUU dt,
/0 wl (8t“> L2x L2 /0 w ( at“) L2x L2
with M defined in (4.2). But v =U < 6uu > solves
a
. , 0
(10 — L)v = iU < a > ;o = 0.
By (4.2) and part 7) of the proposition, we find
T - u 2 T S
M dt < H dt
/0 (z) ( By > Lo N/o @) 0|2 2
T NEANENTE
sz [ (&) e
g 0 G Jllp2xre
T
a2
=) [ (@) Gt
which gives i7) thanks to Remark 4.3. O

We now want to prove Theorem 1.4 for general N. In contrast to the Minkowski case, this
does not follow directly from the case N = 0 because the vector fields 2, 0, do not commute
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with the equation. We will therefore need the form of certain commutators. As in (3.14), a
term r; or 75, j € N, will denote a smooth function such that

Oyry(x) = O((x) P71,
927 () = O({z) =71,
These functions can change from line to line. Direct computations give
Lemma 4.7. We have
[5j, 5k] = Tlg, [Qj’k, P] = 7“0554— 7“15
[5;7 O] = 0 r1 + 1o, [Q7F 8] = 700,
[P, 55] = 0" 110 + r20.
As before, we have not written the sum over the indexes on the right hand sides.
We now observe that the vector fields 5] can be replaced by powers of P.

Lemma 4.8. For 0 < p < 3/2 and n > 2, we have

1254 d o 15) ‘
TR R [N R P S DY (R Iy (PR |
=0 ¢=1 Jj=1

Proof. We first show
d
(4.10) @)~ B < )Pl + 3 [ By
q=1

Indeed, we have
[(z) " Okeu| < |[{2) "Op(P + 1)1 0e(P + L)ul| + ||(x) "Op(P + 1) [P, 8]ul| =: A + B.
We estimate A.
A< |[{@) Op(P + 1) L0 Pul| + || () " Op(P + 1) Dpu.-

Noting that (z) 8 (P+1) 18y (x)* and (x)~*8(P+1)~'{z)" are bounded by Proposition B.9
and Lemma B.10, we obtain

(4.11) A S {z) T Pul| + || (x) " pul|.
Now, recall from Lemma 4.7 that
[P, 5@] = 5*7“154- 7’25.
Thus, as for (4.11), we see that
(4.12) B <> |[(@) " oul.
J

The inequalities (4.11), (4.12) give (4.10). We will show (4.9) by induction over n > 2. For
n = 2 this is exactly (4.10). Assume n > 3. Using (4.10), we obtain

d
@) 0,05, - s, ul| < (@) POy -+ D ul| + D (@) T Ok0jy - - - 0y, ul].
k=1
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For the second term, we can use the induction hypothesis. For the first term we commute P
through 8J3 8 i.- The commutators give terms which can be estimated by terms of the form
[{x)~ ”8km 5knu||, with 2 < m < n, which themselves can be estimated by the induction
hypothesis. It remains to consider the term H(a:)*“gjg, . -5jnPuH, which can either be kept
(n = 3) or be estimated applying the induction hypothesis to Pu rather than to u. O

In order to show (1.6), it is sufficient to use vector fields in X. This is shown in the next
lemma.

Lemma 4.9. Assumep > 1. Let 1/2<pu<1,j¢€ %N, B be a multi-index and N = 2j + |3].
Then, for all € > 0, there exists n. > 1/2 such that

(FE(T»AH<x>7#(Pj§Bu)/HL2([0,T]de)

413) <Y (H(Y%)’(O,)HLQ(RU,) / 1Y G| 2gaydt + || (z) 7" (X *u) HLQ([QT]XW))
la|<N

Moreover, for p =1 and & > 0, the same inequality holds with (F5;(T'))~" replaced by (T')~¢.

Proof. The inequality will be proven by induction over |3|. Assume first p > 1. Since the
wave equation commutes with P, the case || = 0 follows from Theorem 1.3 and Lemma B.13.

Assume now || > 1 and let v = PJ /(4. The function v fulfills the following equation
(4.14) (8 + P)v = PPQPG + P[P, Q"] u,
' (V0» Br0),_y) = (PIO ug, PO uy).

Let v1,v9 be the solutions of

(415) { (82 + Py, = PIQ°G,

. (Ul‘t:O,a{U”t:O) = (PjﬁﬁuO,Pjﬁﬁul),
(416 (87 + P)va = PP, Q7u,

) (1}2|t:0, 8t1)2‘t:0) = 0.

Clearly v = vy + v9. We have, for all i < p,

T L~
40 0kl  CFEON (NP0 ey + [ PG gt ).

where we have used Theorem 1.3. If y > 1/2, we choose 1 > 1/2. We further estimate, by
Proposition 4.6,

(FE(T) @) 03]l 2o, mpxrey S [|(2) )PP, Q) “HL2([0,T}><Rd)'
Using Lemma 4.7, we see that ()" P[P, Q°u is a sum of terms of the form
(@)F POk, -+ O, UM,

with 1 <m < 2j+ 2 and |y| < || — 1. Using Lemma 4.8, we see that these terms can be
estimated in norm by terms of the form

[| () “”Gg quvu)” or H(:L‘)’j_pPrﬁqu,
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with ¢,7 € N, 0 < ¢ < (m—1)/2 and 1 < r < m/2. Applying Lemma 4.1, we see that we
can replace P'/2 in the second term by partial derivatives and apply the induction hypothesis
with p — > 1/2.

In the case p = 1, it is enough to choose g = 1/2 — ¢ with § > 0 small. O

Proof of Theorem 1.4. The energy term is easily estimated by the observation that d; and P
commute with the equation. The same way, note that we can restrict our attention to vector
fields in Y for the second term. Also, by Lemma 4.7, we can arrange for that the vector fields

530 are always on the left of the vector fields Q. Using Lemma 4.7, we see that we can replace
Yeu' by (Y®u)'. Using Lemma 4.1, Lemma 4.8 and Lemma 4.9, we see that it is sufficient to
estimate
<F§(T)>71H<x>7MPijL2([O,T}><]Rd)’
in the case p > 1 and
(1)~ (@) ™ P70| 2 0.1y

in the case p = 1. These terms can be estimated by Theorem 1.3, because P commutes with
the equation. O

5. PROOF OF THE NONLINEAR RESULT

In this section we will prove the main theorem, Theorem 1.1. The proof of the result will
follow closely the arguments of Keel, Smith and Sogge in the Minkowski case (see [20]). We
start with the now standard Sobolev estimate (see [22]).

Lemma 5.1. Suppose that h € C*°(R?). Then, for R > 1,

1-d
(5.1) 1Al Lo (rr2<|zi<r) S B2 > IV hllr2(rya<iai<2r)-
la|<[45]+1

We now define the bilinear form Q by Q(v/,v/) = Q(u'). The following estimate for the
nonlinear part will be crucial.
Lemma 5.2. Let ug = %. Then, for L > max (2 ([%] +1),18|), we have

Hzﬁé(ul,y/)HiQ(Rd) < ( Z H<x>—udzau/Hi2(Rd))( Z H<x>—udzoav/Hi2(Rd)>.

|| <L |a| <L

Proof. We clearly have the pointwise bound:

|12°Q(u! ') (s, )| §< > 12““““)‘)(
|

jal<L

al<
+ ( > \Z%’(s,gg)|> (

jal<L al<[%]

) 22 (s,2)])

2 (s, z) |> .
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We only estimate the first term. Using Lemma 5.1 for a given R = 2/, j > 0, we get
B ]2
12°Q ) |2 qpagegs a1y

$ 2079 Z HZau/Hi?({mepj,wﬂ[}) Z HZaU/HiQ({\x|e[2j7172j+2[})
la]<L lal<| L |+[452 ]+

S 20 @) 2 e e iy 22 19712 e vepy

lo|<L || <L
S D @2 arepi gy D 1@ 420 [ gay-
le|<L || <L
We also have the bound
~ 2 o 1112 2
HZﬂQ(u/’U/)HLQ({|x\<1}) N %:L ¥4 “/HL2({|;E\<2}) ||2<:L HZ%/HLQ({|z|<2})'

Summing over j gives the lemma. O

Proof of Theorem 1.1. We follow [20]. Let u_; = 0. We define ug, k& € N inductively by
letting uy solve

(5.2) { Dguk = Q(u271)7

(uk‘tzo,atuk‘tzo) = (ug,uy).
For T > 0, we denote
MiT)= swp 3P el + D2 Ea @ oy
ST 1< j<m+1 la]<M
with X
noog_ _
= {7 A
Using Theorem 1.4, we see that there exists a constant Cj such that
Mo(T) < Cob,
for any 7. We claim that, for £ > 1, we have
(5.3) My(T5) < 2Co6,

for ¢ sufficiently small and Ty appropriately chosen. We will prove this inductively. Assume
that the bound holds for £ — 1. By Theorem 1.4, we have, for § small enough,

Ts
M(T5) < Cod+C /o 12°Q(uf—1) (5, )| 1o gy ds
o<1

Ts
<Cp+C Y / )42 ||y ds
laj<m 0
< Cod + CK,(Ts)ME_(Ts)
< Cob + CK,(T5)(2Cy0)?,
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where we have also used Lemma 5.2 and the induction hypothesis. Note that, to estimate
the term [|(Z%ug)'(0, )| 2, we might have to use the equation and Lemma 5.2. We therefore
need 0 to be small enough. Then, to prove (5.3), it is enough to have

(5.4) Cod 4+ CK,(T5)(2C06)? < 2Cp8 <= 4CCK,(T5)6 < 1.
Therefore, we find:

e If d =3 or p =1, the estimate holds with T5 = ¢,0 " and ¢, small enough.
o If d >4 and p > 1, (5.4) is fulfilled if § is sufficiently small and we can take Ts5 = oo

To show that the sequence uj converges, we estimate the quantity

Ap(T) = O P2 (wy, — up
k(T) iltlngSi-FjZSM—i-lH ! P2 (uy, — ug, 1)||L2(Rd)

+ Z K (T) 7 H[{) 4 Z% (uj, — “Z—l)Hm([O,T}de)‘

|| <M
It is clearly sufficient to show
1
(5.5) Ap(T) < 5Ak,1(T).
Using Lemma 5.2 and repeating the above arguments, we obtain
T(S < C Z / MdZOC uk 1 Uk. ) HL2 Rd)
|| <M

x Z( )42 | gy + (@) 200k | 2y ) d
lal<M

By the Cauchy—Schwarz inequality, we conclude that
Ai(Ts) < CKn(T5)(My—1(T5) + Mi—2(T5)) A—1(T).

Using (5.3), the above inequality leads to (5.5) if 6 is small enough. Uniqueness and C?
property of the solution follow from [16, Theorem 6.4.10, Theorem 6.4.11] using that the
constructed solution is in HbA/[C+1(Rd+1) C C?(R4t1). Note also that the solution is bounded
in C? on the interval [0, Tj]. O

APPENDIX A. REGULARITY

Here, we give some results concerning the regularity with respect to an operator. More
details can be found in the book of Amrein, A. Boutet de Monvel and Georgescu [3] and in
the paper of C. Gérard and Georgescu [10]. We start with a useful characterization of the
regularity C1(A).

Theorem A.1 ([3, Theorem 6.2.10]). Let A and H be self-adjoint operators on a Hilbert
space H. Then H is of class C'(A) iff the following conditions are satisfied:
i) there is a constant ¢ < oo such that for all w € D(A) N D(H),
|(Au, Hu) — (Hu, Au)| < ¢ ([[Hull® + [|ull?) ,

ii) for some z € C\o(H), the set {u € D(A); (H —2)"'u € D(A) and (H —z)"'u € D(A)}
is a core for A.



32 J-F. BONY AND D. HAFNER

If H is of class C1(A), then the following is true:

i) The space (H — z)~1D(A) is independent of z € C\o(H) and contained in D(A). It is a
core for H and a dense subspace of D(A) N D(H) for the intersection topology (i.e. the
topology associated to the norm ||Hul| + || Au| + ||u]]).

i1) The space D(A) N D(H) is a core for H and the form [A, H] has a unique extension
to a continuous sesquilinear form on D(H) (equipped with the graph topology). If this
extension is denoted by [A, H|, the following identity holds on H (in the form sense):
[A,(H—2)""]=—(H—-2)""[AH)H-2)"",

for z € C\o(H).
We also have the following theorem coming from [3, Theorem 6.3.4].

Theorem A.2. Let A and H be self-adjoint operators in a Hilbert space H. Assume that the
unitary one-parameter group {exp(iAt)},er leaves the domain D(H) of H invariant. Then
H is of class C1(A) iff [H, A] is bounded from D(H) to D(H)*.

A criterion for the above assumption to be satisfied is given by the following result of
Georgescu and C. Gérard.

Lemma A.3 ([10, Lemma 2]). Let A and H be self-adjoint operators in a Hilbert space H.
Let H € C'(A) and suppose that the commutator [iH, A] can be extended to a bounded
operator from D(H) to H. Then ¢4 preserves D(H).

In this paper, we will use the following characterization of the regularity C2(A).

Remark A.4. From Section 6.2 of [3], it is known that H if of class C?(A) if the following
conditions hold:

i) For some z € C\ o(H), the set {u € D(A); (H—z)"'u € D(A) and (H—%)"'u € D(A)}

is a core for A.
i1) [H, A] and [[H, A], A] extend as bounded operators on H.

APPENDIX B. RESOLVENT ESTIMATES AT LOW ENERGIES

B.1. Estimates for the free Laplacian.
We begin with some estimates for the free Laplacian Py = —A.
Lemma B.1. Let a > 0. Then, for all € > 0, we have
H()\Po 4 1)70[““ <A min(afe,d/4)H<x>min(2a,d/2+5)u

Y

uniformly for A > 1.

Proof. Here, we denote

fully = ( [ uta)az) ™,

the standard norm on LP(R?). Using the Hélder inequality, we get

/
[ary+ )l =( [0 + )2 ate)Pae)
<IOE + 1)yl
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and we choose p = max(% +p,1), o > 0, and p~! + ¢! = 1. In particular, 2¢ > 2 and

4ap > d. Then, by the Hausdorff~Young inequality, we obtain
(B.1) (AP + 1)™%u| S A=Y *|jul],,
with r=' =1 — (2¢)~' = 271(1 + p~!) satisfying 1 < r < 2. Using one more time the Holder

inequality, we have
s < 1/rs _ 1/rt
Jull 5 ([ 1ar*@)®ae) " ([ an) "

with s7! +¢71 =1 and 8 > 0. We choose s = 2r~! and 3 = d/t + v, v > 0. Thus,
(B.2) lullr S [[@)%" ]l
The coefficient (s/2 satisfies

Bs ds wvs ds d  wvs ii

5 9 T3 5 "3t 7%

d Qmin(<%+ﬂ)il,l) = min (oH—O(,u),g).

Taking first g and then v small enough, the lemma follows from the estimates (B.1) and
(B.2). O
Lemma B.2. Let 3> 0,0 <~ <min(1,d/4) and 0 < § < d/4. Then, for all € > 0,

o) uPy + 1)) S 2254 a2 4 A )20
uniformly for A\ > 1.

Remark B.3. In the previous lemma, assume v+ 3/2 < d/4. Then, we can chose 6 = y+3/2
and we have
1G)? WP + 1) | € A7) 72

uniformly for A > 1.

Proof. Assume first that § € N. Using
d

Ha)ull® = ((@® + Du,u) = llajul® + |lull?,

Jj=1

it is enough to estimate ||z*(APy + 1)"'u|| where a € N? is a multi-index of length less or
equal to (3. Since

IEJ'()\PO + 1)_1 = ()\Po + 1)_1$j — 2)\1/2 ()\1/26])()\P0 + 1)_2,

the operator x%(APy + 1)~! can be written as a finite sum of terms of the form
la|—[b]
2

T =\ (\20)° (AR + 1) g,
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where b, ¢ are non-negative multi-indexes such that b+ ¢ < a and |a 4+ ¢ — b| = |a| + |c| — |b]
is even. Such a term can be written as
la]—|b] latc—b]| la|—]b]

T =\ (AV20)° (0P + 1) R+ )T (AR 1)

la]—]b] la|—1b|
=\ 2z B\Py+1)"17z 2
where B is a bounded operator on L%(R%) since it is a Fourier multiplier by a uniformly
bounded function.

Using Lemma B.1 to estimate the powers of the resolvent, we get
(BB) T = B)\wfmin(a,d/@qts <$>|b|+min(2a,d/2+s)
where B is an other bounded operator, 0 < ¢ and 0 < o < 1+ (Ja] — [b])/2. We choose
a =min(y + (|a| — |b])/2,d) < d/4 and note by = |a| + 2y — 26.

If |b| < bo, then o = ¢ and (B.3) becomes

T :B)\L‘;lb‘ —5+6<$>|b|+25

lal—bg

:(’)()\%LHE(x)%—i—)\ > —6+a<x>bo+25),

since y!tl <yt 490 for 0 < b < by and y > 0. Using |a| < 3, we get

(B.4) T = @()\5/2—5+5<x>25 + )\—'y+£<x>ﬁ+27)_
If |b| > bo, then oo = v + (|a] — |b])/2 and (B.3) gives
(B.5) T = ON7F (2)0F2).
The estimates (B.4) and (B.5) imply the lemma for 3 € N. The case 8 € R* follows from an
interpolation argument. O

Mimicking the previous proofs, one can show the following results

Lemma B.4. Let j € {1,...,d}, >0 and 0 <~ <1/2 with v+ /2 < d/4. Then, for all
e > 0, we have
)P (A20,) (AP + 1) M| S A7 |(2) 7,
uniformly for A\ > 1.
Lemma B.5. Let j,k € {1,...,d} and 0 < 3/2 < d/4. Then, for all € > 0, we have
1) (A20;) (APo + 1) (A 200)u| < X[ () Pul,

uniformly for A\ > 1.

B.2. Estimates for an intermediate operator.
We now extend these results to the intermediate differential operator P defined by
(B.6) P=->"0;4%g"%0.
j?k

Recall from (H1) that g2¢?* —§;, = O((x)~*). The square roots of P and Py are comparable.
More precisely, we have
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Lemma B.6. For u € D(P'/?) = D(P)/*) = H'(RY),
1PY2ul| < |12y %ull S [PV 2.

Proof. For u € H*(RY), we can write

(ﬁua U) = Z(QQijkajuv aku) and (P0u7 u) = Z(aju7 a]u)

Jk J
Using the ellipticity of P and g*g7*F € L°(R?), we get
(Pyu,uw) < (Pu,u) < (Pyu,u).
In particular, we have, for u € H?(R?),
|PY2ull S 1By 2ull < 1 P2
(P + 1) 2ul| S [(Po+ D) 2ull S (P + 1) 2.

Then, we obtain D(P/?2) = D(Pol/Q) = HY(R?%) and the lemma follows. O

Lemma B.7. Let 8 > 0 and 0 < v < min(1,d/4) with v+ 3/2 < d/4. Then, for all € > 0,
we have

(B.7) [{z)P (AP + 1) 71| £ X7 [(2) P27,
uniformly for A > 1.
Remark B.8. Mimicking the proof of Lemma B.7, one can show that Lemma B.4 (for the

operators ()\1/23j)()\15+ 1)~! and (AP + 1)~1(\1/29;)) and Lemma B.5 hold with Py replaced
by P.

Proof. From (B.6), we have
P() —P= Z 8jrj7k8k,
Jik
where 7j = 0% — g*>g7* = O((z)~P). In the following, to clarify the statement, we will not

write the sum over j, k and simply note Py — P = 0rd. Iterating the resolvent identity, we
have

AP +1)"' =Py + 1) + (AP + 1) IAY20r A 29(APy + 1)
2N .
+3 (AP + 1) (AV29) (r(AWa)(APO + 1)*1(Al/z‘a))]r(Al/Qa)(APO + 1)t
j=1

£ OB+ ) A20) (s ) APy + 1) (W29))
x r(AY20) (AP + 1) ' (A20)r
(B.8) X ((Al/Qa)(APO + 1)‘1(>\1/26)r)N()\W&)()\Po +1)7L

Thanks to Remark B.3, the first term of the previous equation satisfies (B.7). To treat the
second term, we use two times Lemma B.4 with a gain equal to v/2 < max(1/2,d/4).
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The sum over j can be studied in a similar way: using Lemma B.4, each exterior term
(AY20;)(APy+1)~! gives a factor A\™7/2%_ and, using Lemma B.5, each interior factor (A\'/29)
(APy + 1)1 (A\1/29) gives a factor A°. Then, each term in the sum over j can be estimated by
A"7HUH+2E Taking &= /(2N + 2), each term of the sum over j satisfies (B.7).

It remains to study the last term in (B.8). As usual, the first term can be estimated by
Lemma B.4:

[(@) (AP + 1) (AV20)u)| S ATY2HE| () Pl

Now, using r = O((z) ") together with Lemma B.5, we get
(B.9) [(z)#r(AY20) (AP + 1)~ (A 20)u| < NF| (z)ymaxti=ry||,
for p/2 < d/4+ p/2. Using N times the last inequality, we obtain

[ or+ 17 A720) (r 20 ARy + 1) (020))
(B.lO) 5 )\—7/2+(N+1)5H<$>max(ﬂ+’y—pN70)uH < /\—w/2+(N+1)EHuH7
for N large enough. Using two times Lemma B.6 and the functional calculus,
(B.11) |(AY20) (AP + 1)L (AY20)ul| < ull.
Finally, applying N times (B.9), with N large enough, we get
(B.12) @ (r 20y + 1)1 (0720)) | £ A
since v < d/4. Moreover, using v/2 < 1/2 and taking the adjoint in Lemma B.4, we have
(@) A0 (AR + )7 | £ AT Ju
Combining the last estimate with the adjoint of (B.12), it follows

(B.13) H((Al/Qa)(APOJr1)*1@1/2(9)) (\20) (AR + 1) 7! | § ATy,

for N large enough. Summing up (B.10), (B.11), (B.13) and choosing £ small enough with
respect to €, the last term in (B.8) satisfies (B.7). O

B.3. Estimates for the perturbed Laplacian.
Here, we extend the previous results to the Laplacian P. From (B.6), we have P =
¢ 'Pg~!. In particular, the resolvent identity gives

(AP +1)7! :g()\]5 +¢°)7 1y

(B.14) =gAP+ 1) g+ gA\P+ 1)1 —-gPg ' OP+1)7"
(B.15) =gA\P+1)" g+ AP+ 1) g ' 1= AP+ 1)y
Note that, by (H1), (1 — ¢2) = O({(z)~").

Proposition B.9. Let § > 0 and 0 < v < 1 with v+ (3/2 < d/4. Then, for all ¢ > 0, we
have

()P (AP + 1) | S A7 (2)

uniformly for A > 1.
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Proof. As in the proof of Lemma B.7, we iterate the resolvent identity (B.14) and obtain
AP +1)7  =g(A\P+1)7lg+ gOAP+ 1)1 (1 — ) (AP + 1)1y
N ,
~ ~ J ~
+3 9P+ 1) ((1 PP+ 1)*1) (1— ) (AP +1)"1g
j=1
- - N+1

(B.16) +gAP+1)7" ((1 — ) (AP + 1)*1) 1-gg (AP +1)7"

The two first terms and the sum over j can be directly estimated by Lemma B.7. For the
last term in (B.16), we remark that Lemma B.7 gives

(B.17) ()P g(AP + 1) ul| < A7V |(2) P2,
and
(B.18) () JAP + 1) | S NF|[(z)maxtn=rOly|,

for all p/2 < d/4+p/2. Therefore, applying (B.17) and N 41 times (B.18) (this can be made
since (84 2v)/2 < d/4), we get
- ~ N+1 _
H(@BQ(AP + 1)_1 ((1 - 92)(>\P + 1)‘1) uH < )\_'7+(N+2)5”<$>max( —(N+1)p,0) “”

< )\—7+(N+2)5||UH,

for N large enough. Using |[(AP+1)7!|| < 1 by the spectral theorem and taking &€ = /(N +2),
this implies
2\ D 1\ VH 2y —1 1
[@790P + 1) (1= AP+ 1)) (1= g)g AP + 1) M| $ AT Jul,
and the lemma follows. 0
Mimicking the proof of Proposition B.9 and using (B.15) and Remark B.8, one can prove,
as for Lemma B.4, the following result.

Lemma B.10. Let j € {1,...,d}, >0 and 0 <~ < 1/2 with v+ /2 < d/4. Then, for all
€ > 0, we have

()P (AP + 1) (AV207 )u|| S A7FE|| ()P
[(2)P(A28;) (AP + 1) tu|| S A7FE|| ()02 ad|.
uniformly for A > 1.
Let j,k e {1,...,d} and 0 < 3/2 < d/4. Then, for all e > 0, we have
[(x)P(AV20,) (AP + 1) (AY200 )ul| S X ||(2)Pu

)

uniformly for A > 1.

Remark B.11. The results of this section are given for (AP + 1)~!, but can be extended to
(AP —2)~Y, with Im 2 # 0. In fact, following the previous proofs, one can see that (AP — z)~!
satisfies the same results, if we accept a lose of the form |Im z|~¢, C' > 0, in the estimates.
This is due to (APy + 1)(APy — 2)~! = O(|Im z|~!) from the spectral theorem. Note that the
constant C' does not depend on ¢ €)0, 1], and is uniform with respect to «, 3,7, 0 in a compact
subset.



38 J-F. BONY AND D. HAFNER
For example, Proposition B.9 gives the following estimate for >0, >0 and 0 < vy <1

with v+ (/2 < d/4:

ATTE

| Im Z|C H

(B.19) H( > (AP —z)~ uH <

uniformly for A > 1 and z in a compact of C.

Using the spectral theorem, this remark implies the following result.

Lemma B.12. Let x € C°(R), j,k € {1,...,d} and 3,y > 0 with v+ 3/2 < d/4. Then, for
all e > 0, we have

()P xAP)ul| < X7 ||[(2) 52 a|
H<m>ﬁ()\1/25j)x()\P)uH < AT () |
H<13>BX()\P)()\1/25;‘)1LH < );’y+eH<x>6+2yuH

() (A28, x(AP) A2 u]| S A7 ()

uniformly for A > 1.

Proof. We only prove the first inequality since the others can be treated the same way. Let
k € N be such that v/k < 1, ¢(c) = x(0)(c + 1)¥ € C(R) and $ € C5°(C) be an almost
analytic extension of ¢. From the spectral theorem, we have

(B.20) (x) /&p BOAP = 2)7Y(AP + 1) L(d2).

Estimate (B.19) with v = 0 gives
AE
| Tm 2|©

(B.21) H<$>6()\P—Z)_1UH S H<x>ﬁuH

Proposition B.9 with v = ~/k < 1 implies
Gy P+ 1)l S ATy
if v/k + /2 < d/4. By iteration, we obtain
1) AP + 1)~ ul| S AT ()27
since v+ /2 < d/4. Combining this estimate with (B.21) and taking £ = ¢/(k + 1), we get

) \mtas
|Imz‘CH

and the lemma follows from (B.20). O

()P (AP — 2) (AP + 1) M| <

We now state a result which will help us to estimate the square root of P. Since this lemma
can be proved as Lemma B.6, we do not give the proof.

Lemma B.13. We have, for u € D(P'Y/?) = H'(R%),
1P 2ull S Vg~ ul| S 11P2ul.
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