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Liquid-core liquid-cladding optical fibers sustained by light radiation pressure:

electromagnetic model and geometrical analog

Etienne Brasselet and Jean-Pierre Delville
Centre de Physique Moléculaire Optique et Hertzienne, Université Bordeaux 1,

CNRS, 351 Cours de la Libération, 33405 Talence Cedex, France

(Dated: May 18, 2008)

We present an electromagnetic model describing liquid-core liquid-cladding optical fibers sustained
by light radiation pressure that encompass the contribution of all the allowed propagating modes.
Various sequences of unstable and stable equilibrium liquid column diameters are found above a
threshold power. The non trivial relationship between single or multi-valued column diameter with
a mono- or multimodal structure of the electromagnetic field is analyzed and the influence of the
light-matter interaction geometry is estimated. Moreover, we propose a geometrical interpretation
based on a ray optics approach that brings an intuitive understanding of the role played by higher
order propagation mode in the occurence of a multistable liquid-core behavior.

PACS numbers: 47.10.Ma,42.25.Gy,42.50.Wk,82.70.Kj

I. INTRODUCTION

While adaptive optics is now recognized as a well es-
tablished technique to improve performances of optical
systems by checking for distortions and rapidly compen-
sating them using deformable mirrors, lenses or variable
index materials [1], it has recently been extended to the
conception of new optical systems with variable proper-
ties and potential self-adaptation. Using the softness of
liquids, advances were first directed toward tunable lens-
ing. On the one hand, externally-driven gradient-index
microlenses, such as bulk electro-optical liquid-crystal de-
vices [2] used bulk effects. On the other hand, light fo-
cusing has been actuated by liquid interface deforma-
tion using electro-wetting [3, 4], radiation pressure (ei-
ther optical [5] or acoustical [6]) and recently microflu-
idic devices [7]. Although the actual level of control and
reliability of these adaptive liquid lenses found nice ap-
plied developments, particularly as active camera lenses
for cellular phones, such strategy is almost absent in
the case of optical guiding because stabilization of free-
standing liquid columns encounters a fundamental limi-
tation associated to the Rayleigh-Plateau instability [8].
A liquid column classically breaks when its length ex-
ceeds its circumference due to capillary forces. Strate-
gies based on electric fields [9–11] and acoustic radiation
pressure [12] were then prompted to try to stabilize static
liquid columns. Unfortunately, the Rayleigh-Plateau on-
set has been repelled by less than a factor of two, thus
preventing any further use in optical systems. A totally
different approach, involving flow focusing in microchan-
nels, was implanted recently to bypass the instability and
finally build liquid-core/liquid-cladding waveguides [13].
This elegant dynamic method offers a good level of stabil-
ity and control since the refractive indices can be changed
with the fluids, and the size and the path of the liquid
core can be varied with the fluid flowrates. However,
tunability cannot be actuated rapidly, due to the intrin-
sic inertia of microfluidic systems, and optical guiding is
a priori not adapted to the incident light because the size

of the liquid core is controlled by liquid flow rates. That
is why, up to now, the route followed to build self-adapted
optical fibers from the liquid phase has been photopoly-
merization in order to self-write solid optical waveguides
in photosensitive organic materials (see for instance [14]).
Although these polymerized fibers are intrinsically self-
adapted to the writing beam, the process is not reversible
and adaptation is lost as soon as the size and wavelength
of the input beam are changed.

A few years ago, an optical technique relying on light
radiation pressure [15] has demonstrated that (i) liq-
uid columns with aspect ratio well beyond the Rayleigh-
Plateau threshold can be stabilized by a laser wave prop-
agating along the fiber axis, (ii) these columns self-adapt
in power and waist of the propagating laser wave and, (iii)
self-adaptation continuously adjusts to the beam proper-
ties. These tunable optical fibers can furthermore be ori-
ented in any direction by tilting the exciting beam. One
can therefore advance the concept of self-adapted liquid
step-index optical fiber with total reconfigurability and
automatic optimization to the waist and power of the ex-
citing beam. Optically induced liquid columns could thus
be particularly efficient to control beam propagation or
to optimize light coupling devices because reversibility
and self-adaptation considerably reduce the sensitivity
to precise mechanical alignments of optical components
and to the exact beam properties. Finally, by combining
optics and microfluidics, self-adapted liquid waveguides
offer a new example of optofluidics system with active
optical actuation [16]. However, even if very promising,
no theoretical background has been advanced so far to
describe the mechanisms at the origin of the optical sta-
bilization and tunability in column diameter and orien-
tation while understanding the involved processes would
clearly establish the background necessary for further ap-
plications. The purpose of the present paper is to answer
these open issues.

In this work, we present an electromagnetic model de-
scribing dielectric liquid columns sustained by light ra-
diation pressure that prevents the column to collapse
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through Rayleigh-Plateau instability. Considering the
column as a step-index liquid-core/liquid-cladding opti-
cal fiber, the light radiation pressure is obtained from the
Maxwell stress tensor that encompass the contribution of
all the allowed propagating modes. Steady state column
diameters depend on light-matter interaction geometry
and various sequences of unstable and stable states are
found above a threshold power. A single column diameter
is predicted when the beam diameter is sufficiently small
whereas a multi-valued diameter is expected at larger
beam diameter. Although the existence of multistability
for the core diameter is unambiguously associated with
a multimodal structure of the electromagnetic field, we
show that a single valued core diameter can be either
obtained when the light field has a mono or multimodal
nature. Finally, a geometrical interpretation based on
a ray optics approach is proposed and compared to the
complete electromagnetic model.

II. ELECTROMAGNETIC MODEL

A. General statements

We consider a dielectric column of liquid 2 in a liq-
uid 1 as a semi-infinite cylinder of radius R = d/2 per-
fectly centered with an incident linearly polarized [17]
(say, along x) Gaussian beam propagating along z, as
depicted in Fig. 1(a). The inner and outer refractive in-
dices of liquid optical fiber are n2 and n1, respectively,
with n2 > n1. This geometry corresponds to the simplest
description of the experimental situation explored in [19].
In the latter reference, the fluid-fluid interface of a quasi-
critical phase separated liquid mixture is illuminated by
a linearly polarized focused laser beam as sketched in
Fig. 1(b). The mixture is enclosed in a e = 1 mm-
thick fused quartz cell that is thermally controlled a few
Kelvins above the critical temperature, TC, where surface
tension vanishes. The phase 2, of height 0.5 mm, com-
pletely wets the cell walls, inducing a wetting layer at
the bottom of the cell. At high enough power, typically
hundreds of mW, a perfectly beam-centered 0.5 mm-long
stable liquid column of phase 2 forms between the inter-
face and the wetting layer [see Fig. 1(b)] following an
opto-hydrodynamic instability [20]. A typical image of
a light-sustained liquid column is shown in Fig. 1(c).
Columns 1mm-long can as well be stabilized in 2mm-
thick cells [21].

Without loss of generality, we will further use the pa-
rameters that correspond to the experimental study of
Ref. [19], which was performed at temperature T −TC =
2 K. Namely, refractive indices n1 = 1.444, n2 = 1.460
and surface tension σ = 1.75×10−7 N/m [22]. The inten-
sity profile at z = 0, i.e. the altitude of the unperturbed
interface, is

I(r) =
2P

πw2
exp

(

−
2r2

w2

)

, (1)
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FIG. 1: (a) Geometry of the problem. (b) Typical experi-
mental situation explored in [19]. The TEM00 mode of a CW
laser is focused at the fluid-fluid interface of the phase sep-
arated liquid mixture whose temperature is regulated above
the critical temperature Tc. The less refractive phase (labeled
1) is the denser one and the cell thickness is e = 1 mm. Above
a threshold power, a liquid column of phase 2 with diameter
d = 2R forms between the interface and the bottom of the
cell, as shown in panel (c) where d ' 8 µm for T − Tc = 2 K,
w0 = 1.8 µm and P = 600 mW.

where r =
√

x2 + y2, P is the total beam power and

w = w0

√

1 + (zoffset/z0)2 (2)

is the beam radius defined at e−2 of maximum intensity.
In Eq. 2 w0 is the beam waist, z0 = πw2

0/λ the Rayleigh
range and zoffset the offset distance between the plane
where is located the beam waist and the fluid interface
[see Fig. 1(a)]. The laser wavelength is λ0 = 514.5 nm
and λ = λ0/n2 is the wavelength in the incident medium
(phase 2).

In weightless conditions, the outward optical radiation
pressure Πradiation, the inward Laplace pressure ΠLaplace

arising from surface tension, and the component of the
viscous stress normal to the surface must balance on the
surface of the column. For a perfectly cylindrical vertical
column, the normal component of the viscous stress on
the interface vanishes. Thus, the balance of the remain-
ing surface forces is

ΠLaplace = Πradiation , (3)

which determine the equilibirum solution for a liquid col-
umn with radius R. On the one hand, the left-hand side
of Eq. (3) is merely related to the curvature 1/R of the
liquid cylinder as

ΠLaplace =
σ

R
. (4)

On the other hand the radiation pressure is estimated
from the normal discontinuity of the electromagnetic
Maxwell stress tensor [23] across the interface. Neglect-
ing the Abraham term oscillating at optical frequency,
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whose time averaging over an optical cycle vanishes, one
finds for the time averaged radiation pressure

Πradiation =
r=R

〈

ε0

[(

n2
1 E1E

T

1 − n2
2 E2E

T

2

)

ur

]

· ur

−
1

2
ε0

(

n2
1 E1 · E1 − n2

2 E2 · E2

)

〉

t
, (5)

where ur is the unit radial vector, ε0 the vacuum permit-
tivity, Ei the real electric field vector in fluid i, (...)T the
transpose and 〈...〉t denotes time averaging. Using the
boundary conditions for the dielectric fluids 1 and 2 at
r = R, Et,1 = Et,2 and n2

1 En,1 = n2
2 En,2, we get

Πradiation =
r=R

ε0
n2

2 − n2
1

4

(

|Et,2|
2 +

n2
2

n2
1

|En,2|
2

)

, (6)

where Et,i and En,i are the tangential and normal of the
complex electric field in the fluid i.

Next, the calculation of the field distribution is done
by taking into account the waveguiding properties of the
liquid column that can be considered as a step-index
liquid-core/liquid-cladding optical fiber with radius R.
Only the propagating modes are further retained and, un-
less explicitely mentioned, we consider an incident beam
whose waist perfectly matches the liquid-liquid interface,
i.e. zoffset = 0.

B. Multimodal structure of the field

Following n1 ' n2, the propagating modes inside the
column are assumed to be the linearly polarized LPlm

modes where integers ` ≥ 0 and m > 1 are respectively
related to their polar and radial characteristics [24]. Not-
ing that the incident Gaussian beam is cylindrically sym-
metric, only the LP0m modes are excited. The electric
field of the mode m writes (note that the z-component
can be neglected in the limit n2 − n1 → 0 [24])

E(m) = E
(m)
0 Rm(r) eiβmz ux , (7)

where E
(m)
0 is a constant and

Rm(r) =















J0(κmr)

J0(κmR)
if r ≤ R

K0(γmr)

K0(γmR)
if r ≥ R

, (8)

Jn and Kn being respectively the Bessel funtion of the
first kind and the modified bessel function of the second
kind. Moreover κm and γm are the m-th roots of the
characteristic equation that defines the LP0m mode [24],

κm
J1(κmR)

J0(κmR)
= γm

K1(γmR)

K0(γmR)
, (9)

with

(κmR)2 + (γmR)2 = V 2 , (10)

where V = k0(n
2
2 − n2

1)
1/2 is often called the normal-

ized frequency and k0 = 2π/λ0. Finally, the propagation
constant βm is defined following

βm = (n2
2k

2
0 − κ2

m)1/2 = (γ2
m − n2

1k
2
0)

1/2 . (11)

The field inside the column is the superpostion of dif-
ferent LP0m modes. The weight of the mode m is given
by the power transmission of the incident beam into that
mode, Tm, which is expressed as the normalized electric
field overlap integral

Tm =

∣

∣

∣

∫

∞

0
E(m) ·E(inc) r dr

∣

∣

∣

2

∫

∞

0 |E(m)|2 r dr
∫

∞

0 |E(inc)|2 r dr
, (12)

where E(inc) ∝ exp(−r2/w2
0)ux is the incident Gaussian

electric field (recall that we assume zoffset = 0). We ob-
tain

Tm =
8Fm

w2
0R

2

∣

∣

∣

∣

∫

∞

0

Rm(r)e
−

r2

w2
0 rdr

∣

∣

∣

∣

2

, (13)

where

Fm =

[

J2
1 (κmR)

J2
0 (κmR)

+
K2

1(γmR)

K2
0(γmR)

]−1

. (14)

The transmission coefficient and the total transmis-
sion T =

∑

m Tm strongly depends on the column ra-
dius R and beam waist w0 as shown in Fig. 2 where
T and Tm are plotted as a function of R for w0 = 1.8
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FIG. 2: (Color online) Total transmission, T (dashed line),
and transmission of the mode m, Tm (solid lines), vs. column
radius for w0 = 1.8 µm (a) and 7 µm (b). The labels (1-7)
corresponds to the value of m and the corresponding code
color is m = 1: red, m = 2: blue, m = 3: black, m = 4:
green, m = 5: magenta, m = 6: orange and m = 7: yellow.



4

0 1 2 3 4 5 6
10

-2

10

10
0

10
1

R (µm)

(P
a)

radiationP

LaplaceP

-1

i
P

FIG. 3: (Color online) Laplace pressure (dashed line) and
radiation pressure (solid line) vs. column radius R for w0 =
7 µm and P = 500 mW. Filled and open circles correspond
respectively to stable and unstable equilibrium radii.

[panels (a)] and 7 µm [panels (b)]. Note that only
the fundamental mode LP01 always propagates into the
liquid fiber, which is a standard result [24]. Higher-
order modes m ≥ 2 appear above cut-off normalized
frequencies V ' (3.81, 6.97, 10.01, 13.21, 16.33, 19.44) for
m = (2, 3, 4, 5, 6, 7), which correspond to cut-off radii
R ' (1.45, 2.65, 3.84, 5.02, 6.20, 7.38) µm in the present
case (Fig. 2). An overall increase of T with R is predicted,
however, some peaks can be observed, which correspond
to individual modal transmission peaks (Fig. 2). The
later peaks are related to mode matching between the
incident Gaussian field and the electric field distribution
of a mode and are less pronounced for small waists, as
observed from the comparison between upper and lower
panels of Fig. 2.

From the knowledge of the multimodal structure of
the light field propagating into the liquid column, the
radiation pressure given by Eq. (6) can now be explicited,
which is done in what follows.

C. Light radiation pressure

The total radiation pressure exerted onto the column
interface results from the combination of all the LP0m

modes that are allowed to propagate inside the structure.
Using the approximated expression for the electric field
given by Eqs. (7,8), Eq. (6) becomes, to the lowest order
in n2 − n1, recalling that Rm(R) = 1

Πradiation =
1

2
ε0n(n2 − n1)

∑

m

|E
(m)
0 |2 , (15)

where n = (n2 + n1)/2 is the averaged refractive index.
The estimation of the sum in Eq. (15) requires the knowl-

edge of the constants E
(m)
0 of Eq. (7). The later are de-

termined noting that the flux of the z-component of the

Poynting vector of the mode m across a plane perpen-
dicular to the z-axis equals the power carried by that
mode, Pm = 1

2ε0nc
∫∫

|E(m)|2dxdy where c is light speed.
Therefore

Pm =
ε0ncπR2

2Fm
|E

(m)
0 |2 . (16)

Finally, combining Eqs. (15,16) and using Pm = TmP ,
we obtain

Πradiation = P
n2 − n1

πR2c

∑

m

FmTm . (17)

D. Equilibrium states and stability analysis

By inserting Eqs. (4, 17) in Eq. (3) the equilibirum
equation reads

σ − P
n2 − n1

πcR

∑

m

FmTm = 0 . (18)

The column radius R is obtained by numerically solv-
ing Eq. (18). No equilibrium radius is found below a
critical power Pc. Above Pc, a discrete set of solutions

{R
(n)
eq } of radii is predicted. The later situation is il-

lustrated in Fig. 3 for w0 = 7 µm and P = 500 mW,
where the dependence of Πradiation and ΠLaplace on R
are shown. The stability of steady state solutions is
retrieved noting that, in the presence of an infinetisi-
mal displacement dR ur, the total surface force density
(Πradiation − ΠLapace)R=R

(n)
eq

ur has a restoring (respec-

tively amplifying) action if R = R
(n)
eq is a stable (re-

spectively unstable) solution. The stability criterion thus
writes

∂Πradiation

∂R

∣

∣

∣

R=R
(n)
eq

<
∂ΠLaplace

∂R

∣

∣

∣

R=R
(n)
eq

, (19)
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FIG. 4: (Color online) Critical power Pc (a) and radius Rc (b)
vs. beam waist. Circles and squares corresponds to the first
and the second branch of solutions for the column diameter
d(P ), as illustrated in insets of panel (b) for w0 = 5 µm (1)
and w0 = 13 µm (1).
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FIG. 5: (Color online) Liquid column diameter d (a) and nor-
malized diameter d/w0 (b) vs. power for w0 = 1.8 (black), 3.5
(blue) and 7 µm (red). Solid and dashed lines refer to stable
and unstable states, respectively. In panel (a) the maximum
number of propagating modes, mmax, is indicated as alterna-
tively shaded regions.

which is illustrated in Fig. 3, where filled and open cir-
cles respectively correspond to stable and unstable equi-
librium column radii.

The dependence of the critical power Pc and radius
Rc = Req(P = Pc) on the beam waist is shown in Fig. 4.
Although Pc increases almost linearly with w0 [Fig. 4(a)],
Rc exhibits a Plateau-like behavior [Fig. 4(b)] that is re-
lated to the branched structure of equilibrium diameters
as a function of power. This is shown in the insets (1,2) of
Fig. 4(b), which respectively refer to w0 = 5 and 13 µm.

An overview of equilibrium solutions is displayed in
Fig. 5 where the power dependence of the column di-
ameter d and normalized diameter d/w0 are respectively
presented in Figs. 5(a,b) for w0 = 1.8, 3.5 and 7 µm.
Solid (dashed) lines refer to stable (unstable) solutions.
For small beam waists (typically for w0 < 1.5 µm) a
mono-valued diameter is predicted while a more compli-
cated sequence of stable and unstable states is found at
larger beam waists. It turns out that each stable branch
ending in the plane of parameter (P, d) precisely corre-
sponds to a cut-off radius. In fact, a stable branch is as-
sociated to a well-defined number of propagating modes,
mmax, which is indicated by alternatively shaded regions
in Fig. 5(a). Note that a single-valued diameter does not
necessarily imply a monomodal structure of the field but
merely indicates that higher-order modes contribution to
the total light radiation pressure establishes smoothly, as
illustrated by Fig. 2(a) where w0 = 1.8 µm.

Next, the influence of an offset between the incident
beam waist location and the liquid-liquid interface is ex-
plored.
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FIG. 6: (Color online) Total transmission vs. column radius
and normalized diameter vs. power for w0 = 1.8 µm (a,b) and
7 µm (c,d) with different offset values zoffset; black: zoffset = 0;
orange: zoffset = ±z0/2; red: zoffset = ±z0.

E. Role of incident beam offset

Herafter, we consider zoffset 6= 0 [see Fig. 1(a)]. From
an experimental point of view, this corresponds to a mis-
alignement of the focal spot of the incident beam with
respect to the liquid-liquid interface. Consequently, the
modal transmission Tm is changed. Indeed, the incident
electric field now has an additional dependence in r due
to wavefront curvature ρ [see Fig. 1(a)] ,

E(inc) ∝ exp

(

−
r2

w2
+ i

n2k0r
2

2ρ

)

ux , (20)

where w is given by Eq. (2) and

ρ = −zoffset

[

1 + (z0/zoffset)
2
]

. (21)

As expected, Eq. 21 gives a positive curvature when
zoffset < 0, as sketched in Fig. 1(a). The Eq. (12) is
thus modified according to the following expression

Tm =
8Fm

w2R2

∣

∣

∣

∣

∫

∞

0

Rm(r)e−r2( 1
w2 +i

n2k0
2ρ )rdr

∣

∣

∣

∣

2

. (22)

Then, the equilibrium solutions are obtained by inserting
Eq. (22) in Eq. (18). A summary of the results is pre-
sented in Fig. 6 that shows the total transmission T and
the normalized diameter d/w0 for zoffset = ±z0/2 and
±z0 using w0 = 1.8 [Fig. 6(a,b)] and 7 µm [Fig. 6(c,d)].
Note that the result is independent of the sign of z0 as
expected from the dependence on ρ of Eq. (22).

We conclude that, within an experimentally realistic
mismatch |zoffset| < z0, the behavior of the column is
not much changed, rendering the experimental validation
of the present model [19] almost insensitive to residual
misalignment of the incident beam.
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III. GEOMETRICAL INTERPRETATION

It is known that the light radiation pressure of a plane
wave exerted on a flat interface between two dielectrics
gives identical results either deriving it from Maxwell
stress tensor [22] or ray optics approach [25]. Here,
a geometrical interpretation based on the multimodal
structure of the light field is particularly desirable in or-
der to bring a more intuitive physical picture than the
full electromagnetic approach presented so far, although
we are aware that propagating modes into the liquid-
core/liquid-cladding optical fiber cannot be considered
as plane waves.

For this purpose we consider the ray optics analog of
a LP0m mode with power Pm as a plane wave which
is totally reflected at angle of incidence θm lying be-
tween the critical angle for total internal reflection, θc =
arcsin(n1/n2), and π/2 [see Fig. 7(a)]. By construc-
tion we have θm = π/2 − φm, where φm is defined
from the propagation constant given by Eq. (11), namely
βm = n2k0 cosφm. The dependence of θm as a function
of R is shown in Fig. 7(b). The change of linear momen-
tum per photon associated to reflection at the interface is
∆pm = |p+

m − p−

m| = 2~n2k0 cos θm ur [Fig. 7(a)], which
can be rewritten as

∆pm = 2~κmur . (23)

where ~ is the reduced Planck constant. Within this
framework, the radiation pressure for the mode m equals
the linear momentum change upon a single reflection per
time and area,

Π
′ (m)
radiation = 2~κmΦm , (24)

where Φm is the number of photons that reflect on the
column wall per unit time and area.

Introducing the number of photons passing through
a cross-section πR2 of the column per unit time, Nm,

and the length between two successive reflections, ζm =
2R tan θm [Fig. 7(a)], we obtain

Φm =
Nm

2πRζm
, (25)

with

Nm =
αmTmP

~k0c
, (26)

where, in the limit n1 ' n2, αm =
∫ R

0
R2

m(r)rdr/
∫

∞

0
R2

m(r)rdr is the fraction of photons
inside the core of the liquid optical fiber (0 < αm < 1),

αm = Fm

[

1 +
J2

1 (κmR)

J2
0 (κmR)

]

. (27)

The total radiation pressure is finally obtained by sum-
ming over all the propagating modes,

Π ′

radiation =
P

2πR2ck0

∑

m

αmκ2
mTm

βm
. (28)

The radiation pressure expressions obtained within a
full electromagnetic approach [Eq. (17)] and its ray op-
tics analog [Eq. (28)] are compared in Fig. 8, where the
ratio Π ′

radiation/Πradiation is calculated as a function of
R for different values of w0. Typically the mismatch is
important (as large as 35%) at small R where diffrac-
tion effects becomes significant. Conversely, the relative
mismatch is below 10% above R ' 3 µm, which cor-
responds to experimental situations explored in [19] as
indicated by the horizontal bars in Fig. 8. In addition,
the overall trend at large R shows that the geometrical
interpretation is asymptotically valid when the column
diameter becomes large compared to the wavelength, as

1 2 3 4 5 6 7
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1.41.4
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o
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0

= 3.5 µmw
0
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0

FIG. 8: (Color online) Ratio between the radiation pressure
calculated within the geometrical (ray optics) interpretation
and the electromagnetic (wave optics) approach vs. column
radius for w0 = 1.8 µm (black), 2.7 (red), 3.5 (orange) and
7 µm (magenta). The horizontal bars refers to the experimen-
tal range of radii that has been explored in Ref. [19].
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FIG. 9: (Color online) Normalized diameter d/w0 vs. power
for w0 = 1.8 µm (a) and 7 µm (b) within the electromagnetic
approach (solid line) and the ray optics interpretation (dashed
line).

expected. As a consequence, only small quantititative
changes are found when solving the equilibrium equation
using the ray optics approach. This is shown in Fig. 9
where power dependence of the column diameter is cal-
culated for w0 = 1.8 (panel a) and 7 µm (panel b) and
compared to the previously discussed electromagnetic re-
sults.

The geometrical interpretation allows a qualitative un-
derstanding of the role played by higher order modes
whose corresponding photons ensure a larger amount of
linear momentum transfer to the column interface, as il-
lustrated in Fig. 7(a). This can be read from Eq. (23)
noting that κm increases with m.

IV. CONCLUSION

An electromagnetic model describing stable station-
nary dielectric liquid columns sustained by light radiation
pressure is presented. The liquid column is considered as
step-index liquid-core/liquid-cladding optical fiber that
can either have monomodal or multimodal light propa-
gation behavior. The radiation pressure exerted by light
onto the liquid-liquid interface, which defines the liquid
fiber core diameter, is calculated using the Maxwell stress

tensor and summing the contributions of all the allowed
propagating modes. Steady state optical liquid fiber di-
ameters are found when light radiation pressure compen-
sates the Laplace pressure, thus preventing the column to
collapse due to surface tension effects. At a given beam
waist, equilibrium conditions are fulfilled only above a
threshold power that depends on the refractive index
contrast and interfacial tension. Above that threshold,
a single column diameter is predicted when the beam
diameter is sufficiently small whereas a multi-valued di-
ameter is expected otherwise. The stability analysis has
evidenced a sequence of unstable and stable equilibrium
states whose mapping as a function of the total light
power is obtained. Although the existence of a multi-
stable core is unambiguously associated with a multi-
modal structure of the electromagnetic field, it is shown
that a single valued core diameter can be either obtained
when the light field has a mono or multimodal nature.
Moreover, the role played by the higher order modes of
propagation as well as the influence of the coupling geom-
etry were explored. Finally, a geometrical interpretation
is proposed. The radiation pressure calculation using a
ray optics approach is based on linear momentum trans-
fer of light to the liquid-liquid interface through the total
internal reflections of each allowed propagating modes.
Comparison with the electromagnetic approach showed
its range of applicability and gave a qualitative insight
to the predicted multistability.

Considering our theoretical description in close rela-
tion to previous experiments (optical stabilisation what-
ever the aspect ratio and smart tuning in column di-
ameter in the micrometer range), laser-sustained liquid
bridges become very promising optofluidic objects to an-
ticipate new optical microsystems based on microfluidics
for light guiding and coupling applications or conversely,
to build and actuate fluidic micropipes of tunable section
(to transfer fluid from one reservoir to another) with op-
tical surface forces.
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